INTERNAL WAVES RADIATED RY A MOVING SOURCE. VOLUMEI. ANALYTIC SIMULATION

Michael Milder
R and D Associates

Prepared for:
Office of Naval Research
Advanced Research Projects Agency

February 1974

DISTRIBUTED BY:

Mational Technical Information Service U. S. DEPARTMEAT OF COMAMERCE 5285 Port Royal Road, Springfield Va. 22151

INTERNAL WAVES RADIATED BY A MOVING SOURCE Volume I - Analytic Simulation

FEBRUARY 1974

By:
MICHAEL MILDER

Sponsored By:
DEFENSE ADVANCED RESEARCH PROJECTS AGENCY
ARPA Order No. 2239

Contract No. NOOO14-73-C-0105
Program Code No. 3E20
Name of Contractor: $R \& D$ ASSOCIATES
Principal Investigator and Phone Number: DR. FRANK fERNANDEZ
(213) 451-5838

Scientific Officer: COMMANDER JOSEPH BALLOU
Effective Date of Contract: SEPTEMBER 18, 1972
Contract Expiration Date: APRIL 18, 1974
Amount of Contract: $\$ 244,222.00$
Short Titile of Work: OCEAN WAVES AND WAKES
The views and conclusions contained in this document are those of the author and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the United States Government.

R \& D ASSOCIATES
Post Office Box 3580
Santa Monica,
California, 90403

525 WILSHIRE BOULEVARD \& SANTAMONICA TELEPHONE: (213) 451.5838

TABLE OF CONTENTS

Fage

1. General Description 1
1.1 Introduction 1
2. 2 Outline of Method 3
1.3 Advantages and Limitations 3
3. Specifications of the XMODE Code and Sample Calculations 5
2.1 Resolution and Dynamic Range 5
6
2.2 Core Requirements and Execution Times
2.2 Core Requirements and Execution Times 7
4. Body-Generated Waves 19
3.1 Equations of Motion 19
3.2 Normal Mode Solution in Fourier-Tranaform Coordinates 20
2.3 Crossplane Rapresentation 24
5. Wake-Generated Waves 31
4.1 Inert Mixed Wake 31
4.2 Sizing the Quadrupole Moment 35
4.3 Treatment of Highex Modes 40
References 43

LIST OF FIGURES

Figure PageSpecifications of the XMODE Code and Sample Calculations
2-1 Temperature vs Depth Profile for Thermocline Used in Sarule Calculations 9
2-2 Vaisala Frequency $N(z)=[-(g / \rho) d \rho / d z] 1 / 2$ for Temper- ature Profile of Figure 2-1 10
2-3 Normal-Mode Dispersion Frequencies $u_{m}(k)$ for Sample Thermocline 11
2-4 Sample SOURCE Module Printout for Mode 3, Source Speed 2.0 Kt 12
2-5 Excitation Spectra of Surface Crosstrack Velocity (Square ${ }^{1}$ Source Transforms) for Modes 1-6, Source Speed 2.v Kt 13
2-6 Excitation Spectra of rface Crosstrack Velocity (Squared Source Transforms) for Modes 1-6, Source Speed 16.0 Kt 14
2-7 Sample Sumuary Printout irom XFIELD Module 15
2-8 Raster Pioc of Crosstract Surface Current $U y$ for2.0 Kt Source Speed. Interline Space RepresentsAmplitude of $0.01 \mathrm{~cm} \mathrm{sec}-$. . Track Length Depictedis 6.14 km16
2-9 Raster Plot of Crosstrack Surface Current U for16.0 Kt Source Speed. Interline Space RepresentsAmplituce of $0.005 \mathrm{~cm} \mathrm{sec}-$. Track Length Depictedis 41.2 km17
Rody-Generated Waves
3-1 Solution Loci for the Re3onance Equation (3-20) at Var:lous Source Speeds. Limiting Phase Speed for Mode 1 is $0.836 \mathrm{M} \mathrm{Sec}^{-1}$26

A	Wody cross section
è	Phase spead -
c_{g}	Group spazd
E	Wake mixing eftrictency
8	Acceleratict of gravity
$G_{k, ~}^{\text {b }}$	Vertical creat s function
$\vec{k}_{y} k_{2} k_{x}{ }^{\prime} k_{y}$	Morizonteail vector wavenumber; modulus, and components
${ }^{\mathrm{K}}$	Eddy diffusion constant for turbulent wake
K_{3}	Wake entrainment constant
L	Body lengeh
m, n	Mode index
N	Vatsala frequency
N_{m}	Vertical mode-averaged la
p	Pressuxe per unit density
P_{m}	Equipalent vertical wavenumber for mode m
Q	kinematic wake quadrupole moment
q_{m}	Tosal wavenumber for mode m
R	Wake radilus
R_{b}	Maximum body madius
\dot{R}	Wake entrainuent velocity
s	Displacement source function
t	Time
$\stackrel{\stackrel{\rightharpoonup}{u}}{u_{i}} u_{x}, u_{y}$	Horizontal vector velocity and components

$u^{\prime \prime}$	Wake turbulent velocity scale	
v	Source speed	,
V	Body yoz mate	
x, y^{\prime}, z	Cartèsián coordinates (track, croostrack, and negative depth)	-
z_{0}	Source depth	,
2	Active thermociline depth: $\mathrm{N}=0$ for $z \leqslant-\mathrm{Z}_{\mathrm{a}}$	
(-)	Fourier transform with respect to x and y	
(0)	Fourie: transform with respect to y.	,
a	Relative density gradient inside wake	
β	Ambient relattve density gradient	;
γ	Inverse phase speed	1
δ	Dırac delta-function	
Δ	Function describing $\Delta \zeta$, below	;
ε	Horizontal strain, and turbulent eddis diffusivity	
ε_{t}	Horizontal strain rate	,
$\nabla{ }^{\prime}$	Horizontal vector gradient	
ϕ	Normal-mode efgenfuxction	,
ϕ^{\prime}	$\partial \phi / \partial z$	
p	Fluid density	
ξ	Horizontal vector field dispiacenent	1
ζ	Vextical field displacement	
$\Delta \zeta$	Displacement of equilibrium level due to density redistribution in walse	:
ω	Raclar frequency	

SECTION 1: GENERAL DESCRIPTION

1.1 INTRODUCTION

P eesent methods for predicting internal wave fields produced by objects moving in stratified media are limited in their physical realism, flexibility, and economy. Recent efforts to define standards for finternalwave prediction have helped to clarify the shortcomings of existing techniques, which occur in one or more of the following aveas:

- Modelling the dynamics of turbulent wake abow, buoyancy transport, and wake collapse.
- Modelling the propagation of radiated internal waves in a medium of arbitrary buoyancy stratification.
- Maintaining numerical precision and stability in a field calculation encompassing a wide range of horizontal and vertical length scales, at acceptable computing cost and speed.

Some of these shortcomings are fundamental and unavoidable, while some are accidental, depending on the approach used. For example, a three-dimensional finite-difference calculation, superior for near-field flow and wake dynamics, is severely limited in the upper length and time scales it can achieve, simply because of limits on available computer storage, speed, and accuracy. On the other hand, limitations in existing analytic approaches can be overcome. One such approach now in use by TRW employs a three-layer model of density stratification that is too simplified to reproduce wave propagation on real thermoclines, although it is perfectly adequate for its original purpose, which was to provide estimates of field magnitudes and shapes [2].

