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Through laboratory experiments we examine internal wave generation above and in the
lee of finite-amplitude periodic topography having various degrees of roughness. We show
that internal waves are generated not only by flow over the hills but also by flow over
“boundary-trapped” lee waves and by vigorous turbulence created in the lee of sharp-crested
hills. For low values of the excitation frequency, linear theory well predicts the internal
wave frequencies but significantly overestimates the wave amplitudes because it neglects
processes associated with boundary layer separation. When the excitation frequency exceeds
the buoyancy frequency, turbulence results in the excitation of internal waves with relative
frequencies and amplitudes occurring within a narrow range.

I Introduction

In general, internal waves are generated whenever a strati-
fied fluid is perturbed at a sufficiently slow frequency. The
waves subsequently propagate horizontally and vertically
within the fluid, transporting energy and momentum away
from their source.

A significant source of internal waves in the atmosphere
and ocean is through the flow of stratified fluid over
mountains or submarine ridges. In the atmosphere, such
topographically-generated waves significantly influence the
general circulation of the atmosphere1,2. In the abyssal
ocean, slow frequency internal waves are generated largely
due to tidal flow over topography, their characteristics de-
termined by the slope of the topography relative to the
slope of the internal wavebeams3,4,5,6. On time-scales that
are short compared to the tidal period, one can assume in-
ternal waves are generated by an approximately steady,
unidirectional flow as is the case in the atmosphere. How-
ever, observations reveal that energetic turbulence and as-
sociated internal wave activity is most significant over the
rough terrain of the ocean floor, such as near sea mounts,
ridges, and canyons7,8,6,9,10,11. This raises the question,
what is the importance of surface roughness upon wave
excitation?

Analytic theories for topographically-generated waves
include linear theory12, which assumes the hill height is
small, and Long’s theory13,14, which considers steady flow
over finite-amplitude hills. Both theories are limited in
that they assume that the topographic surface is a stream-
line. However, if the topography is rough or if the hills are
sufficiently steep, we expect the flow will separate from the
boundary leading both to regions of blocked fluid beneath
the separation point and to downstream turbulence. Such
effects upon the generation of internal waves are poorly
understood and form the focus of the experimental study
reported upon here.

The characteristics of internal waves generated by the
steady flow of uniformly stratified fluid over topography
depend upon the flow speed, U , the characteristic horizon-

tal (L) and vertical (H) scales of the hills, and the buoy-
ancy frequency, N , given in the Boussinesq approximation
by

N2 = −
g

ρ0

dρ̄

dz
, (1)

in which ρ̄(z) is the background density, ρ0 the character-
istic density, and g the acceleration due to gravity.

If the topography is small-amplitude and sinusoidal with
wavenumber k and crest-to-crest distance L ≡ 2π/k, then
uniform flow will perturb the fluid at an excitation fre-
quency

ωexc ≡ Uk. (2)

Defining the Froude number by

Fr ≡
ωexc

N
=

Uk

N
, (3)

linear theory predicts that the disturbances are evanescent
if Fr > 1 and that vertically propagating internal waves are
generated if Fr < 1. By analogy with shallow water theory,
the flow is said to be subcritical or supercritical depending
on whether Fr < 1 or Fr > 1, respectively.

A measure of the importance of nonlinearity upon strat-
ified flow is sometimes represented by the nondimensional
quantity NH/U or its inverse. There is no standard sym-
bol for this quantity in the literature15, so for convenience
here we will call it Long’s number, after the pioneering ex-
perimentalist and theorist who studied stratified flow over
topography13,16,17. Thus, we define

Lo ≡
NH

U
. (4)

Sometimes the linear theory regime is assumed to be
represented by the limit Lo ≪ 1, but this can be mislead-
ing. If the fluid in unstratified, the hills can be arbitrarily
large amplitude although Lo = 0. Even weakly stratified
flow over small amplitude hills is turbulent for sufficiently
large U .

