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ABSTRACT

The orbital period modulation, observed in close binary systems with late-type secondary
stars, is considered in the framework of a general model that allows us to test the hypoth-
esis proposed by Applegate. It relates the orbital period variation to the modulation of the
gravitational quadrupole moment of their magnetically active secondary stars produced by
angular momentum exchanges within their convective envelopes. By considering the case of
RS CVn binary systems, it is found that the surface angular velocity variation of the secondary
component required by Applegate’s hypothesis is between 4 and 12 per cent, i.e. too large to
be compatible with the observations and that the kinetic energy dissipated in its convection
zone ranges from 4 to 43 times that supplied by the stellar luminosity along one cycle of the
orbital period modulation. Similar results are obtained for other classes of close binary systems
by applying a scaling relationship based on a simplified internal structure model. The effect
of rapid rotation is briefly discussed finding that it is unlikely that the rotational quenching
of the turbulent viscosity may solve the discrepancy. Therefore, the hypothesis proposed by
Applegate is not adequate to explain the orbital period modulation of close binary systems
with a late-type secondary.

Key words: MHD – stars: activity – binaries: close – stars: magnetic fields – stars: rotation.

1 I N T RO D U C T I O N

The long-term monitoring of close binary systems with late-type
secondary components shows that in general their orbital period is
not constant but it is modulated around its mean value on time-scales
of decades. Specifically, in Algols and RS Canum Venaticorum sys-
tems, the relative amplitude of the orbital period modulation is of the
order of �P/P ∼ (1–3) × 10−5 with cycles of 30–50 yr, whereas in
cataclysmic variables and W UMa systems �P/P ∼1 × 10−6 with
cycles of 5–30 yr (cf. e.g. Hall 1989; Lanza & Rodonò 1999, and
references therein).

RS CVn binary systems represent the best case to investigate
this intriguing phenomenon because the complication due to mass
transfer is absent given their detached nature and light–time effects
due to a third companion can usually be excluded (cf. van Buren
1986; Frasca & Lanza 2005).

RS CVn systems have typical orbital periods between 1 and 15 d
and consist of late-type main sequence or subgiant components. The
rapid rotation enforced by tidal synchronization and the deep con-
vection zones of their component stars promote a vigorous dynamo
action that manifests itself in a high level of solar-like magnetic
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activity (e.g. Rodonò 1992; Guinan & Gimenez 1993; Strassmeier
et al. 1993; Garcı́a-Alvarez et al. 2003, and reference therein).

Applegate (1992) reviewed the previous theoretical models for
the orbital period modulation and proposed a new hypothesis to ex-
plain the phenomenon. It relates the orbital period modulation to
the operation of a hydromagnetic dynamo in the convection zone
of the active components of close binary systems. More precisely,
Applegate’s hypothesis assumes that a few per cent of the internal
angular momentum of the active component is cyclically exchanged
between an inner and an outer convective shell due to a varying inter-
nal magnetic torque versus the activity cycle phase. This affects the
oblateness and the gravitational quadrupole moment of the active
star, which oscillates around its mean value. When the quadrupole
moment is maximum, the companion star feels a stronger gravita-
tional force, so that it is forced to move closer and faster around the
barycentre of the system, thus attaining the minimum orbital period.
On the other hand, when the quadrupole moment is minimum, the
orbital period attains its maximum value.

In a recent paper, Lanza (2005) presented a detailed model for
the angular momentum exchanges within the convection zone of a
rapidly rotating star under the assumption that the angular velocity
is constant on cylindrical surfaces co-axial with the rotation axis.
That analysis led to the rejection of the Applegate hypothesis in
the case of RS CVn binary systems because the required angular
velocity variations are one or two orders of magnitude larger than
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1774 A. F. Lanza

the upper limits set by the observations and the mechanical energy
dissipated in the turbulent convection zone during one cycle of the
modulation exceeds that supplied by the stellar luminosity.

In the present paper, the approach of Lanza (2005) is extended
to the general case of an internal angular velocity that depends on
both radius and latitude. The results reinforce the conclusion of
the previous analysis, showing that the mechanism proposed by
Applegate is not adequate to explain the orbital period modulation
of RS CVn binary systems in particular and of close binary systems
with a late-type secondary in general.