A more general analytic code can be envisioned, one based on a Fourier/normal-mode expansion of the linearized field equations for an arbitrary profile of stratified buoyancy, that would meet the requirements for generality, scale and efficiency. Like its predecessors, however, such a code would have to depend on parametric source models to represent the excitation of internal waves by the moving body and collapsing wake, source models that will have to be devised and validated elsewhere.

A two-fold approach has been suggested [3] in which an efficient code of the analytic type is developed for routine simulations, while at the same time a "research" code of the finite-difference type is developed to provide validated source models for the analytic code.

This two-volume report describes a prototype analytic code, XMODE, which has been developed at RDA to provide Inexpensive sinulations of radiated internal-wave fields in a variety of realistic thermoclines. XMODE represents an improvement over existing codes in two important respects; it contains an efficient eigenfunction generator for the normal.mode analysis of an arbitrary input density profile, and it abandons the stationary-phase method of field calculation in favor of a more nearly exact, and very rapid, inversion in rectangular coordinates via the fast Fourier Transform [4].

Volume I contains a general description of XMODE and a detailed derivation of the algorithm for representative body and wake sources. Volume II is a user's guide to XNODE, containing a description of the computer routines, operating instructions, and FORTRAN listings,

Some of the procedures and computer subroutines, those having to dọ with eigenfunction generations are identical to those in the computer code ZMODE, which is an integral part of XMODE and which has been described fully in an earlier report [1]. This material is not duplicated here; potential users of XMODE :hould obtain Reference 1 as a companion volume to the present report.

1.2 OUTLINE OF METHOD

The algorithm used by XMODE is based on a Fourier/normal-mode expansion of the linearized equations of stratified flow, with simple local sources. As in other formulations the transformed solution is obtained as an algebraic combination of eigenfunction amplitudes and dispersion quantities. However, the present formulation is distinct in that the transform is inverted in rectangular coordinates, first along the x-direction (track) by analytic means, then along the y-direction (crosstrack) by a numerical Fast Fourier Transform (FFT). The partial crosstrack transforms obtaineci in the first step for each normal mode are complex functions whose amplitudes are invariant with respect to x and whose complex phases are linearly proportional to x. This property allows the partial transforms to oe asserabled rapidly from independent amplitude and phase factors computed and stored ahead of time. At each value of x the numerical phase-and-sum operation is, for twenty modes, no more time-consuming than the FFT computation of the crosstrack field, so that the full efficiency of the FFT is realized.

1.3 ADVANTAGES AND LIMITATIONS

The logic of XMODE is dosigned . Sor efficzent computation of radiated intemal wave field properties at the scean surface, or on a horizontal plane ($x-y$) at any specified depth. Computation of the field on the vertical crossplane ($y-z$) is somewhat less efficient. amis computation on a vertical plane $(x-z)$ is least efficient of all. All wor.ts in the plane
are computed with equal precision; unlike previously used stationaryphase methods, the FFT in rectangular coordinates has no difficulty with points on or near the coordinate azes ($x=0$ and $y=0$) originating on the source.

Other specific assưputions and features are:

- Linearized fluid equations with dipole body and quadrupole wake sources.
- Choice of field quantity among vertical displacement, scalar strain, x - and y - components of velocity, and scalar strain rate.
- No ambient shear flow.
- No verticsi momentum in wake.
* Source speed must exceed maximum ambient phase speed (SuperFroude source).

SECTION 2. SPECIPICATIONS OF THE XMODE CODE AND SAMPLE CALCULATIONS

2.1 RESOLUTION AND DYNAMIC RANGE

Each crosstrack field contains 256 physical resolution elements Δy,

$$
\text { fie"̣ half-width }=256 \cdot \Delta y ;
$$

the width and resolution size are somewhat adjustable, but Δy, which should approximate the reciprocal of the u_{i} per wavenumber limit in the ZMODE calculation, is constrained by numerical stability considerations to

$$
\Delta y \mp z_{a} / 15,
$$

where Z_{a} is the total depth of the active thermocline. For $\Sigma_{a}=300 \mathrm{~m}$ this permits a crosstrack resolucion of 20 m and a field half-width of 5120 m . The number of points calculated per crosstrack field is optional among 256 , 512, 1024, and 2048, fos redundant sampling at multiples of 2,4 , and 8 times the Nyquist frequency Δy^{-1}.

Any number of equally-spaced crosstrack fields can be requested in a given calculation, with an arbiitrary track spacing Δx.

The maximum number of normal modes is 20 , so that the effective vertical resolution is $\Delta Z \simeq z_{e} / 20$.

Since the source transforms are generated directly from analytic formulas and stored in floating-point format the effective dynamic range of the tabulated transforms is very large, limited only by the eigenmode convergence precision of ZMODE, which is in the neighborhood of 10^{-20}, or double the eigenvalue or vergence precision.

Errors introduced by the finite, discret:e FFT are of two simple types: accumulated roundoff, which is a few times machine precision, and aliasing, which superposes fields from inage sources spaced at nultiples of the field width from the actual track. The image fielis are negligible so long as the simulation time is short c^{-}ared to the time required for the fastest propagating field components to traverse a half-width; when this artificial periodicity is taken into account, the images will not affect estimates of the spectral content, which can be recovered with a precision of 10^{-13}.

2.2 CORE REQUIREMENIS AND EXECUTION TIMES

Tr XMODE source deck contains 1120 cards. On the CDC 7600 , both the RUN compiler and the FTN optimizing compiler produse an object code occupying less than 60,000 words (162,000 octal).

The execution tim:s are proportional to the number of modes requested in a calculation. The values listed below are for the full 20 modes.

Execution Times, Seconds.

Procedure	Module	RUN	FTN
- Dispersion Tables and Mode Amplitudes	ZMJ̇DE	11.2	6.6
- Recalculate with new Source Depth	ZMODE	4.1	2.5
- Crosstrack Source Transforms	SOJRRCE	0.02	0.01
- With Printer Plots	SOURCE	0.30	0.38
- Radiated field on $100(x)$ by 1024(y) array	XFIELD	6.4	5.3

Particularly noteworthy is the efficiency achieved by the XFIELD module. Of the 64 milliseconds computation time per 1024 -point crosstrack field (RUN compiler), half is devoted to the 20 -mode phase-and-sum, and half to the FFT,

The computation time of the dispersion tables, the most time-consuming operation, will depend also on the chosen number of eiganmode integration steps, the convergence precision, and tabular wavenumber density; the values $200,10^{-10}$, and 41 used in the test case are felt to be typical for deepocean calculations. For a series of field calculations with differing source speed or field type, a single dispersion calculation suffices. A change in source or field depth requires a new calculation of ne eigenfunctions so that the mode amplitudes at the new depths can be tabulated. When converged eigenvalues are already present the eigenvalue search can be bypassed, shortening the (RUN) time from 11.2 to 4.1 seconds, as indicated.