A better interpretation is that the magnitude of Lo rep-
resents the importance of stratification upon boundary



layer separation. For fixed H and U , the flow will sep-
arate for sufficiently large N , and hence large Lo, simply
because the flow does not possess enough kinetic energy
to rise over a hill or to sweep dense fluid out of a valley.
For small Lo, boundary layer separation may still occur
but due to adverse pressure gradients in the lee of a hill
crest that develop through dynamics independent of strat-
ification. For large Reynolds number flow, in this case the
shape of the hills, not just their height, plays the most
important role in determining whether or not separation
occurs.

The effect of Lo upon boundary layer separation in two-
dimensional geometries has been examined experimentally
for flow over valleys15 and in the lee of isolated hills18. The
latter showed that for a limited range of Lo, flow separation
resulted in the development of an undular disturbance, a
‘boundary-trapped lee wave’, initiated by low pressure and
restoring buoyancy forces that displaced fluid downward
in the lee of the hills. In the lee of a smooth step, the
lee waves always occurred being initiated by low pressure
alone. These had frequency moderately smaller than the
background buoyancy frequency19.

The first study of the impact of boundary layer separa-
tion upon internal wave generation used numerical simula-
tions to examine the formation of blocked layers between
finite-amplitude sinusoidal hills20. Blocked layers formed
when Lo exceeded a threshold between 0.5 and 1. Above
this threshold, the blocked-layer height increased linearly
with H so that, with respect to the waves, the effective
hill height, Heff, was relatively constant. This suggested
that topographically-generated internal waves have limited
amplitude.

These results were consistent with the experimental-
theoretical study of Aguilar et al. 21, who examined in-
ternal waves generated (effectively) above and in the lee of
a train of sinusoidal hills having moderate and large am-
plitude. As well as examining the wave amplitude above
the hills for Fr < 1, the experiments showed that waves
with nearly constant frequency, 0.5N , were generated in
the lee of the hills for a wide range of supercritical Froude
numbers.

The experiments further suggested that decaying tur-
bulence in the far lee also generates internal waves.
Beyond idealized theory22, and a few laboratory
experiments23,24,25,26, relatively little is known about tur-
bulence as a generation mechanism of internal waves. In
part, the experiments presented here aim to provide fur-
ther insight into these dynamics.

Specifically, we examine stratified flow over finite-
amplitude periodic topography with sinusoidal, triangu-
lar and rectangular shapes. The experiments are designed
to examine the effect of sharp boundaries upon bound-
ary layer separation and consequent wave generation above
and in the near and far lee of the hills.

In section II we introduce the experimental set-up, in-
cluding methods for wave visualization and techniques for
determining wave properties such as frequency, wavenum-
ber and amplitude. In section III we present the experi-
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Figure 1: (a) Front view of tank and towing apparatus.
The motor is mounted above the tank. A belt is attached
to the topography and runs around a series of pulleys.
When the motor is turned on, the topography moves from
left to right at an approximately constant speed, thus ex-
citing internal waves. (b) Side view of the experimental
configuration for the synthetic schlieren technique. The
technique records the distortion of the image of horizo ntal
lines due to density fluctuations within the tank. The den-
sity fluctuations are the result of internal wave motion.

mental results for flow over and in the near lee of sinusoidal,
triangular and rectangular hills. The flow over steep hills
also results in significant turbulent mixing far in their lee.
In these circumstances we also examine wave generation
by downstream turbulence. We summarize our significant
findings in section IV.

II EXPERIMENTAL SET-UP AND

ANALYSIS

A Apparatus

Experiments were performed in a glass tank having di-
mensions 197 cm long by 50 cm high by 17.5 cm wide. The
tank was filled with uniformly salt-stratified water to a
depth of approximately 27 cm. This was accomplished us-
ing the standard “double-bucket” technique27. The re-
sulting background density field, ρ̄(z), was measured by
traversing a conductivity probe down through the tank be-
fore each experiment. A schematic illustrating the tank di-
mensions and a typical background density profile is given
in Figure 1a. The buoyancy frequency was determined
directly from the slope of the best-fit line to the density
profile. Typically, its value was N = 1.10 ± 0.02 s−1, al-
though some experiments were performed with N as large
as 2.26 s−1.