2 T H E M O D E L

2.1 Hypotheses and basic equations

We consider an inertial reference frame with its origin at the barycen-
tre of the active component star and the z-axis in the direction of the
stellar rotation axis. A spherical polar coordinate system (r, θ , ϕ) is
assumed, where r is the distance from the origin, θ is the colatitude
measured from the North Pole and ϕ is the azimuthal angle. We as-
sume that all the variables do not depend on ϕ. As a matter of fact,
the tidal deformation due to the companion star introduces a depen-
dence on the azimuthal angle, but it can be neglected in the analysis
of Applegate’s model because it does not produce any variation of
the gravitational quadrupole moment that affects the orbital motion
in a time-dependent fashion (cf. Applegate 1992; Lanza, Rodonò &
Rosner 1998).

In order to treat the hydrodynamics of a turbulent convection
zone, a mean-field approach is adopted. In particular, the velocity
V = v + v′, where v is the mean velocity and v′ is its fluctuation
with respect to the mean value at a given point and time. The mean
velocity field is assumed to be that arising from stellar rotation v
= (0, 0, vϕ), with vϕ = vϕ(r, θ , t), where t is the time, i.e. the
meridional circulation is neglected. Moreover, we neglect the den-
sity fluctuations (the so-called anelastic approximation) and assume
that the density ρ depends only on r.

The equations of mass continuity and angular momentum con-
servation in the mean-field approach can be found in, e.g., Lanza
(2005) [cf. equation (1) and equations (2), (3) and (4), respectively].
For the sake of simplicity, we shall not consider the energy equa-
tion in detail and require only that the mechanical energy dissipated
by the mean flow in the turbulent convection zone does not exceed
some fraction, say 10 per cent, of the energy supplied by the stellar
luminosity along one cycle of the orbital period modulation.

Starting from the equation for the angular momentum conserva-
tion, the equation for the angular velocity ω ≡ vϕ/(r sin θ ) can be
written as

∂ω

∂t
− 1

ρr 4

∂

∂r

(
r 4ηt

∂ω

∂r

)
− ηt

ρr 2

1

(1 − μ2)

∂

∂μ

[
(1 − μ2)2 ∂ω

∂μ

]
= S, (1)

where η t is the turbulent dynamical viscosity (assumed to be a func-
tion of r only), μ ≡ cos θ and S is a source term given by

S = − ∇ · τ
ρr 2(1 − μ2)

, (2)

where τ is a vector whose components are

τi = r sin θ

[
Λiϕ + 1

μ̃
(Bi Bϕ + Miϕ)

]
, (3)

where Λik is the Reynolds stress tensor, μ̃ is the magnetic perme-
ability, B is the mean magnetic field and M ik is the Maxwell stress
tensor arising from the correlation of the magnetic field fluctuations
(see Lanza 2005, equation 4). Equations (2) and (3) account for the
angular momentum transfer by the Reynolds stresses and the mag-
netic torques. We solve equation (1) with the stress-free boundary
conditions(

∂ω

∂r

)
rb,R

= 0, (4)

where rb is the radius at the base of the stellar convection zone and
R is the radius of the star. This ensures that the angular momen-
tum flux outside the convection zone vanishes, i.e. the total angular
momentum of the convection zone is conserved.

2.2 Solution of the angular momentum equation

Following Kopal (1978), we seek a solution of equation (1) with the
boundary conditions (4) of form

ω(r , μ, t) =
∞∑

n=0

αn(t)ζn(r )P (1,1)
n (μ), (5)

where the functions α and ζ will be specified below and P (1,1)
n (μ)

are Jacobian polynomials (cf. Smirnov 1964a). They are the finite
solutions of the equation

d

dμ

[
(1 − μ2)2 dP (1,1)

n

dμ

]
+ n(n + 3)(1 − μ2)P (1,1)

n = 0 (6)

in the interval −1 � μ � 1, including its ends. They form a complete
and orthogonal set with respect to the weight function (1 − μ2) in
the interval −1 � μ � 1. In order to solve equation (1), we also
develop the source term S in a similar fashion:

S =
∞∑

n=0

βn(t)ζn(r )P (1,1)
n (μ). (7)

We substitute equations (5) and (7) into equation (1), apply equa-
tion (6) and the orthogonality of the Jacobian polynomials and sep-
arate the variables, putting the functions that depend on the time t
on the left-hand side and those that depend on the radial coordinate
r on the right-hand side. Thus, we obtain for each n

α̇n − βn

αn
= 1

ζn

[
1

ρr 4

d

dr

(
r 4ηtζ

′
n

) − n(n + 3)
ηt

ρr 2
ζn

]
, (8)

where the dot indicates the derivative with respect to the time and the
prime the derivative with respect to the radius. Since the left-hand
side of equation (8) depends only on the time while the right-hand
side depends only on the radius, the two sides must be equal to the
same constant, say, −λn. Therefore, we obtain two equations

dαn

dt
+ λnαn = βn, (9)

whose solution is

αn(t) = exp(−λnt)

∫ t

0

βn(t ′) exp(λnt ′) dt ′ + αn(0), (10)

and
1

ρr 4

d

dr

(
r 4ηtζ

′
n

) − n(n + 3)
ηt

ρr 2
ζn + λnζn = 0, (11)

with the boundary conditions (4), i.e.