2.3 SAMPLE CALCULATIONS

The sample calculations illustrated below simulate a source 60 meters deep moving at 2.0 kt and 16 kt . The depth chosen places the source 15 meters below the sharply eroded boundary of the test thermocline, shown in Figure 2-1, which has been taken from data obtained on the oceanographic research vessel FLIP. The corresponding profile of Vaisala frequency and the ZMODE-derived internal wave dispersion plot are shown in Figures 2-2 and 2-3.

The crosstrack source transforms cumputed by the SOURCE module are avaliable in numerical and graphical output. iagure 2-4 is a sample of the numerica. cut.put, which includes transform amplicule versus both the scalar
wavenumber, k, and its crosstrack component, k_{y}. The graphical output, Figures 2-5 and 2-6, plots the squared transform amplitude against k_{y}. These two examples show the modal energy spectra of crosstrack surface current for the first six modes at 2.0 kt and 16.0 kt respectively. For greater clarity, the usual XMODE printer-plot subroutine has been replaced by an equivalent pen-plot routine specific to the RDA plotting hardware. The low-speed and high-speed cases are dominated respectively by body and wake excitation; note the flat spectra characteristic of the latter and peaked spectra of the former, especially in the first mode, where the low-wavenumber components, whose phase speed is about 1.6 kt , are nearly resonant at 2.0 kt .

The output of the field calculation in XFIELD is placed directiy on magnetic tape. At the sa...e time XFIELD generates a sumary printout, as in Figure 2-7, containing the peak amplitude and corresponding loca+ion for each crossfield. The boundary amplitudes are useful at short simulation times as an indication of the transform roundoff and aliasing errors.

Figures 2-8 and 2-9 are raster plots made directly from the sample caiculation output tape, depicting crosstrack surface current associated with the radiated internal waves in modes $1-20$. Plot ranges of $0-2.0 \mathrm{~km}$ and $0-750 \mathrm{~m}$ crosstrack are used for the 2.0 kt and 16.0 kt cases, respectively, or 40% and 15% of the calculated field, for best rendering of the features. The downtrack coordinate is in time units, for both cases spanning 5000 sec in increments of 50 sec .

Figure 2-1. Temperature vs Depth Profile for Thermocline Used in Sample Calculations

Figure 2-2. Vaisala Frequency $N(z)=\left[-(g / \rho) d_{\rho} / d z\right]^{1 / 2}$ for Temperature Profile of Figure 2-1

R-2114(U)

Figure 2-4. Sample SOURCE Module Printout for Mode 3, Source Speed 2.0 Kt

Figure 2-5. Excitation Spectra of Surface Crosstrack Velocity (Squared Source Transforms) for Modes 1-6, Source Speed 2.0 Kt

Figure 2-6. Excitation Spectra of Surface Crosstrack Velocity (Squared Source Transforms) for Modes $1-6$, Source Speed 16.0 Kt

TIME. SEC	TRACK, m	PEAK SIGNAL	AT Y, M	HOJNDARY
50.0	4!i.5	-1.137E-04	30.0	1.806E-10
100.0	623.1	1.282E=04	30.0	1.331E-10
150.0	1234.6	1.196E~04	35.0	1.211E-10
200.0	1646.2	1.022E-04	45.0	1.289E-10
250.0	2057.7	©.696E-05	60.0	$1.601 E-10$
300.0	2469.3	1.144E-U4	90.0	2.110E-10
350.0	2880.8	1,337E=04	95.0	2.737E-10
400.0	3292.4	1.4885-04	95,0	3.545E-10
450.0	3703.9	1.564E-04	95.0	4,307E-10
500.0	4215.4	1;580E-04	100.0	4.956 EW 10
550.0	4527.0	1.527E04	100.0	5,502E:10
600.0	4938.5	1.425E04	105.0	5.738E-10
650.0	5350.1	1.293E-04	105.0	5.7习2E-10
700.0	5761.6	1.143E04	110.0	5.474E-10
750,0	6143,2	9,915E=05	110.0	H.794EM10
800.0	6584.9	8,449E-05	115.0	3,710E-10
850.0	6996.2	7.747E-05	160.0	E.174E-10
900.0	7407,8	7.267E005	160.0	1.331E=11
950.0	7819.3	6.906E005	220.0	2.462E-10
1000.0	8230.9	$6.571 E 05$	225.0	5.649E-10
1050.0	8802.4	8, 370E-05	30.0	9.453E-10
1100.0	9054.0	1.129E=04	30.0	1.3885-09
1150.0	9465.5	1.444E-04	35.0	$1.804 \mathrm{E}-09$
1200,0	9877.1	$1.775 E 004$	40.0	2.463E009
1250.0	10283.6	?, 099E=04	45.0	3.098E-C9
1500.0	10700.1	2.368E=04	50.0	3.802E=09
1390.0	11111.7	$2.553 E \sim O 4$	50.0	4.5815.09
1400.0	11523.2	2,683E=04	55.0	5.443E009
1450.0	11934,8	2.712E-04	60.0	6.3748009
1500.0	12346,3	2.656E004	60.0	7.4428909
1350.0	12757.9	2,588E004	65.0	8.592E-09
1800.0	13169.4	2,448EOU	90.0	9.852 Ecog
1650.0	13581.0	2.3102004	70.0	S.1218005
1700,0	13092.5	2,159E=04	70.0	1.273E00
1790.0	14404.0	2.043E-OU	70.0	1.438E05
1000,0	14815.6	1.991E.04	45.0	1.6198.08
1850.0	15229.1	2,008E-04	75.0	1.8188006
1000.0	15630.7	2,066E-04	73.0	2.0408008
1950.0	16030.2	2.144E-04	80.0	2.280E-08
2000.0	10461.8	2,248E-04	80.0	2,562E-08
2090.0	16873.3	2,585E04	85.0	2,871E008
2100.0	17284.8	2,548E004	90.0	3.2588 .08
2150.0	17696.4	2.730E=04	95.0	3.6102 .08
2200.0	18107.9	2.9085404	100.0	H.0332008
2290.0	18519.5	3,058E004	100.0	$4.555 E 008$
2900.0	13431.0	3.2!2E-04	105.0	5.1254008
2390.0	19542.6	3.282E004	110.0	5.7412-08
2400.0	19734.1	3,341E004	110.0	6.505E08
.2450.0	20165.7	3.393E004	115.0	7.3358008
2500.0	20577.2	3.377E04	115.0	3.2946008

Figure 2-7. Sample Summary Printout From XFIELD Module

SECTICN 3, BODY-GENERATED WAVES

Internal waves are generated in an incompressiole, zaratified fluid when a moving object displances the level surfaces fron ecquilibrium. If the radiated displacement amplitudes are smail, and if the traverse time of the object is short compared to the time scale associated with stratification, then the excited field is well describet by linearized equations with a sinple set of singular displacement sources. The one approximation that may be unrealistic for certain cases is the neglect of ambient current shear.

The following normal-mode analysis of body-generated radiation is similar to the general treatment of Miles [5]. Certain differences of format are dictated by the rectangular coordinates chosen for ease of computation, and these will be pointed out ay they are introduced.

