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Abstract 
We analyze the international portfolio optimization problem by introducing the higher moments of the main 
financial index returns. We take especially account of their skewness and kurtosis. We introduce various decision 
criteria, based on these moments. In this framework, we solve different optimization problems: skewness 
maximization, kurtosis minimization, Polynomial Goal Programming (PGP), and finally, truncated utility 
maximization. For all of these objective functions, we determine, analyze and compare the optimal solutions, 
especially their degree of diversification. 
We illustrate our results on monthly returns of eighteen major international stock market indexes, for the period 
January 1988 through December 2007. 
Keywords: International portfolio diversification, Skewness, Kurtosis, Higher moments, PGP method 
JEL classification: C61, G11, G15. 
1. Introduction 
For many decades the prevailing paradigm for asset selection in terms of portfolio strategies has been the seminal 
Mean-Variance approach developed by Markowitz (1952). However, there is controversy over the issue of whether 
higher moments should be considered in portfolio selection. (See Samuelson, 1970; Arditti and Levy 1975; Kraus 
and Litzenberger, 1976; Singleton and  Wingender,1986; Prakash et al., 2003, and Sun and Yan 2003). In this 
paper, we base our portfolio analysis upon the earlier argument that the higher moments of return distributions are 
relevant to the investor's decision and cannot be neglected, as mentioned in Machina and Müller (1987) and in 
Jurczenko and Maillet (2006). The objective of this study is threefold. First, the return distributions of 18 
international stock markets are tested in context of mean-variance analysis. Second, the skewness and kurtosis are 
respectively, maximized and minimized under some usual constraints. Finally, portfolio selection with skewness and 
kurtosis is empirically applied to the sample of international stock markets. Portfolio optimization using higher 
moments is a more involved problem than standard optimization, such as the mean-variance approach. Indeed, there 
exists a trade-off between competing and conflicting objectives, i.e., the investor tries to maximize expected return 
and skewness, while simultaneously minimizing variance and kurtosis. To solve this multi-objective portfolio 
problem, we have to use specific numerical techniques, since usually no explicit solution can be provided. This 
study extends the work of Lai et al. (2006) by utilizing Polynomial Goal Programming (PGP), which incorporates 
investors preferences for higher moments.  
This paper is organized as follows. Section 2 summarizes the theory of portfolio selection for various decision rules. 
In particular, we introduce a criterion based on multiple objectives. Section 3 provides numerical results for various 
portfolio optimization problems. It discusses the empirical applications of polynomial goal programming and 
describes the methodology for multi-objective portfolio selection with higher moments. The last section provides the 
main conclusions. Tables and figures are gathered in Appendix. 
2. Portfolio selection for multiple objective criterion 
In what follows, we search to maximize (resp. minimize) a pth-moment where p is even (resp. odd). It is assumed 
that the other moments are fixed. We first recall standard results about mean-variance results (see Markowitz, 1959). 
Then, we detail the skewness maximization and the kurtosis minimization. 
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2.1 Optimization of p-moments 
2.1.1 Mean-Variance analysis 
Within the mean variance approach of Markowitz (1952), the basic assumption is that risk is measured by variance, 
and that decision criterion should be to minimize variance given expected return, or to maximize expected return for 
a given variance. In other words, in this framework, the investment decision is based on the trade-off between higher 
mean and lower variance of the returns. The locus of optimal mean-variance combinations is called the efficient 
frontier, on which all rational investors would desire to be positioned.  

Introduce some standard notations. In what follows, we denote by TU  the transpose of any vectorU . 
Let R  be the expected return of the assets: 
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    The matrix V  is assumed to be positive definite. 
    A portfolio X of asset weights is expressed as: 
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where ix denotes the weight on asset i . Note that we have: 
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where 2
i� is the variance of return i , and ij�  measures the covariance between returns i  and j . We denote by 

X� the standard deviation of X. Often, it is not possible to be short on assets. In that case, we need to add a 

constraint that all portfolio weights shall be zero or above: 0, 46 ixi . 

If we search for maximizing the expected return for a given variance, we have to solve the following optimization 
problem: 
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As explained in Markowitz (1952), the portfolio selection problem can be formulated as a quadratic program. We 
can also search for minimizing the variance. For a portfolio containing n assets, the minimum variance portfolio is 
solution of: 
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It can be determined by minimizing the following Lagrange function L: 
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in which 19 is the Lagrange multiplier, and ij"  is the correlation coefficient between iR  and jR . 