ζ ′
n(r ) = 0 at r = rb, R. (12)
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Orbital period changes in close binary stars 1775

In other words, the function ζ n is a solution of the Sturm–Liouville
problem defined by equation (11) with the boundary conditions (12)
in the interval rb � r � R (cf. e.g. Morse & Feshbach 1953). We
indicate by ζ nk the eigenfunction corresponding to the kth eigen-
value λnk. The eigenfunctions ζ nk, for a fixed n, form a complete
and orthogonal set of functions in the interval [rb, R] with respect to
the weight function ρr4 that does not depend on n. We recall from
the theory of the Sturm–Liouville problem that the eigenvalues ver-
ify the inequality, λn0 < λn1 < · · · < λnk < λnk+1 < · · · , and the
eigenfunction ζ nk has k nodes in the interval [rb, R] for each n. For
n = 0, the first eigenvalue corresponding to the eigenfunction ζ 00

is zero and the eigenfunction vanishes at all points in [rb, R], as
it is evident by integrating both sides of equation (11) in the same
interval, applying the boundary conditions (12) and considering that
ζ 00 has no nodes. For n > 0, all the eigenvalues λn0 are positive,
as can be derived by integrating both sides of equation (11) in the
interval [rb, R], applying the boundary conditions (12) and consid-
ering that ζ n0 has no nodes. In view of the inequality given above,
all the eigenvalues λnk are then positive for n � 1. Moreover, it is
possible to prove that λn′k � λnk if n′ > n (cf. Smirnov 1964b).

In consideration of these results, the general solution for the an-
gular velocity can be written in the form

ω(r , μ, t) =
∑

k

∞∑
n=0

αnk(t)ζnk(r )P (1,1)
n (μ), (13)

where the summation over n is for fixed k and the functions αnk

and β nk depend also on the order k of the radial eigenfunction.
Thanks to the orthogonality of the Jacobian polynomials and of the
eigenfunctions ζ nk, we find

βnk = Enk

∫ R

rb

∫ 1

−1

ρr 4 S(r , μ, t)ζnk P (1,1)
n · (1 − μ2) dμ dr , (14)

where Enk is a normalization factor depending on n and k.
The solution of our problem is now complete: given the source

term S, we can compute the functions β nk from equation (14) and
solve for the αnk functions from equation (10) by making use of the
initial conditions.

2.3 Kinetic energy variation and dissipation

It is convenient to measure the variation of the kinetic energy of
rotation with respect to the state of minimum mechanical energy.
It corresponds to a rigid rotation with a total angular momentum
equal to the total angular momentum of the stellar convection zone.
If the angular velocity of such a reference state is �0, the angular
velocity � at a given position and time can be written as: �(r,
μ, t) = �0 + ω(r, μ, t), where ω is the deviation from the rigid
rotation state and is given by the solution of the angular momentum
equation discussed above. The variation of the total kinetic energy
of rotation with respect to the rigidly rotating state can be written
as: �T = ∑

k

∑
n �Tnk , where the contribution of each term of

the series in equation (13) is

�Tnk = 8π(n + 1)

(2n + 3)(n + 2)
α2

nk(t)

∫ R

rb

ρr 4ζ 2
nk dr . (15)

The numerical factor in front of the integral comes from the nor-
malization of the Jacobian polynomials.

According to Applegate’s hypothesis, some angular momentum
is exchanged back and forth between an inner and an outer shell in
the stellar convection zone and this leads to a periodic change of the

kinetic energy of the convection zone itself. This process is not re-
versible because convective turbulence produces energy dissipation
whenever angular velocity gradients are present. A fraction of the ki-
netic energy is injected into the turbulent Kolmogorov cascade and is
eventually dissipated at the length-scales at which molecular viscos-
ity becomes important. The amount of kinetic energy dissipated per
unit time is (cf. e.g. Landau & Lifshitz 1959; Chandrasekhar 1961)

dT
dt

= −
∫

Vc

ηtr 2(1 − μ2)