3.1 EQUATIONS OF MOTION

The coordinates uxe x (track), y (cross-track), and z (depth, positive upward, zero at surfare). The fluid displacement from equilibrium will be described by a vertical compon it 5 and a twe-component vector ξ in the hozizontal plane. In the usual Boussinesq approximation with small displacements and satall departures p from equilibrium pressure, the equations of motion are

$$
\begin{align*}
& \ddot{\zeta}+\frac{\partial p}{\partial z}+N^{2}(z) \zeta=0 \tag{3-1}\\
& \ddot{\xi}+\nabla^{\prime} p=0 \tag{3-2}
\end{align*}
$$

where ∇^{\prime} stands for the horizontal gradient ($\partial / \partial x, \partial / \hat{o} y$) and N is the Vaisala frequency associated with the buoyancy stratification

$$
\begin{equation*}
N^{2}=-\frac{g}{\rho} \frac{d \rho}{d z} \tag{3-3}
\end{equation*}
$$

Conservation of volume will be modified to include a local set of scurces and sinks describing the moving body,

$$
\begin{equation*}
\frac{\partial \zeta}{\partial z}+\nabla \because \xi=s(x-v t, y, z) \tag{3-4}
\end{equation*}
$$

To eliminate the pressure, we app? ${ }^{2} \partial / \partial z$ to (3-2), ∇^{-}to (3-i), and subtract,

$$
\begin{equation*}
\nabla^{\circ} \ddot{\zeta}+N^{2} \nabla^{\prime} \zeta-\frac{\partial \ddot{\xi}}{\partial z}=0 ; \tag{3-5}
\end{equation*}
$$

we can then eliminate the ξ term by taking the horizontal divergence of (3-5) and adding the result of ($\partial / \partial z$) $\left(\partial^{2} / \partial \varepsilon^{2}\right)$ on (3-4),

$$
\begin{equation*}
\left(\nabla^{-2}+\frac{\partial^{2}}{\partial z^{2}}\right) \ddot{i}+N^{2} \nabla^{-2} \zeta=\frac{\partial_{亏}}{\partial z} \tag{3-6}
\end{equation*}
$$

3.2 NORMAL MODE SOLUTION IN FOURIER- RANSFORM COORDINATES

Using the nota ion (${ }^{-}$) for the 2-dimensional Fourier transforms in the horizontal plane.

$$
\begin{equation*}
\zeta(\vec{k}, x)=\int e^{i k \cdot x} \zeta d x d y \tag{3-7}
\end{equation*}
$$

and so on, with $k \cdot x \equiv k_{x} x+k_{y} y$, and observing that every component of a steady solution emanating from the moving source ($3 \cdots \%$) must have the particular time dependence

$$
\begin{equation*}
\bar{\zeta}(\vec{k}, z) e^{i_{\omega} t}, \omega \equiv k_{x} v, \tag{3-8}
\end{equation*}
$$

we get from (3-6)

$$
\begin{equation*}
\frac{\partial^{2} \bar{\zeta}}{\partial z^{2}}+k^{2}\left(\frac{N^{2}}{\omega^{2}}-1\right) \bar{\zeta}=\frac{\partial \bar{s}}{\partial z} \tag{3-9}
\end{equation*}
$$

where $k^{2}=k_{x}^{2}+k_{y}^{2}$ and \bar{s} is the rransform of s at $t=0$.

At each value of \vec{k}, the solution $\bar{\zeta}$ to the inhomogeneous equation above can be obtained as a linear combination of the eigensolutions $\phi_{\text {.. }}$ of the corresponding homogeneous equation

$$
\begin{equation*}
\frac{\partial^{2} \phi_{m}}{\partial z^{2}}+k^{2}\left(\frac{N^{2}}{\omega_{m}^{2}}-1\right) \phi_{m}=0, m=0,1,2, \ldots \tag{3-10}
\end{equation*}
$$

which define the freely propagating normal modes. The functions ϕ_{m} vanish at $z=0^{*}$ and at $z=b$, the ocean bottom. They form a complete orthogonal set,

$$
\begin{equation*}
\int_{-\mathrm{b}}^{0} \dot{\varphi}_{\mathrm{n}} \mathrm{~N}^{2} \phi_{\mathrm{m}} \mathrm{~d} z=\delta_{\mathrm{nm}} \tag{3-11}
\end{equation*}
$$

over the vertical interval in which $N(z)$ is nonvanishing. In these defining equations che scalar wavenumber is a continuous parameter upon which the functions ϕ_{m} and the eigenvaiues ω_{m} depend, a convention opposite to that of Hiles' treatment, in which k is the eigenvalue and ω the parameter. The present choice simplifies the logic of the numerical algorithm.

We now proceed in the usual way to assemble the eigenfunctions into a Green's function $G_{k, \omega}\left(z, z_{0}\right)$ for (3-9),

$$
\begin{equation*}
\left[\frac{\partial^{2}}{\partial z^{2}}+k^{2}\left(\frac{N^{2}}{\omega}-1\right)\right] G_{k, \omega}=f\left(z-z_{0}\right), \tag{3-12}
\end{equation*}
$$

[^0]which in combination with the source iransform $\partial \bar{s} / \partial z$ will yield the displacement transform $\bar{\zeta}$. The identity
\[

$$
\begin{equation*}
\sum_{m=1}^{\infty} \phi_{m i}(z) \phi_{m}\left(z_{0}\right) N^{2}(z)=\delta\left(z-z_{0}\right) \tag{3-13}
\end{equation*}
$$

\]

and the property, via equation (3-10),

$$
\left[\frac{\partial^{2}}{\partial z^{2}}+k^{2}\left(\frac{N^{2}}{\omega^{2}}-1\right)\right] \phi_{m}=k^{2} N^{2}\left(\frac{1}{\omega^{2}}-\frac{1}{\omega_{m}^{2}}\right) \phi_{\mathrm{m}}
$$

together imply

$$
\begin{equation*}
G_{k, \omega}\left(z, z_{o}\right)=-\frac{\omega^{2}}{k^{2}} \sum_{m=1}^{\infty} \frac{\omega_{m}^{2}}{\omega^{2}-\omega_{m}^{2}} \phi_{m}(z) \phi_{m}\left(z_{o}\right) \tag{3-14}
\end{equation*}
$$

To represent the effect of a cylindrically symmetric body we distribute displacement sources along the submerged track $z=z_{0}, y=0$,

$$
s(x, y, z)=A(x) \delta(y) \delta\left(z-z_{0}\right) ;
$$

the particular choice

$$
A(x)=\left\{\begin{aligned}
\text { const. }, & |x| \leq L / 2 \\
0, & |x|>L / 2
\end{aligned}\right.
$$

is equivalent to the Rankine ovoid of volume $V=A L$ and dipole length L (except for the effects of local stratification and the rigid surface in distorting the boundary streamlines). For this choice, the source transform term in (3-9) is

$$
\begin{equation*}
\frac{\partial \bar{s}}{\partial z}(\vec{k}, z)=V \frac{\sin k_{X} L / 2}{k_{X} L / 2} \delta^{\prime}\left(z-z_{0}\right) \tag{3-15}
\end{equation*}
$$

where the prime (') is used here and subsequently to denote differentiation by z. For cases of practical interest the values of $k_{x}=\omega_{m} / v$ present $i_{i n}$ the radiated field wili be such that

