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Abstract

Internal symmetry of a constitutive model of bilinear elastoplasticity (i.e. linear elasticity combined with linear kinematic
hardening—softening plasticity) is investigated. First the model is analyzed and synthesized so that a two-phase two-stage
linear representation of the constitutive model is obtained. The underlying structure of the representation is found to be
Minkowski spacetime, in which the augmented active states admit of a Lorentz group of transformations in the on phase.
The kinematic rule of the model renders the transformation group inhomogeneous, resulting in a larger group—the
proper orthochronous Poincaré group. ( 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A constitutive law is said to possess internal sym-
metry if it retains the form of a certain expression
for constitutive phenomena after some changes in
the point of view from which the phenomena are
observed. The changes or transformations made to
the constitutive law which leave the form un-
changed in the effects are naturally linked with the
invariance of conserved quantities. A procedure for
parameter estimation (and model identification)
with effective utilization of the invariance property
along the experimental path will be more capable of
capturing key features during elastoplastic defor-

mation, and a numerical algorithm which preserves
symmetry in time marching will have long-term
stability and much improved efficiency and accu-
racy. So the issue of internal symmetries in consti-
tutive laws of plasticity is not only important in its
own right, but will also find applications to com-
putational plasticity and to experimental research
and industrial testing practice.

Recently, Hong and Liu [1] considered a consti-
tutive model of perfect elastoplasticity, revealing
that the model possesses two kinds of internal sym-
metries, characterized by the translation group
¹(n) in the off (or elastic) phase and by the pro-
jective proper orthochronous Lorentz group
PSO

o
(n, 1) in the on (or elastoplastic) phase, and

has symmetry switching between the two groups
dictated by the control input. The perfect elastop-
lasticity model is the simplest to use, but being
linearly elastic and perfectly plastic it cannot
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Fig. 1. The restoring force—relative displacement curves of
a unit-directional seismic isolator, showing elastic deformation
taking place at infinitely many two-way line segments while
elastoplastic flow occurring at two one-way lines.

predict the Bauschinger effect which is observed
experimentally in most metals under reversed cyclic
testing. The Bauschinger effect refers to a particular
type of directional anisotropy in stress space in-
duced by plastic deformation—an initial plastic
deformation of one direction reduces the sub-
sequent yield strength in the opposite direction. To
model the Bauschinger effect, Prager [2] suggested
a linear kinematic hardening rule. Kinematic hard-
ening is the hypothesis that the yield hypersurface
translates as a rigid body in the stress space during
the plastic deformation, maintaining the size, shape
and orientation of the yield hypersurface in the
subsequent plastic deforming [3,4].

In this paper let us limit our scope to linear
kinematic hardening—softening and extend the
symmetry study to a constitutive model of bilinear
elastoplasticity, investigating the influence of linear
kinematic hardening—softening on the structure
of the underlying vector space and on the trans-
formation group of symmetries. Here bilinear elas-
toplasticity is used to abbreviate the combination
of linear elasticity with linear kinematic harden-
ing—softening plasticity.

It may be interesting to name a few application
areas of the bilinear elastoplasticity model [of
equations (1)—(8) below]. It is well known that the
model (of dimension n"5) has been used to de-
scribe the deviatoric part of the stress versus strain-
rate relation of a three-dimensional elastoplastic
material. Less known is that the model (of dimen-
sion n"1 or 2 or more) has been used in the
analyses of isolation systems of buildings and
equipment in recent years (see, e.g. [5] or [6]),
where the model describing the relation between
the restoring force and the relative velocity of the
two end-plates of a seismic isolator was combined
with the equation of motion to simulate the hys-
teretic motion and dissipation capacity of the
isolator. Fig. 1 depicts the restoring force-relative
displacement curves for a uni-directional isolator
(the model of dimension n"1).

2. Bilinear elastoplasticity

Since our aim is to reveal symmetry in a constitut-
ive model, we need an appropriate setting to make

the presentation clearer and simpler; therefore, we
choose to postulate the constitutive model directly
in Euclidean vector form as in the following:

q5 "q5 e#q5 p, (1)

Q"Q
a
#Q

b
, (2)

Q0 "k
e
q5 e, (3)

Q
a
qR a
0
"Q0

a
q5 p, (4)

Q0
b
"k

p
q5 p, (5)

EQ
a
E)Q0

a
, (6)

qR a
0
*0, (7)

EQ
a
EqR a

0
"Q0

a
qR a
0
, (8)

in which the generalized elastic modulus k
e
, the

generalized kinematic modulus k
p
, and the general-

ized yield stress Q0
a

are the only three property
constants needed in the model, with the limitations
that

k
e
'0, k

p
'!k

e
, Q0

a
'0.