[(
∂ω

∂r

)2

+ 1 − μ2

r 2

(
∂ω

∂μ

)2
]

dV ,

(16)

where V c is the volume of the convection zone to which the inte-
gration is extended. Since P (1,1)

n ∝ (dP n+1)/(dμ), where Pn+1 is the
Legendre polynomial of degree n + 1 (cf. e.g. Abramowitz & Ste-
gun 1965; Kopal 1978; Gradshteyn & Ryzhik 1994), we can apply
the results of Higgins & Kopal (1968) to compute the total kinetic
energy dissipation. Taking into account the properties of the radial
eigenfunctions ζ nk, the expression can be further simplified, yielding

dT
dt

= −2
∑

k

∑
n

λnk�Tnk . (17)

This implies that the rate of kinetic energy dissipation is the sum
of the dissipation rates associated with each term of equation (13).
The extremal properties of the radial eigenfunctions (cf. e.g. Morse
& Feshbach 1953) imply that the minimum dissipated energy for a
given kinetic energy variation is obtained when the radial profile of
the angular velocity variation is proportional to the eigenfunction
with the lowest angular degree and radial order, i.e. n = 0 and k = 1.

2.4 Variation of the gravitational quadrupole moment

The variation of the gravitational quadrupole moment with respect to
the reference state of rigid rotation with angular velocity �0 can be
computed by means of the approach devised by Ulrich & Hawkins
(1981). Specifically, the differential equation for the variation of the
dimensional quadrupole potential ��12(r, t) is

∂2(��12)

∂r 2
+ 2

r
∂(��12)

∂r
− 6

r 2
(��12)

= 4πr 2

m(r )

[(
dρ

dr

)
(��12) − ∂

∂r
(r 2b2ρ) − rρa2

]
, (18)

where m(r) is the mass of the star inside radius r and the functions
b2 and a2 have been introduced by Lebovitz (1970). If the deviation
from the reference state is small, i.e. |ω| 	 �0, they are given by

b2(r , t) = 5

6
a0(r , t) + 1

3
a2(r , t), (19)

where

a0(r , t) 
 �0

∫ 1

−1

ω(r , μ, t)(1 − μ2) dμ,

a2(r , t) 
 5

2
�0

∫ 1

−1

ω(r , μ, t)(3μ2 − 1)(1 − μ2) dμ. (20)

If the angular velocity is expressed as a series of the kind of equa-
tion (13), we find

a2(r , t) 
 �0

∑
k

[
12

7
α2k(t)ζ2k(r ) − 4

3
α0k(t)ζ0k(r )

]
,

b2(r , t) 
 �0

∑
k

[
2

3
α0k(t)ζ0k(r ) + 4

7
α2k(t)ζ2k(r )

]
, (21)
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that is, only the eigenfunctions of angular degrees n = 0 and n = 2
are relevant for the quadrupole moment variation in the considered
linear approximation.

The solution of equation (18) must match continuously the outer
gravitational potential at the stellar surface r = R at any time t:

��′
12(R, t) + 3��12(R, t)/R = 0, (22)

while close to the centre ��12(r, t) = C r2. In order to solve
equation (18) with the appropriate boundary conditions, we ap-
ply a shooting method by integrating outward from the centre of
the star, varying the trial constant C until equation (22) is satisfied.
The dimensional quadrupole moment variation is given by �Q =
−R3 ��12(R)/3G, where G is the gravitation constant. The relative
orbital period variation with respect to the period corresponding to
rigid stellar rotation with angular velocity �0 is

�P
P

= −9
�Q
Ma2

, (23)

where M is the mass of the active component star and a is the
semimajor axis of the relative orbit (cf. e.g. Applegate 1992).

Since the angular velocity variation is small, the variation of the
quadrupole moment �Q can be expressed as the sum of the varia-
tions due to each of the terms in equation (21), i.e.

�Q =
∑

k

(�Q0k + �Q2k) , (24)

where �Q0k and �Q2k are the variations produced by the angular
velocity perturbations proportional to ζ 0k and ζ 2k, respectively.

2.5 Scaling relationships

It is interesting to derive some scaling relationships for the eigen-
functions and the eigenvalues of equation (11) that can be used to
compute the scaling of the gravitational quadrupole moment and en-
ergy dissipation rate with the fundamental stellar parameters. This
can be done by adopting a composite polytrope approximation to
describe the internal structure of the active component star, i.e. by
assuming that it consists of a polytrope of polytropic index np = 3
in its radiative core (that extends between r = 0 and r = rb) and
of a polytrope of index np = 3/2 in its convective envelope (i.e.
ranging from r = rb to r = R; see Rappaport, Verbunt & Joss 1983).
The turbulent viscosity is computed according to the mixing-length
approximation: ηt = 1

3 αmlρvc Hp, where αml is the ratio between
the mixing length and the local pressure scale height Hp and vc is
the convective velocity that we estimate by assuming that convec-
tion transports the whole stellar luminosity L through the convective
envelope vc = [αmlL/(40πr2ρ)]1/3 (Kippenhahn & Weigert 1990).