$$
\frac{k_{x} L}{2}<\frac{N L}{2 v} \ll \pi
$$

so that the form factor will be very nearly unity; note that this inequali.ty must hold also for the distortions in the Rankine ovoid boundary streamlines to remain small. The bjdy is therefore effectively a point monopole for displacement (or point dipole for velocity). The equation for the displacement transform then becomes

$$
\begin{equation*}
\left[\frac{\partial^{2}}{\partial z^{2}}+k_{c}^{2}\left(\frac{N^{2}}{\omega^{2}}-1\right)\right] \bar{\zeta}=v \delta^{\prime}\left(z-z_{0}\right) \tag{3-16}
\end{equation*}
$$

so that $\vec{\zeta}$ is minus V tines the derivative with respect to z_{0} of the Green's function (3-14),

$$
\begin{equation*}
\bar{\zeta}(\vec{k}, z)=\frac{V}{k^{2}} \sum_{m=1}^{\infty} \frac{\omega^{2} \omega_{m}^{2}}{\omega^{2}-\omega_{m}^{2}} \phi_{m}(z) \phi_{m}^{\prime}\left(z_{0}\right) . \tag{3-17}
\end{equation*}
$$

The subscripted terms in the above, ω_{m} and ϕ_{m}, depend on the scalar magnitude of \vec{k}, while ω is identical to the track component k_{x} except for the scale factor $v, \omega \equiv k_{x} v$.

3.3 CROSSPLANE REPRESENTATION

The inversion of the field transform $\bar{\zeta}$ will be carried out in two steps, first analytically along the k_{x} coordinate to produce the "partial transforms" $\tilde{\zeta}$,

$$
\begin{equation*}
\tilde{\zeta}\left(x, k_{y}, z\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \bar{\zeta}(\dot{\vec{k}}, z) e^{-i k_{x} t} d k_{x} \tag{3-18}
\end{equation*}
$$

then along the k_{y} axis

$$
\begin{equation*}
\zeta(x, y, z)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \tilde{\zeta}\left(x, k_{y}, z\right) e^{-i k_{y} y} d k_{y} \tag{3-19}
\end{equation*}
$$

The second step is carried out numerically with the Fast rourier Transform for a succession of x-values at a given z. As will be seen, the analytic form of the partial transform $\tilde{\zeta}$ allows it to be assembled rapidly at each x from quantities computed and stored ahead of time.

Each term in the modal sum (3-17) for the fleld transform contains an incegrabie singularity along the line of resonance in the \vec{k} plane defined by

$$
\begin{align*}
& k_{x} v=\omega_{m}(k) \\
& k^{2}=k_{x}^{2}+k_{y}^{2} \tag{3-20}
\end{align*}
$$

the finite contribution of these singularities to the inversion integrals constitutes the radiated, freely propagating field. (Singularities occur also along the lmaginary k_{x} axis associated with solutions of the normalmode equation for negative k^{2}. These constitute the nonradiated, exponentially-damped field which is the generalization, for stratified flow, of the local potential flow around the source.) Using c_{m} to denote the scalar phase speed $\omega_{\mathrm{m}} / \mathrm{k}$, we note that

$$
\frac{{ }^{k_{x}}}{k}=\frac{\omega_{m} / v}{k}=\frac{c_{m}}{v},
$$

which indicates that no waves for which $c_{m}>v$ can be part of the field. It can be shown that c_{m} is always a decreasing function of k, so that the resonance loci have two possible forms, as shown in Figure 3-1: when $v>c_{m}(k=0)$ the source is "super-Froude" with respect to the $m^{\text {th }}$ mode and the locus leaves the oxigin at an angle of $\sin ^{-1}\left(c_{m}(0) / v\right)$; when $v<c_{m}(0)$ the locus crosses the k_{x}-axis at a finite value corresponding to $c_{m}\left(k_{x}\right)=v$, giving rise to a transverse wave system. While there is no distinction between these two cases in the formalism to follow the inclusion of transverse waves complicates the numerical procedures, and the numerical algorithm has been configured for the superFroude case only.

To evaluate the radiated contributions we choose the complex integration contour of (3-18) to lie below the real k_{x} axis so that the field will

Figure 3-1. Solution Loci for the Resonance Equation (3-20) at Various Source Speeds. Limiting Phase Speed for Mode 1 is $0.836 \mathrm{M} \mathrm{Sec}^{-1}$.
vanish for $x>0$, and we include the dependence of ω_{m} on k_{x} via k (at fixed k_{y}) in the computation of the residues,

$$
\begin{aligned}
{\left[\frac{d}{d k_{x}}\left(\omega^{2}-\omega_{m}^{2}\right)\right]_{\omega= \pm \omega_{m}} } & =2 \omega v-2 \omega_{m} \frac{d \omega_{m}}{d k} \frac{d k}{d k_{x}} \\
& = \pm 2 \omega_{m} v\left(1-c_{m} c_{g m} / v^{2}\right)
\end{aligned}
$$

where $c_{g m} \equiv d \omega_{m} / \mathrm{dk}\left(\leq c_{\mathrm{m}}\right)$ is the scalar group velocity. The result is

$$
\begin{equation*}
\tilde{\zeta}\left(x, k_{y}, z\right)= \pm \frac{i V}{2 v} \sum_{m} c_{m}^{3} k\left(1-c_{m} c_{g m} / v^{2}\right)^{-1} \phi_{m}(z) \phi_{m}^{\prime}\left(z_{o}\right) e^{\mp i \omega_{m} x / v} \tag{3-21}
\end{equation*}
$$

the sum carried out over both signs.

The numerical procedure is based on the observation that each term $\tilde{\zeta}_{\mathrm{m}}$ of the above sum for the partial transform depends on x only in its complex phase,

$$
\begin{equation*}
\tilde{\zeta}_{m}\left(x, k_{y}, z\right)=T_{m}\left(k_{y}, z\right) e^{-i \omega_{m} x / v} ; \tag{3-22}
\end{equation*}
$$

the source transform,

$$
\begin{equation*}
T_{m}\left(k_{y}, z\right)=\frac{i V}{v} c_{m}^{3} k\left(1-c_{m} c_{g m} / v^{2}\right)^{-1} \phi_{m}(z) \phi^{\prime}(z), \tag{3-23}
\end{equation*}
$$

can be computed and tabulated as a function of k from the dispersion data and eigenfunction amplitudes. A corresponding table of complex phases

$$
e^{-i \omega_{m} \Delta x / v}
$$

can be similarly prepared, after which each $\tilde{\zeta}_{\mathrm{ni}}$ can be generated recursively by repeated complex multiplications,

$$
\begin{align*}
& \tilde{\zeta}_{m}\left(0, k_{y}, z\right)=T_{i n}, \\
& \tilde{\zeta}_{m}\left(x+\Delta x, k_{y}, x\right)=\zeta_{m}\left(x, k_{y}, z\right) e^{-i \omega_{m} \Delta x / v} ; \tag{3-24}
\end{align*}
$$

at each step the sum

$$
\begin{equation*}
\tilde{\zeta}\left(x, k_{y}, z\right)=\operatorname{Re}\left\{\sum_{m} \zeta_{m}\left(x, k_{y}, z\right)\right\}, \tag{3-25}
\end{equation*}
$$

briefly tabulated as a function of k, can be Fourfer-transformed to produce $\zeta(x, y, z)$.