We used four model hills each spanning the tank width
but having different along-tank shapes: two sinusoidal hills
had peak-to-peak heights H = 0.65 cm and 1.30 cm, and
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the triangular and rectangular hills both had height H =
1.30 cm. For all four sets of hills, the crest-to-crest distance
was L = 13.7 cm and each set included four wavelengths,
as sketched in Figure 1.

To simulate uniform flow over topography, model hills
were towed along the surface of the fluid at an approxi-
mately constant speed, U . This was achieved using a tow-
ing apparatus consisting of a motor, five pulleys, and a belt
that was fixed to the model topography. The model hills
were towed at speeds ranging from U = 0.8−5.2 cm/s. The
corresponding Froude and Long numbers ranged between
Fr ∼ 0.2 − 2.1 and Lo ∼ 0.29 − 6.07.

The Reynolds number, based on L, ranged from Re ∼
1000 − 5000. Although significantly smaller than typi-
cal ocean and atmospheric values, the experimental val-
ues were still large enough that viscous effects would be
important only insofar as boundary layer separation and
turbulence damping time scales are concerned.

Although the fluid had finite depth, the experiments
were performed over such short durations (≈ 30 − 80 s)
that vertically-propagating internal waves did not reach
the tank bottom before the experiment finished. Thus,
the effect of the bottom boundary was essentially negligible
and the experiments effectively modelled wave propagation
in an infinite-depth fluid.

Before the start of each experiment, potassium perman-
ganate crystals were laid down in front of the hills, forming
a straight vertical dye-line. The movement of the model
hills through the fluid produced a reverse background flow,
which caused a net deceleration of the near-hill fluid. This
background flow was clearly visualized by the movement
of the dye-line from its original position. To determine
whether or not the average background flow speed, Ub,
was significant compared with the towing speed, it was
approximated for eight experiments, covering a range of
Fr and Lo. This was done by measuring the average dis-
placement of the dye-line over three hill periods. In most
cases, the background flow speed was only 5 − 20% of the
towing speed, not high enough to have a significant effect
on the results. However, for Lo & 3, we found Ub & 0.3 U .
In these extreme circumstances, the influence of the un-
dercurrent should be taken into account when interpreting
the results.

B Synthetic Schlieren Analyses

The experiments were recorded using a digital camera situ-
ated approximately 340 cm in front of the tank. Recorded
images in the x-z plane were analyzed using the image
processing software package, DigImage28.

Synthetic schlieren, the configuration of which is illus-
trated schematically in Figure 1b, non-intrusively mea-
sured the two-dimensional internal wave field as it evolved
in time29. The technique exploits how light is deflected to
a greater or lesser degree as it passes respectively through
stronger or weaker density gradients. With straightforward
computer processing30, distortions of an image of horizon-
tal black and white lines were used to measure vertical

derivatives of perturbation density which, for convenience,
were recast in terms of the ∆N2. This is the change in
the background density gradient due to the stretch and
compression of isopycnals by internal waves. Likewise,
we can determine changes to ∆N2 between small times
(∆t ∼ 1/15 − 3/15 s) and so compute the time-derivative
N2

t.
For the purposes of performing qualitative and quantita-

tive analyses, the N2
t field was preferred for three reasons:

it was in phase with the vertical displacement field, ξ; it
could be determined even for moderate-amplitude waves,
which significantly distorted the background image; and it
filtered long time-scale variations thus capturing the signal
from relatively short time-scale propagating waves alone.

The half peak-to-peak amplitude of the N2
t field, AN2

t
,

was determined by taking the root-mean-squared average
in time and then multiplying by a factor of 21/2. The re-
sult was spatially averaged within a window selected to
isolate the waves of interest. Generally the window ex-
tended across a minimum of one horizontal and vertical
wavelength beginning at least 5 cm above the hill crests.
This lower bound was sufficiently far from the local mix-
ing region where the schlieren technique did not accurately
measure N2

t.
Vertical wavenumbers, kz, and frequencies, ω, were de-

termined from power spectra of vertical time series of N2
t,

and horizontal wavenumbers, kx, and frequencies were like-
wise determined from horizontal time series21. Which type
of time series used depended upon the horizontal and ver-
tical scale of the waves.