280 H.-K. Hong, C.-S. Liu / International Journal of Non-Linear Mechanics 34 (1999) 279–288



Table 1
Generalized kinematic modulus k

p
and hardening—softening factor b

Property Range Hardening Perfect Softening
constants plasticity plasticity plasticity

k
p

R'k
p
'!k

e
R'k

p
'0 k

p
"0 0'k

p
'!k

e
b 0(b(R 0(b(1 b"1 1(b(R

Fig. 2. Schematic drawing showing the connection of mechan-
ical elements—two springs and one slide-damper—for the
model of bilinear elastoplasticity.

Depending upon the value of k
p
, the model is ca-

pable of treating hardening, perfect plasticity, and
softening, as shown in Table 1.

The bold faced symbols q, qe, qp, Q, Q
a

and
Q

b
are the (Euclidean) (column) vectors of general-

ized strain, generalized elastic strain, generalized
plastic strain, generalized stress, generalized active
stress and generalized back stress, respectively, all
with n components, whereas qa

0
is a scalar called the

equivalent generalized plastic strain, with Q0
a
qR a
0

be-
ing the (specific) power of dissipation. The general-
ized strain vector q and the generalized strain rate
vector q5 are assumed to be so small that no account
is taken of the geometric non-linearity effect (in-
cluding spinning) and the rate effect as well as the
inertia effect.

Here the norm of a vector, say
Q"col(Q1, Q2, . . . , Qn)"col(Q

1
, Q

2
, . . . , Q

n
), in

n-dimensional Euclidean space endowed with the
Euclidean metric I

n
is denoted by EQE:"JQ5Q"

J+n
i/1

Q
i
Qi, where a superscript t indicates the

transpose and I
n
is the identity tensor of order n. All

q, qe, qp, Q, Q
a
, Q

b
and qa

0
are functions of one and

the same independent variable, which in most cases
is taken either as the ordinary time or as the arc
length of a control path; however, for convenience,
the independent variable no matter what it is will
be simply called (the external) time and given the
symbol t. A superimposed dot denotes differenti-
ation with respect to time, that is d/dt.

The mechanical-element model displayed in Fig.
2 may help explain the meanings of Eqs. (1)—(8).
It is easy to comprehend and appreciate Eqs.
(1)—(7): Eq. (1) decomposes the generalized strain
rate q5 into an elastic part and a plastic part; Eq. (2)
decomposes the generalized stress Q into an active
part and a back (or kinematic or translational) part;
Eq. (3) gives a linear law for the elastic part; Eq. (4)
is an associated plastic-flow rule; Eq. (5) is a

linear kinematic hardening—softening rule (often
known as Prager’s rule); Eq. (6) specifies an admiss-
ible range of generalized active stresses (thus,
EQ

a
E"Q0

a
is the yield hypersphere with center

Q
b
); and Eq. (7) or Q0

a
qR a
0
*0 requires the

non-negativity of the (specific) power of dissipation.
But Eq. (8) may need more explanations: With the
aid of the two inequalities (6) and (7), it simply
requires qR a

0
be frozen if EQ

a
E(Q0

a
, so that qR a

0
"0

drastically reduces Eqs. (1), (3) and (4) to Q0 "k
e
q5 ,

and Eq. (5) to Q0
b
"0. The complementary trios
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(6)—(8) furnish the model with two phases, as to
e analyzed in the next section.

3. Two phases

Since once dt is factored out the differential
equations (1), (3)—(5), (7) and (8) become incremental
equations independent of time, the flow model
represented by axioms (1)—(8) restrict itself to time-
independent elastoplasticity; therefore, we are most-
ly concerned with paths rather than histories in the
present paper. We require a path as a continuous
curve with piecewise continuous tangent vectors.
From Eqs. (4), (7) and (8) and Q0

a
'0, it is not

difficult to prove that

qR a
0
"Eq5 pE, (9)

which indicates that qa
0

is the arc length of a path in
the generalized plastic strain space.