After some lengthy calculations, we find the equation for the
radial eigenfunctions expressed in terms of the dimensionless length
ξ , i.e. the independent variable of the Lane–Emden equation for the
composite polytrope (see Rappaport et al. 1983, for the definition
of ξ and of the other variables appearing in the composite polytrope
model)

d

dξ

[
ξ 10/3θ2

2 (θ ′
2)−1ζ ′

nk

] − n(n + 3)ξ 4/3θ2
2 (θ ′

2)−1ζnk

+ (Kλnk)ξ 4θ
3/2
2 ζnk = 0, (25)

with the boundary conditions ζ ′
nk(ξ ) = 0, for ξ = ξ 2i, ξ 2s, where ξ 2i

and ξ 2s correspond to the base of the convective envelope and the sur-
face of the star, respectively, θ 2(ξ ) is the solution of the Lane–Emden
equation in the convective envelope as defined in Rappaport et al.
(1983) and K = (15/2) (10)1/3α

−4/3
ml M1/3 R2/3 L−1/3 ξ

−4/3
2s (θ ′

2s)−1/3

depends on the stellar parameters. It is important to note that ξ 2i, ξ 2s

and θ ′
2s depend only on the ratio rb/R and thus they are constant for

stellar models with the same relative depth of the convection zone.
Equation (25) predicts that the eigenvalues should scale as K−1.
Precise calculations made for main-sequence models with masses
of 0.5, 0.7 and 0.9 M�1 show that such a proportionality is indeed
reproduced with an accuracy between 30 and 50 per cent for the first
eigenvalue λ01.

By applying the same considerations to the equation for the grav-
itational quadrupole moment, we find that ��12(R) ∝ R2 ξ−2

2s , i.e.
��12(R) scales as R2 for fixed rb/R. Finally, for fixed rb/R, the
ratio between the power dissipated by the perturbation with radial
dependence proportional to ζ nk and the stellar luminosity is found
to scale as

1

L

(
d�Tnk

dt

)
∝ α

4/3
ml M8/3 R−6T −8/3

eff

(
R
a

)−4 (
�P
P

)2

, (26)

where T eff is the effective temperature of the star.

3 A P P L I C AT I O N TO A S T E L L A R M O D E L

The above theory can be applied to the internal structure model of
a typical active component star in a RS CVn system. Specifically,
we shall consider the model introduced in Lanza (2005). It refers to
a star with solar chemical abundances and a mass of M = 1.3 M�
that has been evolved for 4.583 Gyr up to a radius of R = 4.047 R�
and a luminosity of L = 8.298 L� = 3.20 × 1027 W. Its effective
temperature is 4871 K. The base of the convection zone is located at
a fractionary radius rb/R = 0.181 or, in terms of the mass coordinate,
at mb/M = 0.240. The turbulent viscosity has been computed using
the mixing-length theory as explained in Lanza (2005) to which the
reader is referred for more details on the model.

The perturbation of the angular velocity with respect to the rigidly
rotating reference state can be assumed symmetric with respect to
the stellar equator which implies that only the terms with an even
angular degree n appear in equation (13). For our purposes, it suffices
to consider only the eigenfunctions with n = 0 and n = 2, because
the quadrupole moment variation depends only on them.

The first six eigenvalues of equation (11) for n = 0 with the
boundary conditions (12) are computed by means of a shooting
method (Press et al. 1992) and are listed in the second column of
Table 1, while the first four eigenfunctions are plotted in Fig. 1. A
useful check of the accuracy of their calculation is provided by the
constraint that the corresponding total angular momentum variation
must be zero. The first seven eigenvalues of equation (11) for n = 2
with the boundary conditions (12) are listed in the second column
of Table 2, while the first four eigenfunctions are plotted in Fig. 2.
Note that the functions ζ 2k are not constrained by the conservation
of the total angular momentum since

∫ 1

−1
P (1,1)

2 (μ)(1 − μ2) dμ = 0
in any case.