Field quantities other than displacement, such as scalar strain, strain rate, and horizontal velocity, can be deduced from the simple relations among the Fourier amplitudes derivable from the dynamical equations (3-1 through 3-4):

$$
\begin{array}{ll}
\text { strain, } & \bar{\varepsilon}=-\frac{\partial \bar{\zeta}}{\partial z}=-\bar{\zeta}^{\prime} \\
\text { strain rate, } & \bar{\varepsilon}_{t}=-i \omega \bar{\zeta}^{\prime} \\
\text { velocity, } & \bar{u}_{x}=\frac{\omega k}{k^{2}} \bar{\zeta}^{\prime} \tag{3-26}\\
& \bar{u}_{y} \\
& =\frac{\omega k}{k^{2}} \bar{\zeta}^{\prime}
\end{array}
$$

For completeness, the approprlately modified formulas for the source transforms are 11sted below:

Quantity
$\xrightarrow{\mathrm{T}}$

$$
\frac{1 V}{v} c_{m}^{3} k\left(i-c_{m}^{c} c_{m} / v^{2}\right)^{-1} \phi_{m}(z) \phi_{m}^{\prime}\left(z_{0}\right)
$$

ε

$$
-\frac{i V}{v} c_{m}^{3} k\left(1-c_{m} c_{g m} / v^{2}\right)^{-1} \phi_{m}^{\prime}(z) \phi_{m}^{\prime}\left(z_{o}\right)
$$

$$
\begin{equation*}
\varepsilon_{t} \quad \frac{V}{v} c_{m}^{4} k^{2}\left(1-c_{m} c_{g m} / v^{2}\right)^{-1} \phi_{m}^{\prime}(z) \phi_{m}^{\prime}\left(z_{o}\right) \tag{3-27}
\end{equation*}
$$

$$
\frac{i V}{v^{2}} c_{m}^{5} k\left(1-c_{m}^{c} c_{m} / v^{2}\right)^{-1} \phi_{m}^{\prime}(z) \phi_{m}^{\prime}\left(z_{o}\right)
$$

$$
\left[\frac{1 k_{y}}{k}\right] \frac{v}{v} c_{m}^{4}\left(1-c_{m} c_{g m} / v^{2}\right)^{-1} \phi_{m}^{\prime}(z) \phi_{m}^{\prime}\left(z_{o}\right)
$$

The bracketed quantity [ik $/ \mathrm{k}$] is held outefde the sum in Equation 3-25.

SECTION 4. WAKE-GENERATED WAVES

4.1 INERT MIXED WAKE

The mixing that occurs within the momentumless wake of a self-propelled body tends to establish a more nearly uniform density in the wake than in the surrounding stratified fluid. Internal waves are radiated as the mixed wake collapses slightly to bring the internal and external density surfaces into level. For radiated components whose wavelength is longer than the wake diameter, the effect of collapse can be reasonably well represented by a time-dependent displacement quadrupole in the crossplane.

To incorporate wake radiation into the present transform algorithm, one approach would be to model the wake collapse separately, either analytically or numericelly [7,8] and use the corresponding quadrupole profiles as an additional source term.

A much simpler, though not yet validated, approach has been used in the present version of XMODE. It uses a single parameter in the form of an initial quadrupole strength, and virtually generates the entire quadrupole history in a selif-consistent dymamical way as the radiation field develops.

The inert mixed wake, in its simplest conception, is a tube of fluid winch, at a suitable short distance behind the self-propelled body, has an anomalous density gradient within an approximately circular crosssection, no mean flow perpendicular to the axis, and in which turbulent stresses can be neglected in comparison to buoyant forces and inertia in the equations of crossplane flow. This last assumption means that the dynamics of collapse are adequately described by the homogeneous. equations of fluid motion, both inside and outside the mixed region.

We assume that the only affect of mixing is to redistribute density and we define a displacement function to describe the redistribution,

$$
\Delta \zeta\left(x, y, z-z_{0}\right),
$$

such that if the mixing were abruptly terminated at position x, a fluid particle on the streamline originally at level 2 would rise or fall to the new equilibrium level. $z+\Delta \zeta$. Thus, if the streamline is at the level $z+\zeta$, the particle experiences an acceleration due to buoyancy $-\mathrm{N}^{2}(\zeta-\Delta \zeta)$. The function $\Delta \zeta$ vanishes for $x>0$, changes rapidly in a mixing interval $-x<x<0$, then remains independent of x for $\mathrm{x}<-\mathrm{X}$. The vertical momentum equation (3-1) is accordingly modified to read

$$
\begin{equation*}
\ddot{\zeta}+\frac{\partial p}{\partial z}+N^{2}(z)(\zeta-\Delta \zeta)=0, \tag{4-1}
\end{equation*}
$$

and following the derivation of Section 3 with the volume source s set to zero, we get

$$
\begin{equation*}
\left(\nabla^{2}+\frac{\partial^{2}}{\partial z^{2}}\right) \ddot{\zeta}+N^{2} \nabla^{\prime}{ }^{2} \zeta=N^{2} \nabla^{\prime}{ }^{2} \Delta \zeta, \tag{4-2}
\end{equation*}
$$

where again the steady solution obeys $\ddot{\zeta}=v^{2}(\partial / \partial x)^{2} \zeta$. For simplicity we assume that the turbulent redistribution of density occurs rapidly enough compared to the time scales $\left\{\omega_{\mathrm{m}}^{-1}\right\}$ to be approximated by impulsive change,

$$
\Delta \zeta=\left\{\begin{array}{l}
0, x \geq 0 \tag{4-3}\\
\Delta\left(y, z-z_{0}\right), x<0
\end{array}\right.
$$

which gives the source term in (4-2) the form

$$
N^{2}\left[\eta(x) \frac{\partial^{2} \Delta}{\partial y^{2}}-\delta^{\prime}(x) \Delta\right]
$$

where $\eta(x)$ is unity for $x \leq 0$ and zerc for $x>0$. The two-dimensional Fourier transform of this equation is

$$
\frac{\partial^{2} \bar{\zeta}}{\partial z^{2}}+k^{2}\left(\frac{N^{2}}{\omega^{2}}-1\right) \bar{\zeta}=-\frac{N^{2}}{\omega}\left(\frac{i k_{y}^{2}}{\omega^{2}}+i k_{x}\right) \tilde{\Delta}\left(k_{y}, z-z_{0}\right)
$$

or,

$$
\begin{equation*}
\left[\frac{\partial^{2}}{\partial z^{2}}+k^{2}\left(\frac{N^{2}}{\omega^{2}}-1\right)\right] \bar{\zeta}=\frac{N^{2} k^{2}}{i k_{x} \omega^{2}} \tilde{S}\left(k_{y}, z-z_{0}\right) \tag{4-4}
\end{equation*}
$$