From Eqs. (1)—(3) and (5) it follows that

Q0
a
#k

p
q5 p"k

e
(q5 !q5 p). (10)

Inserting Eq. (4) into Eq. (10) we have

Q0
a
#

k
e
#k

p
Q0

a

qR a
0
Q

a
"k

e
q5 , (11)

or

d

dt
(X0

a
Q

a
)"k

e
X0

a
q5 , (12)

where

X0
a
:"expA

qa
0

bq
y
B (13)

with the generalized yield strain

q
y
:"

Q0
a

k
e

(14)

and the hardening—softening factor

b :"
k
e

k
e
#k

p

. (15)

The ranges of values of b as well as k
p
are shown in

Table 1.

The inner product of Q
a

with Eq. (11) is

(Q
a
)5Q0

a
#

k
e
#k

p
Q0

a

qR a
0
(Q

a
)5Q

a
"k

e
(Q

a
)5q5 , (16)

which, due to the constancy of Q0
a
, asserts the state-

ment

EQ
a
E"Q0

a
Nb (Q

a
)5q5 "Q0

a
qR a
0
. (17)

Since Q0
a
'0 and b'0, the statement

EQ
a
E"Q0

a
NM(Q

a
)5q5 '08q5 a

0
'0N (18)

is true. Thus

MEQ
a
E"Q0

a
and (Q

a
)5q5 '0NNqR a

0
'0. (19)

On the other hand, if qR a
0
'0, axiom (8) assures

EQ
a
E"Q0

a
, which together with Eq. (18) asserts

that

qR a
0
'0NMEQ

a
E"Q0

a
and (Q

a
)5q5 '0N. (20)

Statements (19) and (20) tell us that the yield condi-
tion EQ

a
E"Q0

a
and the straining condition

(Q
a
)5q5 '0 are sufficient and necessary for plastic

irreversibility qR a
0
'0.

In view of Eqs. (6) and (7) and of Eqs. (9) and (17),
statements (19) and (20) are logically equivalent to
the following on—off switching criteria for the
mechanism of plasticity:

qR a
0
"Eq5 pE"

G
b
Q0

a

(Q
a
)5q5 '0 if EQ

a
E"Q0

a
and (Q

a
)5q5 '0,

0 if EQ
a
E(Q0

a
or (Q

a
)5q5 )0.

(21)

Based on the criteria and the complementary
trios (6)—(8), the model of elastoplasticity has two
phases (and just two phases): the ON phase in
which qR a

0
'0 and EQ

a
E"Q0

a
and the OFF phase in

which qR a
0
"0 and EQ

a
E)Q0

a
. In the on phase the

mechanism of plasticity is on so that the model
exhibits elastoplastic behavior, which is irrevers-
ible, while in the off phase the mechanism of plastic-
ity is off so that the model responds elastically and
reversibly.
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1Recall that Eq. (12) is obtained by combining Eqs. (1)—(5).

4. Homogeneous coordinates

Let us normalize the generalized active stress Q
a
,

the generalized back stress Q
b
, and the generalized

stress Q with respect to the generalized yield stress
Q0

a
, and then consider their homogeneous coordi-

nates:

X
a
"C

Xs
a

X0
a
D"

X1
a

X2
a

F

Xn
a

X0
a

:"

expA
qa
0

bq
y
B

Q0
a

Q1
a

Q2
a

F

Qn
a

Q0
a

"

expA
qa
0

bq
y
B

Q0
a

C
Q

a
Q0

a
D, (22)

X
b
"col(X1

b
, X2

b
, . . . , Xn

b
, X0

b
) :"C

Q
b

Q0
a

0 D , (23)

X"col(X1, X2, . . . , Xn, X0) :"X
a
#X

b

"C
X0

a

Q
a

Q0
a

#

Q
b

Q0
a

X0
a D . (24)

Here and henceforth the index s refers to the total-
ity of the ‘‘internal space’’ coordinates, while the
index 0 refers to the ‘‘internal time’’ coordinate.
Together the homogeneous coordinates will be util-
ized to describe the intrinsic properties of the con-
stitutive model in its ‘‘internal spacetime.’’