By using this approach, the minimum variance can also be computed for any given level of expected portfolio return. 
Adding a condition into Equation (A1) linked to some target expected rate of portfolio return, we get the optimal 
risky portfolio, by solving: 
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where *E  is the target expected return who is determined by the portfolio manager. The Lagrangian objective 
function can be written as: 
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Taking the partial derivatives of this equation with respect to each of the variables 2121 ,,,...,, 99Nxxx  and setting 

the resulting equations equal to zero yields the minimization of risk subject to the Lagrangian constraints. Then, we 
can determine the weights. If there exists a no short selling constraint on the portfolio, we have to add constraints: 

0, 1, 2,...,ix i n4 � . 

2.1.2. Skewness maximization under mean and variance constraints 

The absolute skewness of the rate of returns iR  on assets i are assumed to exist for all risky assets i , 

� �ni ,...,2,1� . The absolute skewness )(xSa  of the portfolio return is defined by: 
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where 3
is  is the skewness of asset i , iijs and ijjs  measures the co-skewness (curvilinear interactions), which 

occur in the joint distribution of iR  and jR . The relative skewness )(XS  is equal to: 3/)()( Xa XSXS �� . 

    The second step consists in writing the maximization program under some constraints. We assume that there is 
no short sale. We fix the levels of mean and variance. 
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2.1.3 Kurtosis minimization under mean and variance constraints 
Given the mean and the variance, the absolute kurtosis K is equal to: 
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where 4
ik is the kurtosis of asset i , iiijk , ijjjk  and iijjk measure the co-kurtosis, in the joint distribution of iR  

and jR . The relative kurtosis K  is given by � � 4/)( Xa XKXK �� . 

The second step consists in writing the program under some constraints. We fix the levels of mean and variance and 
suppose that there is no short sale. 
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2.2 Portfolio optimization based on Polynomial Goal Programming 
This section extends previous results of Lai et al. (2006) by including and updating more international capital 
markets. The multi-objective portfolio selection model consists in incorporating the skewness and kurtosis of the 
return distributions. The mean, variance, and higher moments of the rate of return iR  on asset i  are assumed to 
exist for all risky assets � �nii ,...,2,1� .The nn	  variance-covariance matrix V of asset rates of return is positive 
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definite. The optimal solution consists in selecting the best portfolio weight X such that its multiple objectives are 
optimized: for example, maximize the expected rate of return, minimize the variance, maximize the skewness and 
minimize the kurtosis. The best method to find the optimal solution is to aggregate the various objectives into a 
single objective function. Hence, we use a polynomial goal programming approach to combine these objectives. 
Let 321 ,, ddd  and 4d  be the goal variables which account for the deviations of expected return, variance, 
skewness and kurtosis from the aspired levels, *R , *V , *S , and *K , respectively. 
The aspired level indicates the best case scenario for a particular objective without considering other objectives. 
Hence, the aspired levels, *R , * ,V *S , and *K  can be determined by solving four (independent) sub problems (Q1, 
Q2, Q3 and Q4). 
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The next step can be accomplished by incorporating investor's preferences for objectives into the construction of a 
polynomial goal programming problem. Consequently, portfolio selection with higher moments is a solution of PGP, 
and multiple objectives can be achieved. The PGP method was first introduced by Tayi and Leonard (1988) in order 
to facilitate bank balance sheet management. It has subsequently been used by Lai (1991), Chunhachinda et al. 
(1997), Sun and Yan (2003), and Prakash et al. (2003) to solve portfolio selection problems involving a significant 
degree of skewness. We increase the dimensionality of the PGP portfolio selection problem from 
mean-variance-skewness to mean-variance-skewness-kurtosis to can take account of the non-normality of returns. 
The PGP model allows the determination of asset allocation, by solving the following problems: 
    (i) Which assets should be included? 
    (ii) How much capital should be allocated in each asset? 
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As explained in Lai (1991), solving the (PGP) problem is based on a two-step procedure. First, the aspired levels of 
* * * *,  ,   and R V S K for the expected return, variance, skewness and kurtosis, respectively, are deduced from