In terms of the Green's Function in (3-12), the solution is

$$
\begin{align*}
\bar{\zeta} & =\frac{k^{2}}{1 k_{x} \omega^{2}} \int G_{k, \omega}\left(z, z_{1}\right) \tilde{\Delta}\left(k_{y}, z_{1}-z_{0}\right) d z_{1} \\
& =\frac{1}{1 k_{x}} \sum_{m} \frac{\omega_{m}^{2}}{\omega^{2}-\omega_{m}^{2}} \phi_{m}(z) Q_{m}\left(z_{0}\right) \tag{4-5}
\end{align*}
$$

with

$$
\begin{equation*}
Q_{m}\left(z_{0}\right)=-\int \phi_{m}(z) N^{2}(z) \tilde{\Delta}\left(k_{y}, z-z_{0}\right) d z \tag{4-6}
\end{equation*}
$$

Now for a range of wavenumbers $k y$ and mode numbers m such that the spatial scales of the plane-wave normal modes are mu:h larger than the wake radius R,

$$
\begin{aligned}
& k_{y} R<1, \\
& m R<Z_{a},
\end{aligned}
$$

the coefficients above are approximately

$$
\begin{align*}
Q_{m} & =\phi_{m}^{\prime}\left(z_{o}\right) N^{2}\left(z_{o}\right) \iint\left(z_{0}-z\right) A\left(y, z-z_{o}\right) d y d z \\
& \equiv \phi_{m}^{\prime}\left(z_{o}\right) N^{2}\left(z_{o}\right) Q_{p} \tag{4-7}
\end{align*}
$$

where the integral Q defines the wake quadrupole moment. This approximation assumes also that the ambient Valsala frequency is constant over the wake height and that the wake is axisymetric so that

$$
\iint \Delta d x d y:=0
$$

The solution transform is thus

$$
\begin{equation*}
\bar{\zeta}(\vec{k}, z)=\frac{Q N^{2}\left(z_{0}\right)}{i k_{x}} \sum_{\mathrm{m}} \frac{\omega_{\mathrm{m}}^{2}}{\omega^{2}-\omega_{\mathrm{m}}^{2}} \phi_{\mathrm{m}}(z) \phi_{\mathrm{m}}^{\prime}\left(z_{0}\right) \tag{4-8}
\end{equation*}
$$

The partial inversion of Section 3.3 ytelds the crosstrack transform

$$
\begin{equation*}
\tilde{\zeta}\left(x, k_{y}, z\right)=\frac{1}{2} Q N^{2}\left(z_{0}\right) \sum_{m}\left(1-c_{g m^{\prime}} c^{\prime} v^{2}\right)^{-1} \phi_{m}(z) \phi_{\mathrm{m}}^{\prime}\left(z_{0}\right) e^{\mp i \omega_{m} x / v}, \tag{4-9}
\end{equation*}
$$

4.2 SIZING THE QUADRUPOLE MOMENT

For a considerable range of horizontal and vertical wavenumber the radiation emanating from a collapsing wake is seen to be determined by a single constant, the kinematic quadrupole momert

$$
\begin{equation*}
Q=\iint\left(z_{0}-z\right) \Delta\left(y, z-z_{0}\right) d z d y \tag{4-11}
\end{equation*}
$$

The magnitude of this quantity depends both on the cross section of the mixed wake and on the degree of mixing, as reflected by the density level displacements Δ. There is probably no simple substitute for a complete finite-difference simulation of the turbulent dynamics of wake growth and collapse in stratified media if accurate values of Q are essential. However: certain bounding approximations can be made in anticipation of th:ese more accurate simulations, and a quadrupole formula based on these approximaitions has been included in the XMODE algorithm.

The estimate derived below is rased in an elementary way on the dynamical picture of a growing, momentumless wake given by Ko [9], with constants drawn from the measurements of Naudascher and Gran [10,11]. The procodure will be to assume that in the initial growth stage the density is turbulently diffused like a passive variable, and that the consequent growch in the quadrupole moment continues until the effects of stratification Intervene rather abruptly at about one-fourth of the local Vaisala period. In Ko's account of non-stratified growth, the wake radius R and turbulent velocity scale u^{\prime} depend on time, or downtrack coordinate x, according to

$$
\begin{align*}
& R \sim x^{1 / 4} \\
& u^{\prime} \sim x^{-3 / 4} \tag{4-12}
\end{align*}
$$

With a Reynolds stress that is given by an eddy diffusivity

$$
\begin{equation*}
\varepsilon=K_{\varepsilon} u^{\prime} R \tag{4-13}
\end{equation*}
$$

that is constant across the wake. In Gran's measurements this assumption is verified, although the exponents in (4-12) are modified very silghtly by the effects of propeller-induced swirl. Gran's measurements also
verify another assumption of Ko 's, that the wake entrainment rate $\dot{R} \equiv \mathrm{vdR} / \mathrm{dx}$ is proportional to u^{\prime},

$$
\begin{equation*}
\dot{\mathrm{K}}=\mathrm{K}_{1} \mathrm{u}^{\prime} . \tag{4-14}
\end{equation*}
$$

To define the density distribution inside the growing wake we will neglect the effect of swirl and we will suppose, following a Reynolds' analogy, that the diffusion of the passive quantity ρ is governed by the eddy diffusivity ε,

$$
\begin{equation*}
\bar{u}_{x} \frac{\partial \rho}{\partial x}+\nabla \cdot(\varepsilon \nabla \rho)=0 \tag{4-15}
\end{equation*}
$$

with a boundary condition that equates the normal flux of ρ across the expanding wake perimeter at R :

$$
\begin{equation*}
\rho_{1} \dot{R}+\varepsilon \frac{\partial \rho_{i}}{\partial n}=\rho_{0} \dot{R}, \tag{4-16}
\end{equation*}
$$

where \bar{u}_{x} is the mean longitudinal flow and the subscript.s ($i, 0$) mean inside and outside the wake perimeter. The outside density profile is assumed linear,

$$
\begin{equation*}
\rho_{0}=\rho_{0}\left(z_{0}\right)-\beta\left(z-z_{0}\right) . \tag{4-17}
\end{equation*}
$$

These equations have the remarkably simple solution

$$
\begin{equation*}
\rho_{1}=\rho_{0}\left(z_{0}\right)-\alpha\left(z-z_{0}\right), \tag{4-18}
\end{equation*}
$$

as pointed out by Fernandez [12], since ε depends only on x but $\partial \rho_{1} / \partial x=0$ so that ($4-15$) is satisfied, while the boundary condition becomes

$$
\alpha(R \cos \theta) K_{1} u^{\prime}+x_{\varepsilon} u^{\prime} R(\alpha \cos \theta)=\beta(R \cos \theta) K_{1} u^{\prime}
$$

where θ is the polar angle with $z-z_{0}=R \cos \theta$, the condition is everywhere satisfied when

$$
\begin{equation*}
\alpha\left(K_{1}+K_{\varepsilon}\right)=\beta K_{1} . \tag{4-19}
\end{equation*}
$$

This argument suggests that the growing, non-radiating wake maintains a constant internal density gradient whose value is smaller than the external gradient by an amount that depends quite reasonably on the ratio of entrainment constant K_{1} to eddy diffusion constant K_{ε}.