For convenience X
a
, X

b
, and X are thus deemed

as (n#1)-dimensional vectors, X
a
being called the

augmented active state vector, X
b

the augmented
back state vector, X the augmented state vector.
Then the constitutive model postulated in the state
space of (Q1, Q2, . . . , Qn) may be translated into
a model in the augmented state space of
(X1, X2, . . . , Xn, X0), thus Eqs. (2), (12),1 (8),

(6), (7) and (5) become successively

X"X
a
#X

b
, (25)

C
I
n

0
n]1

0
1]n

(X
a
)5gX

a
D X0

a
"

1

q
y
C
0
n]n

q5

0
1]n

0DX
a
, (26)

(X
a
)5gX

a
)0, (27)

XQ 0
a
*0, (28)

X0
b
"(1!b)

XQ 0
a

(X0
a
)2 C

Xs
a

0 D, (29)

in terms of the Minkowski metric

g"C
g
ss

g
s0

g
0s

g
00
D"C

I
n

0
n]1

0
1]n

!1D . (30)

The (n#1)-dimensional vector space of augmented
state X endowed with the Minkowski metric g is
referred to as Minkowski spacetime Mn`1.

Regarding Eqs. (6) and (27), we may further dis-
tinguish two correspondences:

EQ
a
E"Q0

a
8(X

a
)5gX

a
"0, (31)

EQ
a
E(Q0

a
8(X

a
)5gX

a
(0. (32)

That is, a generalized stress state Q on the yield
hypersphere EQ!Q

b
E"Q0

a
with center at Q

b
in

the state space of (Q1, Q2, . . . , Qn) corresponds to
an augmented state X on the right circular cone
MX D (X!X

b
)5g (X!X

b
)"0N emanating from the

event point X
b

in Minkowski spacetime of
(X1, X2, . . . , Xn, X0), henceforth abbreviated to
the cone, whereas a Q within the yield hypersphere
corresponds to an X in the interior MX D (X!X

b
)5

g(X!X
b
)(0N of the cone. The exterior

MX D (X!X
b
)5g (X!X

b
)'0N of the cone is unin-

habitable since EQ!Q
b
E'Q0

a
is forbidden ac-

cording to axiom (6). Even though it admits an
infinite number of Riemannian metrics, the yield
hypersphere Sn~1 in the state space of
(Q1, Q2, . . . , Qn) does not admit a Minkowskian
metric, nor does the cylinder in the enlarged space
of (Q1, Q2, . . . , Qn, X0). It is the cone in the aug-
mented state space of (X1, X2, . . . , Xn, X0) which
admits the Minkowski metric.

Taking the Euclidean inner product of Eq.
(12) with Q

a
X0

a
/(Q0

a
)2, substituting Eq. (22), and
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considering the positivity of Q0
a
, k

e
and X0

a
,

we have

d

dt
[(Xs)5g

ss
Xs]"

(X0
a
)2k

e
(Q0

a
)2

(Q
a
)5q5 ,

and, therefore,

(Q
a
)5q5 '08

d

dt
[(Xs)5g

ss
Xs]'0, (33)

(Q
a
)5q5 )08

d

dt
[(Xs)5g

ss
Xs])0. (34)

Hence in the augmented state space what corres-
ponds to the yield condition EQ

a
E"Q0

a
is the cone

condition (X
a
)5gX

a
"0 and what corresponds to

the straining condition (Q
a
)5q5 '0 is the growing

‘‘internal space’’ radial coordinate condition (d/dt)
[(Xs)5g

ss
Xs]'0.

5. Two-phase two-stage linear representation

In view of Eqs. (22) and (31)—(34), the on—off
switching criteria (21) become

XQ 0
a
"

G
(Xs

a
)5

q5
q
y

'0

if (X
a
)5gX

a
"0 and

d

dt
[(Xs)5g

ss
Xs]'0,

0

if (X
a
)5gX

a
(0 or

d

dt
[(Xs)5g

ss
Xs])0,

(35)

in the augmented state space. Expressing Eq. (12)
in terms of the homogeneous coordinates (22)
and arranging them and Eq. (35) together in
matrix form, we obtain a linear system for aug-
mented active states

X0
a
"AX

a
(36)

with the control tensor

A :"
1

q
y
C
0
n]n
q5 5

q5
0D

if (X
a
)5gX

a
"0 and

d

dt
[(Xs)5g

ss
Xs]'0, (37a)

A:"
1

q
y
C
0
n]n

0
1]n

q5
0D

if (X
a
)5gX

a
(0 or

d

dt
[(Xs)5g

ss
Xs])0. (37b)

The last row of A in the off phase is full of zeros
since X0

a
is frozen in the off phase.