According to the general theory in Section 2, the smallest non-
vanishing eigenvalue is λ20 which corresponds to the longest charac-
teristic time-scale for angular momentum transfer under the action
of the turbulent viscosity. Since λ−1

20 ≈ 0.86 yr, the time-scale for the
angular momentum transfer is much smaller than the typical cycle

1 Stellar structure models were obtained from the Dartmouth Stellar Evo-
lution web server (http://stellar.dartmouth.edu/) that allows us to run a spe-
cialized version of the stellar evolution code introduced by Chaboyer et al.
(2001) and Guenther et al. (1992).
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Table 1. Eigenvalue λ0k , quadrupole moment variation |�Q0k|, relative orbital period variation (�P/P)0k , max-
imum kinetic energy variation �T0k and maximum power Pdiss 0k = 2λ0k�T0k dissipated along a cycle of the
quadrupole moment variation versus the order k of the radial eigenfunction ζ 0k . The amplitude of ζ 0k is assumed
to be 1 per cent of the unperturbed stellar angular velocity at the base of the stellar convection zone (i.e. at r = rb)
for all the values of k.

Radial order k Eigenvalue λ0k |�Q0k| (�P/P)0k �T0k Pdiss 0k

(s−1) (kg m2) (J) (W)

1 5.2650 × 10−8 1.16 × 1044 3.18 × 10−6 2.499 × 1034 2.631 × 1027

2 1.4148 × 10−7 1.20 × 1043 3.29 × 10−7 1.279 × 1034 3.618 × 1027

3 2.6676 × 10−7 7.90 × 1042 2.16 × 10−7 8.943 × 1033 4.771 × 1027

4 4.3022 × 10−7 1.49 × 1042 4.09 × 10−8 7.392 × 1033 6.361 × 1027

5 6.3260 × 10−7 1.42 × 1042 3.88 × 10−8 6.657 × 1033 8.423 × 1027

6 8.7443 × 10−7 4.85 × 1041 1.33 × 10−8 6.258 × 1033 1.094 × 1028

Figure 1. The first four eigenfunctions of the Sturm–Liouville problem
defined by equation (11) for n = 0 with the boundary conditions (12) versus
the fractionary radius in the case of our stellar interior model. They have
been normalized to the unity at the base of the convective envelope, i.e. at
r = rb. Different linestyles refer to eigenfunctions of different radial order,
i.e. k = 1: solid line; k = 2: dotted line; k = 3: dashed line and k = 4:
dot–dashed line.

of the orbital period modulation and equation (9) gives
αnk 
 λ−1

nk β nk .
In order to evaluate the quadrupole moment variation and the as-

sociated kinetic energy change, we assume that the angular velocity
of the unperturbed state is �0 = 2.569 × 10−5 s−1, i.e. that of the
active component of the very active system HR 1099, already con-
sidered by Frasca & Lanza (2005) and Lanza (2005) because of the
remarkable amplitude of orbital period variation. The amplitude of

Table 2. Eigenvalue λ2k , quadrupole moment variation |�Q2k|, relative orbital period variation (�P/P)2k , max-
imum kinetic energy variation �T2k and maximum power Pdiss 2k = 2λ2k�T2k dissipated along a cycle of the
quadrupole moment variation versus the order k of the radial eigenfunction ζ 2k . The amplitude of ζ 2k is assumed
to be 1 per cent of the unperturbed stellar angular velocity at the base of the stellar convection zone (i.e. at r = rb)
for all the values of k.

Radial order k Eigenvalue λ2k |�Q2k| (�P/P)2k �T2k Pdiss 2k

(s−1) (kg m2) (J) (W)

0 3.6629 × 10−8 1.36 × 1045 3.71 × 10−5 6.817 × 1036 4.994 × 1029

1 1.2072 × 10−7 2.54 × 1043 6.97 × 10−7 4.001 × 1035 9.661 × 1028

2 2.3426 × 10−7 1.43 × 1043 3.93 × 10−7 6.288 × 1034 2.946 × 1028

3 3.7513 × 10−7 5.32 × 1041 1.46 × 10−8 1.729 × 1034 1.297 × 1028

4 5.4318 × 10−7 1.03 × 1042 2.83 × 10−8 7.553 × 1033 8.206 × 1027

5 7.4285 × 10−7 7.36 × 1040 2.01 × 10−9 4.795 × 1033 7.124 × 1027

6 9.7979 × 10−7 2.53 × 1041 6.93 × 10−9 3.876 × 1033 7.594 × 1027

Figure 2. The first four eigenfunctions of the Sturm–Liouville problem
defined by equation (11) for n = 2 with the boundary conditions (12) versus
the fractionary radius in the case of our stellar interior model. They have
been normalized to the unity at the base of the convective envelope, i.e. at
r = rb. Different linestyles refer to eigenfunctions of different radial order,
i.e. k = 0: solid line; k = 1: dotted line; k = 2: dashed line and k = 3:
dot–dashed line.