Vertically propagating waves had phase lines tilted at
an angle Θ to the vertical, which was estimated from the
relative wave frequency using the dispersion relation

ω = N cosΘ =
|kx|

√

kx
2 + kz

2
. (5)

The vertical displacement amplitude, Aξ, was estimated
from AN2

t
using the polarization relations for Boussinesq

small-amplitude plane waves in a uniformly stratified fluid:

AN2
t
= 2πN3 sinΘ

Aξ

λx
. (6)

C Wave-Induced Drag

Linear theory predicts that small amplitude sinusoidal hills
with wavenumber k and half peak-to-peak amplitude Aξ

excite waves with the same horizontal wavenumber and
amplitude. The drag on the hills due to wave generation
is given by the period-averaged vertical flux of horizontal
momentum, FD,thy, associated with the waves. Explicitly,

FD,thy =
1

4
ρ0N

2 sin(2Θ)A2

ξ, (7)

in which Θ is given by (5).
If the hills are such large amplitude or so sharp that

boundary layers separate from the hills and fluid is trapped
in the valleys between hills, then the amplitude of the
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waves is smaller than the hill amplitude. From numerical
simulations, Welch et al. 20 developed an empirical theory
for the actual drag, FD, as a function of Lo:

FD

FD,thy
≈

H

π

{

cos−1 [1 − 2H] − 2 [1 − 2H]
√

H(1 −H)

}

.

(8)
Here

H =

{

1 Lo ≤ Loc

Loc/Lo Lo > Loc
(9)

and Loc is the critical value of Lo above which the effects
of boundary layer separation and blocking act to reduce
the wave-induced drag from the value predicted by linear
theory. In our experiments we expect the critical value to
be lowest for waves generated over the rectangular hills.

III Results

A Qualitative Observations

We first discuss the qualitative structure of the flow in the
near hill region. This is done by examining vertical time
series images showing how the image of horizontal black-
and-white lines behind the tank is distorted by perturbed
density gradients within the tank itself. The pattern of
distortions reveals where boundary layer separation occurs
and indicates the presence of turbulence where the image
blurs. For conceptual convenience the images have been
flipped vertically. In the Boussinesq approximation, ap-
propriate for salt-stratified fluids, there is no dynamical
difference between disturbances generated below topogra-
phy towed along the top of the tank and disturbances gen-
erated above bottom topography.

Figure 2 shows images of the near-hill region for com-
parable subcritical Froude number experiments run with
large-amplitude sinusoidal, triangular and rectangular to-
pography. Each time series is constructed from a vertical
slice taken through movies of the experiment at the mid-
point of the crest of the leading hill. The hills begin to
move at time t = 0 and the resulting flow is shown as the
trailing three hills move past that position.

As is typical for a number of experiments, the flow struc-
ture behind the leading crest is similar for the sinusoidal
and triangular hills. The separation point occurs at the
same distance, about 3/4 H below the leading crest and
the separated streamline rises to meet the following crest.
In both experiments, a undulating ‘boundary-trapped lee
wave’ is evident behind the last hill, peaking in both cases
around time t = 42 s.

In contrast, the image is more greatly distorted in the
lee of the leading rectangular hill crest (Fig 2c), indicating
a more complicated flow pattern associated with bound-
ary layer separation. Indeed, movies of this experiment
clearly reveal the detachment of the streamline from the
corner of the hills and the ensuing development of a Kelvin-
Helmholtz billows in their lee. Although the separated flow
dips downward slightly behind the lee of the trailing hill,

Figure 2: Sample vertical time series of the near-hill region
for subcritical flow, illustrating the flow pattern above and
in the near-lee of a) sinusoidal, b) triangular and c) rect-
angular hills.

the downstream flow exhibits a more turbulent, less coher-
ent undular wake. For fixed Fr, generally we find that more
fluid is trapped in the valleys between the rectangular hills
than between sinusoidal or triangular hills.