Addition of Eqs. (36) and (29) gives

X0 :"C
(1!b)

XQ 0
a

(X0
a
)2

I
n

q5 /q
y

q5 5/q
y

0 DX
a

if (X
a
)5gX

a
"0 and

d

dt
[(Xs)5g

ss
Xs]'0, (38a)

X0 :"C
0
n]n

0
1]n

q5 /q
y

0 D X
a

if (X
a
)5gX

a
(0 or

d

dt
[(Xs)5g

ss
Xs])0. (38b)

Hence, besides the distinction between the on phase
and the off phase, there are two stages of calcu-
lations: first solving Eq. (36) for the aug-
mented active state X

a
and then integrating Eq. (38)

to get the augmented state X. Note that in each
phase and each stage the relevant equations are
linear. So Eqs. (36) and (38) constitute a two-phase
two-stage linear representation of the constitutive
model (1)—(8).

6. Non-time-like paths

In this section we study paths in the augmented
state space. Criteria (21) ensure that

qR a
0
(Q

a
)5Q0

a
"0 (39)

no matter whether in the on or in the off phase. In
view of Eqs. (15), (4), (9) and (7), and of the positivity
of Q0

a
, b and k

e
, Eqs. (11) and (39) become, respec-

tively,

b
k
e

Q0
a
#q5 p"bq5 , (40)

(Q0
a
)5q5 p"0, (41)
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Fig. 3. The internal spacetime (X1, X2, X0) of the model of dimension n"2, in which the cone is moving in the direction of the internal
space projection of the active part X

a
, the vertex X

b
of the cone remaining in the internal space (X1, X2) and the axis of the cone being

always in the direction of the internal time X0.

which together yield

0)qR a
0
"Eq5 pE)bEq5 E (42)

due to the Pythagorean theorem. It tells us that the
minimum and maximum values of the (specific)
dissipation power "0 "Q0

a
qR a
0

an admissible path in
the state space may discharge are zero and bQ0

a
Eq5 E,

respectively.
What does this important observation (42) imply

for a path in the Minkowski spacetime of aug-
mented states? From Eqs. (42), (7) and (13) it follows
that

(X0
a
)2q5 5q5 !(q

y
XQ 0

a
)2*0. (43)

Inserting Eqs. (12), (22) and (30) into inequalities
(42), we obtain

(XQ
a
)5gX0

a
*0, (44)

or

(dX
a
)5g dX

a
*0, (45)

which requires that any curve MX(t@) Dt
i
(t@)tN in

the internal spacetime of (bilinear) elastoplasticity be
a non-time-like path of Minkowski spacetime, where
t is the current time and t

i
is an initial time.

The vector X(t)!X(t
i
) and the path MX(t@) Dt

i
(t@)tN are said to be future-pointing if
X0(t)'X0(t

i
) strictly. Therefore, the solution to

Eq. (36) with (37a) and to (38a) can be viewed as
a future-pointing space-like or null path on the
cone MX D (X!X

b
)5g (X!X

b
)"0N, which is en-

dowed with the Minkowski metrix g, while the
solution to Eq. (36) with (37b) and to (38b) is
a space-like path on a closed disc Dn (that is
the closed ball Bn) of simultaneity MX D (X!X

b
)5

g(X!X
b
))0 and XQ

0
"0N, which is endowed with

the Euclidean metric I
n
. It is worth stressing that

the interior of the cone is sliced into stacking discs
of simultaneity tagged with different values of X0;
therefore, an admissible augmented stress can be
reached either along paths in the discs of simultane-
ity when in the off phase or/and along the future-
pointing space-like or null paths on the cone when
in the on phase. According to Eq. (29), the cone
moves in the direction of the ‘‘internal space’’ pro-
jection of the augmented active state vector X

a
in

the on phase and remains frozen in the off phase.
A geometrical visualization of the cone and its
motion in the augmented state space of
(X1, X2, X0) is displayed in Fig. 3 for the model of
dimension n"2.