� �41 QQ � . Then, these aspired values are substituted into (P4). The minimum value of Z can be found for a given 
set of investor preferences % &� �,4 3, ,2 ,1 �ii9  since the solutions of the sub problems � �41 QQ �  are at least as 
good as the solution linked to (P4), where all objectives   , , SVR and K  are considered simultaneously. The values 
of the goal variables  ,, 321 ddd and  4d are always non-negative. They represent the amount of underachievement 
with respect to the best scenario. 
2.3 Maximization of a polynomial utility 
We suppose now that the skewness and the kurtosis are absolute. We consider an investor who allocates her 
portfolio to maximize the expected utility � �WU . To assess the importance of higher moments on the asset allocation, 
we approximate the expected utility by a Taylor series expansion truncated at order 4 (see Machina and Müller, 
1987). 
We get: 

� � � �� � � � � � � � � � � � � �4''''3'''2''
'

!4!3!2
)( WWWUWWWUWWWUWWWUWUWU ���������  

Then, taking expectation of both terms, we deduce: 
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Hence, we also include a simpler method of multi-moment optimization as a comparison. This approach takes the 
form: 
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For example, consider a CRRA utility function given by: 
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3. Empirical analysis 
3.1 Statistical data analysis 
The sample data (Note 1) consists in monthly rates of return of 18 international stock market indexes for various 
developed markets in North America, Asia, Australia and Europe and emerging markets in Latin America, Asia and 
Africa for the period January 1988 through December 2007. The five emerging markets indices included in this 
study are those of Mexico, Hong Kong, Malaysia, Singapore, and South Africa. The nine European indices include 
those of Belgium, Denmark, France, Germany, Italy, Spain, Sweden, Switzerland and the UK. From Asia, we 
include the Japan as the only developed market. The two North American markets are Canada and US. The 
inclusion of the index of the Australia adds up to a total of eighteen countries in our sample. The data reports the 
international price indices as covered into US dollars at the appropriate period's spot foreign exchange rate.  It 



www.ccsenet.org/ijef           International Journal of Economics and Finance          Vol. 2, No. 5; November 2010 

Published by Canadian Center of Science and Education 163

means that we examine mainly the US investor’s portfolio. Holding period returns for each country index � �j  are 
calculated as follows: 

1,1,

1,1,,,
,

��
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tjtj

tjtjtjtj
tj PX

PXXP
R , 

    where: 

    tjP , is the price of the stock index in country j traded at time t. 

    tjX , is the country j exchange rate at time t, expressed in US dollars. 

    tjR , is the exchange-rate-adjusted rate of return from investment in country j ’s stock at time t . 

The first four moments of all indices are provided in Table (1) (see Appendix B).  For preliminary analysis, Table 
(1) first lists the means and the variances of the rates of returns of the 18 international stock markets. Looking at the 
first column reveals that Mexico has the highest mean rate of return (1.95%), followed by Malaysia (1.24%) and 
Hong Kong (1.22%). Japan, Italy and UK provide the lowest means for monthly investment horizon. We note that 
none market has a negative mean return. In column 3, the evidence indicates that the market with highest return but 
with highest risk is Mexico: indeed, it has the highest variance of returns (0.87%), while the US has the lowest 
(0.14%), followed by the UK (0.19%). 
Table (1) also provides the values of skewness and kurtosis for each of the indices returns. International markets 
exhibits a negative skewness except for Australia, Belgium, Hong Kong, Italy, Japan, Malaysia and Singapore. We 
note also that Singapore has the highest skewness (0.757) while Canada has the lowest (-0.53). Singapore has the 
highest Kurtosis (9.90) and Denmark has the lowest (3.123). 
3.2 Numerical illustrations for each criterion 
In what follows, we give the numerical solutions of each of optimization problems detailed in Section 2. 
3.2.1 Mean-variance criterion 
[Insert Figure 1] 
This frontier shows as usual that the standard deviation risk increases when mean return increases. The minimum 
risk is 3.35%. The expected return is varying between 0.83% and 1.95%. The Mean-Variance Portfolio (MVP) is 
defined as the portfolio having the minimum standard deviation. The MVP is the portfolio chosen by the most risk 
averse investor (infinite aversion to variance). The MVP results from investing approximately 46% in US asset, 23% 
in Australian asset, and 12% in UK asset. The MVP has the following characteristics (monthly returns): 