Figure 3 shows three corresponding time series images
for experiments having supercritical Froude numbers Fr ≃
1.7 and Lo ≃ 0.35. Again, the flow is similar for the si-
nusoidal and triangular hills. The image distorts little in
the valley behind the leading crest but the disturbance re-
sulting from boundary layer separation grows a full hill
height above the last hill. Conversely, the image is greatly
distorted behind and above all three trailing rectangular
hills.

All three experiments exhibit a descending streamline
separating laminar and turbulent flow in the near lee of
trailing hill. Further downstream the turbulent flow grows
as deep as three hill heights. A range of experiments show
this growth is most substantial in the lee of the rectangular
hills and least substantial behind the triangular hills.

Next we qualitatively examine the resulting structure of
internal waves generated above and in the lee of the hills.
Figure 4 shows nine composite vertical time series in which
the raw grayscale image is shown up to 5 cm above the
base of the hills and the computed N2

t field is shown by
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Figure 3: As in Fig. 2 but showing vertical time series
taken from three experiments with supercritical flow.

colour contours between 5 and 20 cm. We do not show the
N2

t field below 5 cm because its computation is inaccurate
where the image is highly distorted.

Figures 4a, b and c show the three subcritical cases cor-
responding to the images in Figures 2. In all three, waves
are generated over the hills with comparable horizontal
wavelengths and retrograde-tilting phase lines. For the
rectangular hills, the wave amplitude is significantly lower
directly over the hills, a result of more fluid being trapped
between the hills.

The waves grow in amplitude in the near-lee of the hills
in these three subcritical flow experiments as a result of
the flow that descends, uninhibited by valley-trapped fluid
behind the trailing hill. Despite the change in forcing con-
ditions, the horizontal wavelength and tilt of phase lines
in the lee are comparable to those over the hills. Further-
more, we find that the horizontal distance between trough

and crest of the propagating lee waves is comparable to
the corresponding distance for the underlying boundary-
trapped lee wave.

Three near-critical flow cases are illustrated in Figure 4d,
e and f. Although linear theory predicts that phase lines
should be nearly vertical in this circumstance, we nonethe-
less observe retrograde tilting phase lines corresponding to
vertically propagating waves. These are most clearly evi-
dent above sinusoidal and triangular topography.

Vertically propagating lee waves are evident in all three
cases. However, unlike the subcritical cases examined
above, here we see that the amplitude is largest in the
lee of rectangular topography.

Still further in the lee, the boundary-trapped lee wave
breaks up into a patch of turbulence, above which some
smaller-scale wave structures begin to emerge (t ≈ 40 s).
These smaller-scale waves also appear for the triangular
hills but only for Fr > 1. This is because flow over the
triangular hills does not create as much turbulence as that
over the rectangular hills for a given flow speed, U .

Figures 4g, h and i present three supercritical cases cor-
responding to the near-hill images shown in Figure 3. In
all three cases the disturbances are evanescent directly over
the hills: the phase lines are vertical and decrease in ampli-
tude with height. As in the three critical cases, boundary-
trapped lee waves and corresponding vertically propagat-
ing lee waves are clearly visible and the wave amplitudes
are slightly larger for the rectangular hills. Further down-
stream, and particularly in the lee of rectangular topog-
raphy, we observe relatively small vertical scale internal
waves radiating away from the decaying turbulent mixed
region around time t ∼ 30 s. The structure of the waves
is remarkably coherent given the random nature of their
turbulent source .

B Quantitative Results

From spectra of vertical time series taken during the pas-
sage of the hills, immediately in their lee and in their far
lee, we determine the relative frequency of internal waves
generated respectively by the hills, by the flow in the lee
and by decaying turbulence far downstream. The results
are plotted in Figure 5. For reference, on all three we plot
the line corresponding to ω = NFr = ωexc, which is the
wave frequency predicted by linear theory to occur due to
flow over small amplitude sinusoidal hills.