7. Transformation of augmented states

The solution of Eq. (36) may be expressed in the
following transition formula from the augmented
active state X

a
(t
1
) at time t

1
to the augmented active

state X
a
(t) at time t:

X
a
(t)"[G(t) G~1(t

1
)]X

a
(t
1
), (46)

in which G(t) is the fundamental solution of Eq. (36),
that is a transformation tensor (represented
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by a square matrix of order (n#1) containing the
mixed components) satisfying

G0 (t)"A(t)G(t), (47)

G(0)"I
n`1

. (48)

Furthermore, substituting Eq. (25) into equation
(46) yields

X(t)"[G(t)G~1(t
1
)]X(t

1
)

#(X
b
(t)![G(t) G~1(t

1
)]X

b
(t
1
)). (49)

From Eqs. (24) and (28) it follows that

X0(t)*X0(t@)*X0(t
i
) ∀t*t@*t

i
. (50)

All the relations (46)—(50) are applicable to any time
interval which is exclusively in the on phase or
exclusively in the off phase.

From the foregoing discussion it is clear that the
transformation tensor G plays a fundamental role
in the elastoplastic model. Indeed, a further study
on it will reveal internal symmetry of the model as
to be presented in the following two sections.

8. Internal symmetry in the on phase

We first study the transformation tensor of the
on phase. Denote by I

0/
an open, maximal, con-

tinuous time interval during which the mechanism
of plasticity is on exclusively. From Eqs. (37a) and
(30) it is easy to verify that the control tensor A in
the on phase satisfies

A5g#gA"0. (51)

By Eqs. (51) and (47) we find

d

dt
[G5 (t) gG(t)]"0.

At t"0, G5 (t)gG(t)"I5
n`1

gI
n`1

"g from Eq. (48);
thus, we prove that

G5 (t) gG(t)"g (52)

for all t3I
0/

. Take determinants of both sides of the
above equation, getting

(detG)2"1, (53)

so that G is invertible. The 00th component of the
tensorial Eq. (52) is +n

i/1
(Gi

0
)2!(G0

0
)2"!1, from

which

(G0
0
)2*1. (54)

Here Gi
j
, i, j"1, 2, . . . , n, 0, is the ijth mixed com-

ponent of the tensor G. Since detG"!1 or
G0

0
)!1 would violate Eq. (48), it turns out that

detG"1, (55)

G0
0
*1. (56)

In summary, G has the three characteristic proper-
ties explicitly expressed by Eqs. (52), (55) and (56).

Thereby the on-phase control tensor A is an
element of the real Lie algebra so(n, 1) and gener-
ates the on-phase transformation G, which is thus
an element of the proper orthochronous Lorentz
group SO

o
(n, 1), see, e.g. [7]. So the function G(t) of

time t3I
0/

may be viewed as a connected path of
the Lorentz group.

In this way the first term on the right-hand side
of Eq. (49) indicates an action of the proper or-
thochronous Lorentz group, and the second term is
an element of the translation group. The semi-
direct product of the translation group ¹(n#1)
and the proper orthochronous Lorentz group
SO

o
(n, 1) is known as the inhomogeneous proper

orthochronous Lorentz group ISO
o
(n, 1), or called

the orthochronous Poincare& group SE
o
(n, 1). In

view of Eqs. (22)—(24) it is concluded that the inter-
nal symmetry in the on phase is characterized by
a projective realization of ISO

o
(n, 1).

From Eqs. (24) and (35)
1
, XQ 0'0 strictly when

the mechanism of plasticity is on; hence,

X0(t) 'X0(t
1
) ∀t't

1
, t, t

1
3I

0/
, (57)

which means that in the sense of irreversibility there
exists future-pointing time-orientation from the
augmented states X(t

1
) to X(t). Moreover, such

time-orientation is a causal one, because the aug-
mented state transition Eq. (49) and inequality (57)
establish a causality relation between the two aug-
mented states X(t

1
) and X(t) in the sense that

the preceding augmented state X(t
1
) influences
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the following augmented state X(t) according to Eq.
(49). Accordingly, the augmented state X(t

1
) chro-

nologically and causally precedes the augmented
stress X(t). This is indeed a common property for all
models with inherent symmetry of the proper or-
thochronous Poincare& group.