the angular velocity perturbation is fixed at 0.01 �0 at r = rb in
all the cases. The absolute value of the quadrupole moment vari-
ation |�Qnk|, the corresponding orbital period change (�P/P)nk,
the kinetic energy change �Tnk , as given by equation (15), and the
maximum dissipated power 2λnkδTnk for the eigenfunction ζ nk with
n = 0 and n = 2 are listed versus the radial order k in Tables 1 and 2,
in the columns from the third to the sixth, respectively. The orbital
period change is derived from equation (23) in the case of a = 4R.
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1778 A. F. Lanza

The kinetic energy variation and the dissipated power decrease with
increasing k for the eigenfunctions ζ 2k. This is due to the fact that
their amplitude decreases with increasing k, as shown in Fig. 2. We
note that the time average of the dissipated power is (

√
2)−1 times

the maximum value listed in Tables 1 and 2 in the case that the
variation of the angular velocity is sinusoidal versus time.

It is interesting to note that for n = 0 the quadrupole moment
variation associated with the eigenfunction of radial order k = 1
dominates over the variations associated with the eigenfunctions of
higher order by at least a factor of 10, while for n = 2 the variation
associated with k = 0 dominates over those with k � 1 by at least
two orders of magnitude. This is due to the fact that ζ 01 has only
one node and one sign change, whereas ζ 0k for k > 1 has k nodes
and sign changes that average out the effects of the angular velocity
perturbation on the gravitational quadrupole moment. Similarly, the
variation associated with ζ 20 is the largest because it has no nodes
in the interval [rb, R]. Therefore, we can neglect the quadrupole
moment variations associated with the eigenfunctions with k � 2
for n = 0 and with k � 1 for n = 2 and write

�Q 
 �Q01 + �Q20. (27)

Assuming that only the eigenfunctions ζ 01 and ζ 20 are responsi-
ble for the angular velocity variation, the amplitude of the angular
velocity change at the surface of the star �ωs can be written as

�ωs

�0
= f01

(
�P
P

)
01

+ f20

(
�P
P

)
20

, (28)

where (�P/P)01 and (�P/P)20 are the orbital period changes as-
sociated with ζ 01 and ζ 20, respectively. The coefficients f 01 =
3.14 × 103 and f 20 = 5.12 × 103 have been computed by making
use of the data in Tables 1 and 2 and of the values of the respective
eigenfunctions at the base and the surface of the stellar convection
zone plotted in Figs 1 and 2.

Since the orbital period changes are linearly related with ζ 01 and
ζ 20, while the kinetic energy dissipation rates scale with the square
of ζ 01 and ζ 20, we can express the total dissipated power as

Pdiss = g01

(
�P
P

)2

01

+ g20

(
�P
P

)2

20

, (29)

where the coefficients g01 = 2.602 × 1038 W and g20 = 3.628 ×
1038 W are derived from the data in Tables 1 and 2, respectively. For
a given orbital period variation �P/P = (�P/P)01 + (�P/P)20, the
minimum dissipated power is

Pdiss min = g01g20

g01 + g20

(
�P
P

)2

= 1.515 × 1038

(
�P
P

)2

W.

(30)

The associated angular velocity variation derived from equation (28)
is

�ωs

�0
=

(
f01g20 + f20g01

g01 + g20

)(
�P
P

)
= 3.97 × 103

(
�P
P

)
.

(31)

The typical relative amplitude of the orbital period variations in RS
CVn systems is (1 − 3) × 10−5 which implies an angular veloc-
ity variation of 4–12 per cent, i.e. one or two orders of magnitude
larger than the variations inferred from the observations (cf. Donati,
Collier Cameron & Petit 2003; Lanza & Rodonò 2004, and refer-
ences therein). The variation of the kinetic energy of rotation ranges
from 1.6 × 1035 to 1.5 × 1036 J with respect to the unperturbed rigid
rotation. The minimum dissipated power ranges between 1.5 × 1028

and 1.4 × 1029 W, i.e. between 4 and 43 times the stellar luminosity.

The discrepancy is particularly remarkable for HR 1099 for which
an orbital period change as large as ≈9 × 10−5 has been observed
(Frasca & Lanza 2005) implying an energy dissipation rate up to
∼430 times the stellar luminosity.

Comparing our kinetic energy variations with those computed on
the basis of the simplified model of Applegate (cf. his equations 27
and 28), we find that our values are larger by a factor of ∼3–4 for
the case of a unperturbed rigid rotation. What makes our dissipation
rates so high are the short dissipation time-scales that are propor-
tional to the inverse of the eigenvalues, i.e. of the order of ≈0.5 yr
or shorter (cf. equation 17 and Tables 1 and 2). On the other hand,
Applegate considered time-scales of dissipation that are comparable
with the duration of the orbital period cycles, i.e. at least 30–100
times longer. This assumption is wrong, except in the case that the
turbulent kinematic viscosity is overestimated in our model by a
comparable factor (see Section 4).