For all three topographic shapes, the waves generated
directly over the hills have frequencies that agree well with
linear theory predictions for Fr < 0.7. In particular, we
find that the pronounced effect of boundary layer separa-
tion above rectangular hills does not significantly influence
the resulting wave frequencies. For 0.7 < Fr < 1, the ob-
served frequency of the waves approaches a constant value
between 0.6N and 0.7N . For larger Fr, the waves above
topography were evanescent.

In the near lee of the hills, the frequency of the vertically
propagating lee waves in subcritical flow approximately
matched the frequency of the waves over the hills. For
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Figure 4: Vertical time series of N2

t [s−3] for the rectangular and triangular hills for the cases of (a,b) Fr < 1, (c,d)
Fr & 1, and (e,f) Fr > 1. Vertical time series of the near-hill region of the raw images are superimposed to help visu alize
the vertically-propagating internal waves relative to the topography and boundary-trapped lee waves.

Fr > 1, vertically propagating waves were still observed
and were found to have approximately constant relative
frequency ω/N ∼ 0.57 ± 0.05.

Measuring the time difference between the leading
trough and crest of the boundary-trapped lee wave, we
estimated the frequency, ωlee, of this undular disturbance.
These values are compared the vertically propagating lee
wave frequency, ω, in Figure 6. Generally, we find the

two match reasonably well in subcritical experiments im-
plying that the frequency of the undular wave is set by
the frequency of the waves over the hills. In supercritical
experiments, however, the two frequencies do not match.
Whereas ω/N remains nearly constant, ωlee/N varies over
a range of values between 0.6N and 0.9N . In all exper-
iments, however, there was no significant distinction be-
tween the effects of topographic shape.
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Figure 5: Plot of measured relative internal wave fre-
quency, ω/N , as a function of Fr = ωexc/N for a) waves
generated directly over, b) in the lee and c) in the far lee
of large-amplitude sinusoidal, triangular and rectangular
hills, as indicated in the legend. The solid line in a) and
the short-dashed line in b) corresponds to ω = ωexc, which
is plotted for comparison with linear theory. Typical error
bars are indicated in the top-left corners of all three plots.

The range of ω/N is consistent with experiments ex-
amining internal waves generated in the lee of a smooth
step19. That study showed that waves were generated with
frequencies approximately 0.6N for Lo > 1 and 0.75N for

Lo
<
∼ 1.

Figure 5c plots the relative frequency of waves in the far
lee of the triangular and rectangular hills. Waves gener-
ated by turbulence in the lee of sinusoidal hills were less
coherent in frequency. Like the waves in the immediate lee,
we find that these smaller-scale waves are also generated
within a narrow frequency range, independent of the topo-
graphic shape. In particular, the combined average relative
frequency is ω/N ≈ 0.72 ± 0.05. Such a narrow frequency
range was also observed in the mixing box experiments of
Dohan & Sutherland25, who found waves propagated away
from a stationary turbulent mixed region with an average
frequency of ω/N ≈ 0.7. This suggests that in supercritical
flow a sufficiently rough surface creates vigorous turbulence
which consequently becomes a source of internal waves.

Figure 6: Comparison of vertically-propagating and
boundary-trapped lee wave frequencies for subcritical and
supercritical experiments using the large-amplitude sinu-
soidal, triangular, and rectangular hills as indicated by the
shape of the plotted points.

As for the wave frequency analysis, the amplitudes of the
waves were determined from data within time ranges taken
over and in the near and far lee of the hills. Specifically,
we computed the vertical displacement amplitude Aξ of
the vertically propagating waves and compared this with
the half peak-to-peak hill height H/2. Figure 7 plots these
relative wave amplitudes as a function of Fr. Linear theory
predicts the relative amplitude over sinusoidal hills should
be unity for Fr < 1 and zero for Fr > 1, as designated by
the thick solid line in Fig. 7a.