033547.0;008314.0 �� �R  

However, various constraints may preclude a particular investor from choosing portfolios on the efficient frontier. 
Short sale restrictions are possible constraints. Short sale is a usual condition on market transactions. 
Suppose that we have two assets: asset A and asset B with � � � �  and A B A BE R E R � �4 4 . 
Now, relaxing the assumption of no short selling, investors could sell the lowest-return asset B . If the number of 
short sales is unrestricted, then by a continuous short selling of B  and reinvesting in A  the investor could 
generate an infinite expected return. The upper bound of the highest-return portfolio would no longer be A but 
infinity. Likewise the investor could short sell the highest-return security A  and reinvest the proceeds into the 
lowest-yield security B , thereby generating a return less than the return on the lowest-return assets. Given no 
restriction on the amount of short selling, an infinitely negative return can be achieved, thereby removing the lower 
bound of B  on the efficient frontier. Hence, short selling generally will increase the range of investment strategies 
from the minimum-variance portfolio to plus or minus infinity. 
If we take again our sample of 18 index prices, we suppose that we are short on US asset and long on the Mexican 
asset. The choice of US index and Mexico index is not arbitrary, but is a rational choice because the US index is the 
lowest risky asset (whose variance is equal at 1.459) and the Mexico index has the highest risk � �69.82 ��  but 
also the highest return (1.95%). By using this strategy, the investor could sell the lowest risk and reinvesting in 
Mexico index and generate an infinite expected return. In our case, we choose that the minimum asset weight =-100% 
and maximum asset weight =100%. 
The efficient frontier of unconstrained portfolio is displayed in Figure 2. 
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[Insert Figure 2] 
Figure 2 shows that the Mean-Variance efficient frontier of unrestricted portfolios dominates the Mean-Variance 
efficient portfolio of restricted portfolios: the highest return of dominant curve is equal at 0.023226 and has a risk 
equal to 0.11419. Figure 3 illustrates the efficient frontiers when a riskless asset (0.8%) is available on the market. 
[Insert Figure 3] 
3.2.2 Skewness maximization 
First, we examine skewness values for all efficient portfolios. As shown in Figure 4, all these skewness are negative. 
[Insert Figure 4] 
The maximum skewness value for mean-variance efficient portfolios is the MVP portfolio itself 
( 0672917.0��MVPSk ). 
Now, we examine relations between mean, variance and skewness. For this purpose, we provide the shape of the 
skewness for all portfolios in Figure 6. We indicate simultaneously its projection on the standard deviation/mean 
return plane, which corresponds to the set of all portfolios delimited by the Mean-Variance efficient frontier. 
[Insert Figure 6] 
The maximum skewness of all portfolios is reached for 8740900932330009710 .; Sk.; �.R ��� . 
The maximum skewness is achieved by a combination of about 70% on Singapore index, which has the highest 
skewness (0.757) and 30% on Hong-Kong index, which has also a positive skewness (0.313).This is due to positive 
coskewness. 
3.2.3 Kurtosis minimization 
We begin by looking at kurtosis values for all efficient portfolios. 
[Insert Figure 5] 
The minimum kurtosis value for mean-variance efficient portfolios is also the MVP portfolio kurtosis 