It is interesting to note that for short period RS CVn systems, i.e.
with an orbital period smaller than 1 d, the observed orbital period
variations have a typical amplitude of �P/P ∼10−6 (e.g. Lanza
& Rodonò 1999). Their active components are late-type main-
sequence stars with a radius somewhat smaller than 1 R� and a
mass between ∼0.5 and ∼1 M�. The ratio (R/a) is similar to that
of classic RS CVn systems. Hence, by applying equation (26), we
conclude that the ratio between the dissipated power and the stellar
luminosity is even larger in short period than in classic RS CVn
systems because of the dependence on the factor R−6(�P/P)2.

In conclusion, the hypothesis proposed by Applegate requires too
large surface angular velocity variations and too much energy to be
supported by the stellar luminosity in the case of classic as well
as short period RS CVn systems. If we apply equation (26) to cata-
clysmic variables, the ratio of the dissipated power to the luminosity
of the secondary star is found to be approximately comparable to that
of classic RS CVn systems, again too large to be sustained by stellar
luminosity, unless turbulent viscosity is significantly quenched due
to very fast rotation.

4 D I S C U S S I O N A N D C O N C L U S I O N S

A general model for the angular momentum transfer within a tur-
bulent stellar convection zone has been introduced and applied to a
quantitative discussion of Applegate’s hypothesis in the case of RS
CVn active binaries. It is interesting to note that the separation of
the variables applied to solve the equation for the angular velocity
perturbation holds in the more general case in which the turbulent
viscosity η t can be expressed as the product of a function of the
radial coordinate r by a function of the colatitude θ . In this case, the
Jacobian polynomials can no longer be used to express the angular
dependence of the solution and appropriate eigenfunctions must be
computed.

In our model, the angular velocity exchanges are confined to the
convection zone because the stellar dynamo is assumed to operate
within its boundaries. The penetration depth of the oscillation of
the angular velocity into the radiative core is of the order of δ 
√

2ν/σcycle, where σ cycle is the frequency of the angular velocity
variation and ν is the kinematic viscosity in the radiative core that is
several orders of magnitude smaller than the turbulent viscosity in
the convection zone. Therefore, the variation of the angular velocity
in the radiative core is confined to a thin layer and has a negligible
effect on the quadrupole moment variation.

An important point is that the estimate of the turbulent viscosity
based on the mixing-length theory may not be correct for a rapidly
rotating stellar convection zone. A pronounced quenching of the
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viscosity is indeed expected (cf. Stevenson 1979; Kichatinov, Pipin
& Rüdiger 1994) that may reduce significantly the ratio of the dis-
sipated power to the stellar luminosity. However, a reduction by at
least two orders of magnitude is needed to solve the energy dissipa-
tion problem (cf. Lanza 2005). Moreover, the problem related to the
large amplitude of the surface angular velocity variation predicted
by our model remains, unless the change of η t produces a significant
variation of the radial profile of the eigenfunctions ζ nk.

A superposition of different modes can be invoked to reduce
the amplitude of the surface variations, but this would lead to a
remarkable increase of the dissipated power making this expla-
nation unlikely. In any case, the large angular velocity changes
required within the convection zone may lead to a violation of
the Rayleigh criterion on the angular momentum distribution mak-
ing the perturbed rotation regime dynamically unstable (cf. Lanza
2005).

In conclusion, the results found by Lanza (2005), in the case of
an angular velocity constant along cylindrical surfaces co-axial with
the rotation axis, are confirmed in the general case of an angular ve-
locity perturbation that depends on both radius and colatitude. This
implies that Applegate’s hypothesis must be rejected in the case of
RS CVn binary systems. Considerations based on the scaling re-
lationship (26) show that the hypothesis leads to the same energy
balance problem in the case of the secondary components of cata-
clysmic variables and related systems. However, a detailed analysis
of the orbital period variation in such systems deserves a dedicated
study given the complication that arises from fast rotation, mass
transfer and angular momentum loss through magnetic braking of
their secondary components (e.g. Warner 1995; Brinkworth et al.
2006; Hussain et al. 2006).

It is important to note that the interpretation of the orbital period
modulation of close binary systems in terms of an oscillation of
the gravitational quadrupole moment of their magnetically active
component is, however, not excluded. The anisotropic Lorentz force
due to an internal magnetic field may produce such a variation, as
discussed by, e.g. Lanza et al. (1998), Lanza & Rodonò (1999),
Rüdiger et al. (2002) and Lanza & Rodonò (2004).
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