The displacements Δ in density surface levels inside the wake are immediately given by

$$
\alpha\left(z-z_{0}\right)=\beta\left[\left(z-z_{0}\right)+\Delta\right],
$$

or

$$
\begin{equation*}
\Delta=\frac{\alpha-\beta}{\beta}\left(z-z_{0}\right) . \tag{4-20}
\end{equation*}
$$

The quantity $(\beta-\alpha) / \beta=E$ is a measure of the mixing efficiency,

$$
\begin{align*}
& \Delta=-E\left(z-z_{0}\right) \\
& E=\frac{K_{\varepsilon}}{K_{1}+K_{\varepsilon}} \tag{4-21}
\end{align*}
$$

such that E tends to unity for $K_{\varepsilon} \gg K_{1}$ and to zero for $K_{1} \gg K_{\varepsilon}$.

Ti.c kirematic quadrupole moment. (4-11) is readily found to ie

$$
\begin{equation*}
Q=\frac{\pi R^{4}}{4} E \tag{4-2.2}
\end{equation*}
$$

which is seen to grow linearly with time in view of the $x^{1 / 4}$-dependence of R. The value for R taken from Gran's results for a streamlined body-and-propeller model of radius R_{b} yields

$$
R^{4} \doteq R_{o}^{4}\left[0.213\left(\frac{x_{0}-x_{0}}{2 R_{b}}\right)\right]
$$

where $R_{o}=1.19 R_{b}$ is the value at $x=12 R_{b}$ and x_{o} is a virtual ortgin a short distance ($2.6 \mathrm{R}_{\mathrm{b}}$) in front of the propeller. Assuming that quadrupole growth terminates abruptly after some fraction f of the Vaisala period, when

$$
x-x_{0}=f \frac{2 \pi v}{N_{0}}
$$

we get for the maximum quadrupole

$$
\begin{equation*}
Q=0.26 E R_{\mathrm{b}}^{3} \mathrm{v} / \mathrm{N}_{\mathrm{o}} . \tag{4-23}
\end{equation*}
$$

This is the formula implemented in the SOURCE module, with the mixing efficiency E as a variable input parameter, and with the number f taken as 0.25. The appropriate value of E can be inferred from formula (4-21); values of K_{1} and K_{ε} taken by $K o$ from Naudascher's measurements, and computed by Gran from hiss own data [13], yield roughly similar values of E :

	Gran	Naudascher
K_{ε}	0.16	0.18
$\mathrm{~K}_{1}$	2.3	2.25
E	0.064	0.074

Both values of E are small enough to suggest that the actual mixing tha occurs in a propeller wake may be dominated by gross convection due to swirl. Gran remarks that a core of the wake extending out to $=0.25 \mathrm{R}$ remains in solid body rotation and attains 0.8 revolutions after 20 body diameters. If the portion out to 0.5 R were completely mixed, the equivalent added mixing efficiency would be on the order of $(0.5)^{4}=$ 0.0625 .

4.3 TREATMENT OF HIGHER MODES

The approximation (4-7) for the mode-dependent quadrupole coefficients ($4-6$) overemphasizes the higher modes and higher wavenumbers by treating the source like a point quadrupole singulariy in the crossplane. The normalized mode product $\phi_{m}^{\prime} \phi_{m}^{\prime}$ appearing in the source transform formulas for strain, velocity, and strain rate is ou the average an increasing function of m, of order

$$
\phi_{m}^{\prime} \phi_{\mathrm{m}}^{\prime} \sim p_{m}^{2} \int \phi_{\mathrm{m}}^{2} \mathrm{dz} \equiv \frac{p_{m}^{2}}{N_{m}^{2}}
$$

where one defines a vertical wavenumber p_{m} by

$$
\mathrm{p}_{\mathrm{m}}^{2} \int \phi_{\mathrm{m}}^{2} \mathrm{~d} z=\int \phi_{\mathrm{m}}^{\prime 2} \mathrm{~d} z
$$

and a mode-averaged N^{2} by

$$
H_{m}^{2} \int \phi_{\mathrm{m}}^{2} \mathrm{~d} z=\int \phi_{\mathrm{m}}^{2} \mathrm{~N}^{2} \mathrm{dz}=1
$$

One can easily derive from the normal-mode equation (3-10) the relation

$$
\begin{equation*}
\mathrm{k}^{2}+\mathrm{p}_{\mathrm{m}}^{2}=\mathrm{c}_{\mathrm{m}}^{-2} \mathrm{~N}_{\mathrm{m}}^{2}, \tag{4-24}
\end{equation*}
$$

so that the wake-generated source transforms for strain,

$$
T \text { (wake) } \approx Q N_{0}^{2} c_{m}^{-2}\left(1-\frac{\omega_{m}^{2}}{N_{m}^{2}}\right)
$$

tend to grow without mode limit. The extra factor $c_{m}^{3} k$ in the bodygenerated source transforms attenuates these functions at higher mode numbers. This behavior is evident in the body-dominated and wake-dominated cases illustrated in Figures 2-5 and 2-6.

The actual wake excitation coefficients defined in equation (4-6) will diminish with increasing k and m at a point where the scale of the mode function becomes comparable to the maximum wake radius R. A simple form factor to simulate this effect qualitatively has been included in the wake transform algorithm,

$$
\begin{equation*}
\frac{1}{1+0.4 q_{m}^{2} R^{2}} \tag{4-25}
\end{equation*}
$$

where q is a total wavenumber defined by

$$
\begin{equation*}
q_{m}^{2}=k^{2}+p_{m}^{2} \tag{4-26}
\end{equation*}
$$

and computed very simply from quantities on hand by formula (4-24) above.

REFERENCES

1. M. Milder, Usex's Manual for the Computer ZMODE, $R \& D$ Associates, Report TR-2701-001, July 1973.
2. G. Carrier and A. Chen, Internal Waves Produced by an Underwater Vehicie, TRW, Inc., Report No. 18202-6001-R0-00, November 1971.
3. C. W. Hirt and D. R. S. Ko, personal communication.
4. J. W. Cooley and J. W. Tukey, "An Algorithm for the Machine Computation of Complex Fourier Series," Math. of Comp., Vol. 19\% April 1965, pp. 297-301.
5. J. W. Miles, "Internal Waves Generated by a Horizontally Moving Source," Geo. Flaid Dynamics, Vol. 2, 1971, pp. 63-87.
6. 0. Phillips, The Dynamics of the Upper Ocean, Cambridge University Press, 1969, pp. 164-165.
1. D. R. S. Ko, Collapse of a Turbulent Wake in a Stratified Medium, TRW, Inc., Report 18202-6001-R0-00, Vo1. II, November 1971.
2. S. A. Piacsek, NRL Report pending.
3. D. R. S. Ko, A Phenomenolopical Model for the Momentumless Turbulent Wake in a Stratified Medium, TRW, Inc., Report 20086-6007-RU-00, April 1973.
4. E. Naudascher, "Flow in the Wake of Self-Propelled Bodies and Related Sources of Turbulence, JFM, Vo1. 22, 1965, pp. 625-656.
5. R. L. Gran, An Experiment on the Wake of a Slender Propeller-Driven Body, TRW, Inc., Report 20086-6006-RU-00, June 1973.
6. F, L. Fernandez, $R \& D$ Associates, personal communication.
7. R. L. Gran, Flow Research, Inc., personal communication.

[^0]: * Coupled displacements of the free surface are very small and can be safely neglected. See Phillips [6].