0 0083184 0 033547 Kurtosis 3.892R . ; � . ; � � � . 
Now, we examine relations between mean, variance and kurtosis. We indicate the shape of the kurtosis for all 
portfolios in Figure 7, together with its projection on the standard deviation/mean return plane. 
[Insert Figure 7] 
The minimum kurtosis value for all portfolios is given by 069076006973000831840 .; K.; �.R ��� . 
This result shows that diversification allows to minimize kurtosis, due to negative cokurtosis. 
3.2.4 The four moments control 
In this section, our main objective is to determine the investor's portfolio allocation within the four-moment 
framework. This can be done by incorporating investor's preferences. In what follows, we detail the methodology 
corresponding to Problem (P4), based on the Polynomial Goal Programming.  
First of all, we use: 
1) The variances and the covariances for the monthly rates of return. 
2) The skewness and co-skewness for monthly rates of returns.The sizes and signs of the coskewness will vary 
depending upon the degree of curvilinear relationship between the two markets. 
3) The values of kurtosis and co-kurtosis for monthly rates of returns.  
Second, by solving the four sub problems Q1, Q2, Q3 and Q4, we can obtain the aspired levels of the first four 
moments as shown in Table (2) (see Appendix B).  In order to verify the effect of investors preferences on 
portfolio selection, different levels of preferences are investigated. Specifically, investors' preferences of (3,1, 1, 0), 
(3, 1, 2, 1), (3, 1, 3, 1), (1, 3, 1, 1), (1, 1, 1, 3), (1, 3, 1, 3), (1, 2, 3, 2), (3, 1, 2,3) (2, 3, 3, 1) and (1,1, 0, 0) are 
included in our experiment. The results based on the preference structure of (3, 1, 1, 0), (3, 1, 2, 1) and (3, 1, 3, 1) 
imply that the investors are willing to pursue more excess returns regardless of risk level while those of (1, 3, 1, 1), 
(1, 1, 1, 3) and (1, 3, 1, 3) give more emphasis on risk control. However, the investors based on the preference of (1, 
2, 3, 2), (3, 1,2, 3) and (2, 3, 3, 1) consider several objectives simultaneously.(1, 1, 0, 0) is a benchmark case, 
representing the Markowitz mean-variance portfolio. Detailed results are presented in middle part of Table (3) (see 
Appendix B).  
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Similarly, investor's preferences also affect the four moments related to portfolios. The last part of Table (3) clearly 
shows that different combinations of investors' preferences on expected return )( 19 , variance )( 29 , skewness )( 39  
and kurtosis )( 49 lead to optimal portfolios with substantially different moment characteristics. 
The more importance investors' preferences attach to a certain moment, i.e., the greater the preference parameter for 
this moment, the more favourable value of this moment statistic would be in the optimal portfolio. That is, as a 
result of the trade-off between the four moments, at least one of the other three moment statistics deteriorates.  
For instance, the highest skewness is achieved in Portfolio A. It has not only higher preference parameter over 
skewness )3( 3 �9 , but also does not incorporate preference for kurtosis )0( 4 �9 . Consequently, the kurtosis is 
very important. The same pattern is observed for Portfolio B. In portfolio C and D, we inverse the scenario: the 
investor has a preference for the kurtosis and neglect the skewness. The other cases are a trade-off between mean, 
variance, skewness and kurtosis. The last case in a mean-variance efficient portfolio. The empirical findings suggest 
that the incorporation of higher moment into an investor's portfolio decision causes a major change in the 
construction of the optimal portfolio. 
In portfolio A1, investor's higher preference for expected return leads to higher expected return than that in portfolio 
A, resulting in a lower skewness than portfolio A. Thus, as the investor preference for expected returns increases, 
she must settle for lower skewness. Compared to Portfolio B1, a higher preference for skewness leads to a higher 
portfolio skewness but also a higher portfolio kurtosis than Portfolio B. Similarly, we also consider changing the 
preference parameters of Portfolio C from (1, 1, 0, 3) to (2, 1, 0, 3) while holding the values of variance and 
skewness constant. This result in the mean rose from 9.769 to 9.778, and the kurtosis rose from 0.88 to 0.89. Thus, 
as preference for expected returns increases, the investors must settle for higher kurtosis, holding skewness and 
variance are held constant. That is, higher preference for skewness leads to higher skewness, but also higher kurtosis. 
Likewise, when skewness and kurtosis are held constant, as shown in Portfolio D and D1, higher preference for 
expected return leads to higher returns, but also higher variance, which is the same to traditional Markowitz's mean 
variance model. Therefore, expected return, variance, skewness, and kurtosis are conflicting objective in portfolio 
diversification and risk averse investors prefer portfolios with high skewness and low kurtosis, thus requiring a 
lower required rate of return. 
3.2.5 The polynomial utility 
We examine the numerical solution of Program (P5). We consider three basic values for the relative risk aversion 
!  : 

- !  =2: the investor is rather aggressive; 

- ! =5: the investor is moderate; 

- ! =10: the investor is rather conservative. 