For Fr < 1, the waves generated over the hills have am-
plitudes significantly less than half the hill height. The
discrepancy is particularly large in the rectangular hill
experiments for which the maximum wave amplitude is
Aξ ≈ 1

3
(H

2
). The amplitudes of waves generated by the si-

nusoidal and triangular hills are comparable but still much
less than unity. In general, the amplitudes of the waves
generated over the rectangular hills is two-thirds the cor-
responding amplitudes measured over the triangular and
sinusoidal hills. The decreased wave amplitudes are the re-
sult of boundary layer separation that effectively changes
the shape of the hill.

As shown in Figure 7b, for Fr < 1, the propagating
lee wave amplitudes are consistently higher than those of
the waves generated over the hills but in this case their
amplitudes are approximately independent of topographic
shape. This is because the structure of the boundary-
trapped lee wave is similar in all three cases.

For Fr > 1, the topographic shape has a small but non-
negligible effect on the lee wave amplitudes. In particular,
the average relative lee wave amplitudes for the sinusoidal,
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Figure 7: Plots of the relative internal wave amplitude,
2Aξ/H , as a function of horizontal Froude number, Fr, for
a) waves generated directly over and b) in the lee of large-
amplitude topography with shapes indicated in the legend.
The thick lines 2Aξ/H = 1 and 2Aξ/H = 0 are plotted in
a) to compare the experimental measurements with lin-
ear theory predictions for small-amplitude sinusoidal hills.
The vertical dashed line in all three plots indicates the
critical Froude number, Fr = 1.

triangular and rectangular hills are 2Aξ/H ≈ 0.39 ± 0.11,
0.33 ± 0.07 and 0.42 ± 0.07, respectively.

Figure 7c shows that there is no significant difference
upon shape in the relative amplitude of waves generated by
turbulence in the far lee, implying that topographic shape
is important only insofar as providing a rough surface from
which turbulence can be created. Generally we find the
relative amplitude of the turbulence-generated waves is
2Aξ/H ≈ 0.24 ± 0.06.

These wave amplitudes are generally smaller than the
lee wave amplitudes, when both are normalized by H/2.
If instead we normalize the amplitude by the horizontal
wavelength, we find that the resulting relative amplitudes
of the lee and turbulence-generated waves are comparable,
with Aξ ≃ 0.015λx, as shown in Figure 8.

Though, this may not seem large, the values are approx-
imately 15% of the breaking amplitude as predicted by
linear theory for overturning waves (designated by ‘OT’ in
Figure 8) and for waves that become overturning due to
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Figure 8: Plot of relative wave amplitude, Aξ/λx, as
a function wave propagation angle, Θ, for dynamically-
generated waves. The curve denoted “SA” is the critical
relative amplitude at which the waves should become un-
stable by self-acceleration. The curve denoted “OT” is the
relative amplitude at which the waves should overturn.

interactions with the wave-induced mean flow31. This lat-
ter instability mechanism is called ‘self acceleration’ and is
designated by ‘SA’ in Figure 8.

We also confirm the collapse of the data onto two narrow
ranges of propagation angles, Θ = 55 ± 3o (ω ≈ 0.57N)
for the waves generated in the near lee and Θ = 43 ± 3o

(ω ≈ 0.72N) for the waves generated in the far lee by the
turbulent mixed region.

The amplitudes and narrow frequency ranges are con-
sistent with other experimental measurements examining
the dynamic generation of internal waves, as summarized
in Table 1.

C Flow Blocking

Throughout we have emphasized the importance of non-
linear effects, such as boundary layer separation, on wave
generation. In the case where the boundary layer sepa-
rates to form stagnant regions of fluid between successive
hills, the effect decreases the resulting amplitude of the
waves generated above, which consequently decreases the
amount of momentum transported by the waves. The pa-
rameter that primarily controls boundary layer separation
due to stratification is Lo.