In order to derive a product formula for
ISO

o
(n, 1) it is more convenient to embed ISO

o
(n, 1)

in a special linear group S¸(n#2, R); thus Eq. (49)
becomes

C
X(t)

1 D"C
G(t) X

b
(t)

0
1](n`1)

1 D C
G(t

1
) X

b
(t
1
)

0
1](n`1)

1 D
~1

]C
X(t

1
)

1 D. (58)

It is easy to solve for the inverses

C
G X

b
0
1](n`1)

1 D
~1

"C
G~1 !G~1X

b
0
1](n`1)

1 D
and (by Eq. (52))

G~1"gG5g. (59)

The transformation matrix of the group
S¸(n#2, R) may be further split as follows:

C
G(t) X

b
(t)

0
1](n`1)

1 D"C
I
n`1

X
b
(t)

0
1](n`1)

1 D
]C

G(t) 0
(n`1)]1

0
1](n`1)

1 D, (60)

or denoted as

(T(t) DL(t))"T(t)L(t), (61)

where the group action (T(t) DL(t)) has the following
algebraic properties:

T(t
1
) T(t

2
)"T(t

2
)T(t

1
), (62)

(T(t
2
) DL(t

2
)) (T(t

1
) DL(t

1
))

"(T(t
2
)L(t

2
)T(t

1
)L~1(t

2
) DL(t

2
) L(t

1
)), (63)

for all t
1
, t

2
3I

0/
. The former indicates that T(t)

forms an invariant subgroup of the Poincare& group,

and the latter shows out the reason why the Poin-
care& group is a semi-direct product of the transla-
tion group and the Lorentz group. Both the groups
of T(t) and L(t) are non-compact, so the Poincare&
group is also non-compact. As the group of T(t) is
an abelian subgroup, the Poincare& group is not
semi-simple.

9. Internal symmetry in the off phase

Contrary to the on-phase transformation, the
off-phase transformation is very simple. We recall
that Eqs. (46)—(50) are applicable to the off phase
and readily find that

G(t)"C
I
n

q (t)

q
y

0
1]n

1 D, X
b
(t)"X

b
(t
1
),

X0(t)"X0(t
1
). (64)

Thus, by Eq. (49)

X(t)"C
I
n

q(t)!q (t
1
)

q
y

0
1]n

1 D X(t
1
), (65)

which is valid ∀ t, t
1
3I

0&&
, where I

0&&
is an

open, maximal, continuous time interval during
which the mechanism of plasticity is off exclus-
ively.

Even such an off-phase transformation exists and
is invertible; it is no longer an element of the
Lorentz group because such G does not satisfy
equation (52) although detG"1 remains to hold
and G0

0
"1. It belongs to a translation group

¹(n#1). In view of Eqs. (22)—(24) it is
concluded that the internal symmetry in the off
phase is characterized by the translation group
¹(n) on the closed ball Bn of Euclidean space
En. The change from a transformation of a Poincare&
group in the on phase to a non-Lorentzian trans-
formation in the off phase indicates that internal
symmetry switches from one kind to another, and
vice versa.
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10. Concluding remarks

It has been found that the bilinear elastoplastic-
ity model of Eqs. (1)—(8) possesses two kinds of
internal symmetries—¹(n) in the off phase and
a projective realization of the proper orthoch-
ronous Poincare& group ISO

o
(n, 1) in the on

phase—and has symmetry switching between the
two groups. The switching is dictated by the input
generalized stain rate q5 or equivalently the control
tensor A according to the on—off switching criteria
(21) or (35).

In the course of investigation the concepts of two
phases and homogeneous coordinates have helped
render such a highly non-linear model in the two-
phase two-stage linear representation, only from
which the internal spacetime of the model and the
intrinsic structures of symmetry groups could be
detected.

The internal symmetries revealed here for
the two phases may be utilized to devise
group conserving schemes—numerical algorithms
specifically designed to preserve symmetry at
all time steps without iterations. The schemes
are expected to have long-term stability and
high efficiency and accuracy. Although this issue
is not pursued here, we would like to call atten-
tion to its potential importance in computational
plasticity.
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