In the case of ! =2 (P5) can be write as: 

.938.095.0963.0 absoluteabsolute KurtoSkewVarR ���  

For 5�! , the objective function is equal to: 

.749.7496.4282.2 absoluteabsolute KurtoSkewVarR ���  

In the last case 10�! , the objective function is given by: 

.806.49603.16565.4 absoluteabsolute KurtoSkewVarR ���  

The virtue of Equation (P5) is that it incorporates the same multi-moment analysis but in a much simpler approach. 
Program (P5) states that the goal is to maximize the expected return of the portfolio while trying to minimize the 
impacts of volatility and kurtosis and maximize the positive benefits of skewness. Essentially, Program (P5) is an 
expanded version of a mean-variance utility function. The weights a, b, and c can be set to pre-determined levels 
depending upon an investor's tolerance for greater volatility, skewness and kurtosis. 
This case is the same in PGP when the investors' preference of are equal , i.e. 14321 ���� 9999 . It is worth 
noting that preference set (1, 1, 1, 1) was a compromise case where the weights for mean, variance, skewness, and 
kurtosis are equivalent. Note that US weights ( 18w ) are quite different according to decision criterion: for  example, 
for the mean-variance analysis, it is about 46%, for the skewness maximization, it is equal to 0% and for the utility 
criterion, it is about 13% (see also Table 3). 
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4. Conclusion 
This study shows the importance of choice criterion when dealing with international portfolio diversification. We 
begin by examining mean-variance analysis in case of restricted and unrestricted portfolio. In second step, the 
investor preferences are incorporated in maximization of the skewness and a minimization of the kurtosis. Then we 
introduce PGP optimization function. This approach allows us to solve for multiple competing and conflicting 
portfolio objectives based on mean-variance-skewness-kurtosis framework. Finally, we consider utility 
maximization. Our empirical analysis shows the PGP approach can efficiently solve portfolio problem with multiple 
conflicting objectives and can find optimal portfolio and make the corresponding investment decisions. The 
empirical findings suggest that the incorporation of skewness into an investor's portfolio decision causes a major 
change in the resultant optimal portfolio, as shown by the various US weights depending on decision criterion. 
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Table 1. Statistical analysis of indices  
Mean � �310* � , Variance � �310* � , Relative Skewness, Relative Kurtosis 

Countries  R  2�  Skew  Kurto  
Australia 1 9.806 2.864 0.063 3.941 
Belgium 2 7.969 3.138 0.072 3.56 
Canada 3 9.686 2.218 -0.53 4.63 
Denmark 4 11.93 3.827 -0.127 3.123 
France 5 8.363 3.354 -0.136 3.765 
Germany 6 8.839 2.822 -0.376 4.254 
Hong Kong 7 12.24 5.834 0.313 4.897 
Italy 8 6.203 4.071 0.155 3.561 
Japan 9 1.983 4.436 0.454 4.453 
Malaysia 10 12.38 6.544 0.423 8.76 
Mexico 11 19.48 8.692 -0.262 4.189 
Singapore 12 8.626 4.595 0.757 9.906 
South Africa 13 10.58 5.533 -0.403 5.384 
Spain 14 9.419 4.377 -0.122 3.945 
Sweden 15 11.26 4.772 -0.137 3.311 
Switzerland 16 10.39 3.163 -0.313 3.889 
U.K 17 6.948 1.916 -0.023 3.317 
U.S 18 8.567 1.459 -0.273 3.687 