Figure 9 plots the normalized drag, FD/FD,thy, as a
function of Lo for all subcritical experiments (i.e. for
Fr < 1). Also plotted is the empirical prediction by Welch
et al. 20 corresponding to Loc = 0.5. For small-amplitude
sinusoidal hills this curve fits the data quite well. For large
amplitude hills, there is more scatter in the data. For sinu-
soidal and triangular hills, we find Loc ≃ 0.75 more closely
fits the data. As expected, Loc is smaller for rectangu-
lar hills because boundary layer separation is more pro-
nounced behind such sharp corners. Typically we find that
Loc ≃ 0.5 is an adequate estimate of the critical Long’s
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Table 1: Angle of wave propagation and relative wave am-
plitude determined in five published experiments involving
the dynamic generation of internal waves, and their com-
parison with the properties of internal waves in the near
and far lee observed in this study.

Excitation mechanism Θ (o) Aξ/λx

Stationary turbulence23 ≈ 35 N/A

Stationary turbulence25 42 - 55 0.02 - 0.04

Turbulent shear flow24 46 - 60 0.003 - 0.03

Intrusive gravity current34 41 - 64 0.005 - 0.02

Lee of smooth step19 40 - 55 0.02 - 0.06

Lee of periodic hills 52 - 58 0.015 - 0.021

Turbulence 39 - 47 0.015 - 0.020

Figure 9: Plot of nondimensional form drag, FD/FD,thy,
versus Lo for all experiments with Fr < 1. The thick solid
line corresponds to linear theory, (7), the dotted line to (8)
with Loc = 0.5, and the dashed line to (8) with Loc = 0.75.

number for these experiments.

Comparable critical Long numbers have been measured
in related studies of stratified flow over two-dimensional to-
pography, including that of Bell & Thompson32 for which
Loc = 0.77, Kimura & Mannins33 for which Loc = 0.67,
and Welch et al. 20 for which Loc ≈ 0.5 − 1.0.

IV Conclusions

Stratified flow over finite-amplitude periodic topography
generates internal waves via three distinct mechanisms.
The first mechanism is that of direct forcing over the hills
which occurs only in subcritical experiments with Fr < 1.
In this case linear theory well predicts the wave frequency

for Fr
<
∼ 0.7 and the relative frequency ω/N ≃ 0.7 for

0.7
<
∼ Fr < 1. The amplitude is poorly predicted how-

ever because the corresponding Long number is large and
so boundary-layer separation enhanced by stratification
occurs. The discrepancy in amplitude21 and resulting
wave-induced drag is large even for sinusoidal hills with
H/L = 0.1. When boundary separation occurs the sepa-
rated streamline thus acts as a lower boundary rather than
the surface of the hills themselves, and so the hill height is
effectively reduced.

In either subcritical or supercritical flow, we observed
the generation of vertically propagating waves in the near
lee of the hills. Their frequencies were set by the excitation
frequency for Fr < 0.7 and held approximately constant
values about 0.55N for Fr > 0.7. The relative amplitude
of these waves was generally largest in the lee of the rectan-
gular hills. Over all experiments we found Aξ ≃ 0.35H/2.

When Fr > 1, the flow in the far lee of the hills was
sufficiently turbulent to excite moderately large amplitude
waves. Their relative frequency lay within narrow range
slightly larger than that for waves in the near lee. Gener-
ally, we find ω/N ≈ 0.72±0.05 and and the corresponding
angle of propagation is Θ ≈ 43 ± 3o.

The comparison of our results with other studies reveals
a universal trend in the characteristic frequency of waves
generated by dynamic mechanisms. This suggests that in-
ternal waves are generated by turbulence through a reso-
nant feedback mechanism that most strongly excites waves
in a narrow frequency band. In particular, because waves
having Θ = 45o transport the greatest amount of hori-
zontal momentum away from their source they may act
most efficiently in modifying the turbulence in a way that
enhances their excitation26.

The close agreement between experiments with trian-
gular and sinusoidal hills, gives some encouragement that
a heuristic modification of linear theory could be used to
account for blocking between mountain ranges. On the
other hand, the discrepancy observed with rectangular hill
experiments implies that further modification would be re-
quired to empirically capture the dynamics of wave genera-
tion above chasms such as those in the mid-Atlantic ridge.
On the other hand, the results plotted in Fig. 8 shows that
such waves share universal characteristics regarding their
frequency relative to N and their amplitude relative to
their horizontal wavelength.
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