 
Table 2. The aspired levels of four moments 

Sub-objectives 
� �xR*  

� �xV *  
� �xS *  � �xK *  

optimal values 310*484.19 �  310*125.1 �  874.0  069.0  

 
Table 3. Asset allocation and moment statistics for different preferences 
 

Portfolio A B C D E F G H I J 

19  1 3 1 1 3 1 1 3 2 1 

29  1 1 1 3 1 3 2 1 3 1 

39  3 1 0 0 3 1 3 2 3 0 

49  0 0 3 1 1 3 2 3 1 0 

Australia 0.301 0.27 0.115 0.077 0.087 0.117 0.109 0.123 0.08 0.239 
Belgium 0.024 0.076 0.059 0.053 0.055 0.054 0.057 0.061 0.054 0.021 
Canada 0.012 0.045 0.058 0.046 0.045 0.049 0.044 0.051 0.044 0.038 
Denmark 0 0.039 0.06 0.059 0.057 0.065 0.057 0.056 0.058 0.031 
France 0 0 0.028 0.047 0.045 0.03 0.039 0.032 0.047 0 
Germany 0 0.001 0.058 0.053 0.049 0.046 0.042 0.047 0.048 0 
HongKong 0 0 0.025 0.049 0.049 0.049 0.051 0.034 0.053 0 
Italy 0.047 0.062 0.069 0.066 0.071 0.067 0.076 0.078 0.069 0.033 
Japan 0.080 0.054 0.07 0.069 0.079 0.057 0.087 0.088 0.076 0 
Malaysia 0 0.047 0.058 0.051 0.049 0.055 0.048 0.051 0.049 0.044 
Mexico 0 0.032 0.092 0.102 0.091 0.11 0.087 0.081 0.096 0.03 
Singapore 0.377 0 0.014 0.03 0.032 0.024 0.036 0.025 0.034 0 
SouthAfrica 0 0.011 0.039 0.044 0.043 0.044 0.042 0.038 0.044 0.002 
Spain 0 0 0.031 0.044 0.041 0.032 0.035 0.03 0.043 0 
Sweden 0 0 0.021 0.051 0.044 0.031 0.029 0.017 0.049 0 
Switzerland 0 0.021 0.049 0.047 0.045 0.046 0.041 0.043 0.045 0 
UK 0 0.093 0.08 0.062 0.063 0.062 0.061 0.073 0.059 0.098 
US 0.158 0.249 0.074 0.051 0.053 0.064 0.059 0.071 0.05 0.462 
Mean 8.321 8.971 9.77 10.02 9.783 10.19 9.645 9.481 9.9 9.263 
Variance 1.768 1.873 1.44 1.589 1.556 1.52 1.517 1.442 1.589 1.157 
Skewness 0.162 -0.081 -0.051 -0.044 -0.039 -0.045 -0.034 -0.039 -0.039 -0.17 
Kurtosis 2.156 0.48 0.88 0.07 0.071 0.081 0.077 0.087 0.07 1.267 



www.ccsenet.org/ijef            International Journal of Economics and Finance         Vol. 2, No. 5; November 2010 

                                                          ISSN 1916-971X   E-ISSN 1916-9728 168

Table 4. Moment statistics according to various preferences 
 

Portfolio A 
 

A1 B B1 C C1 
 

D D1 

19  1 2 3 3 1 2 1 2 

29  1 1 1 1 1 1 3 3 

39  3 3 1 2 0 0 0 0 

49  0 0 0 0 3 3 1 1 
 

Mean 
 

8.321 
 

8.404 
 

8.971 
 

8.937 
 

9.769 
 

9.778 
 

10.01 
 

10.02 
Variance 1.768 1.772 1.873 1.242 1.44 1.44 1.588 1.589 
Skewness 0.162 0.16 -0.08 -0.051 -0.05 -0.05 -0.044 -0.044 
Kurtosis 2.156 2.183 0.351 0.48 0.088 0.089 0.0695 0.0695 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The mean-variance efficient 
frontier 

 
 

 
Figure 3. The efficient frontier with a risk-free asset 

  

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.008

0.01

0.012

0.014

0.016

0.018

0.02

Risk (Standard Deviation)

E
xp

ec
te

d 
 R

et
ur

n

Optimal Capital Allocation

X: 0.0625
Y: 0.01625

Efficient Frontier
Capital allocation line
Optimal Risky Portfolio
Risk-Free Rate

M

x>0

x<0

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.008

0.01

0.012

0.014

0.016

0.018

0.02
Mean-Variance-Efficient Frontier

Risk(Standard Deviation)

E
xp

ec
te

d 
R

et
ur

n

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12
0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

X: 0.05639
Y: 0.01537

Risk(Standard Deviation)

E
xp

ec
te

d 
R

et
ur

n 

Efficient Frontier with short sales

with short sales
without short sales

Figure 2. The efficient frontier of 
unrestricted/restricted portfolios



www.ccsenet.org/ijef           International Journal of Economics and Finance          Vol. 2, No. 5; November 2010 

Published by Canadian Center of Science and Education 169

  

 
 

 
Figure 6. Shape of the Skewness 

 

Figure 7. Shape of the Kurtosis 
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