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Background: The International Prognostic Index (IPI) is widely used to discriminate the

prognosis of patients with diffuse large B-cell lymphoma (DLBCL). However, there is a

significant need to identify novel valuable biomarkers in the context of targeted therapy,

such as immune checkpoint blockade (ICB).

Methods: Gene expression data and clinical DLBCL information were obtained from The

Cancer Genome Atlas and Gene Expression Omnibus datasets. A total of 371 immune-

related genes in DLBCL patients associated with different IPI risk groups were identified by

weighted gene co-expression network analysis, and eight genes were selected to

construct an IPI-based immune prognostic model (IPI-IPM). Subsequently, we analyzed

the somatic mutation and transcription profiles of the IPI-IPM subgroups as well as the

potential clinical response to immune checkpoint blockade (ICB) in IPI-IPM subgroups.

Results: The IPI-IPM was constructed based on the expression of CMBL, TLCD3B,

SYNDIG1, ESM1, EPHA3, HUNK, PTX3, and IL12A, where high-risk patients had worse

overall survival than low-risk patients, consistent with the results in the independent

validation cohorts. The comprehensive results showed that high IPI-IPM risk scores were

correlated with immune-related signaling pathways, high KMT2D and CD79B mutation

rates, and upregulation of inhibitory immune checkpoints, including PD-L1, BTLA, and

SIGLEC7, indicating a greater potential response to ICB therapy.

Conclusion: The IPI-IPM has independent prognostic significance for DLBCL patients,

which provides an immunological perspective to elucidate the mechanisms of tumor

progression and sheds light on the development of immunotherapy for DLBCL.
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INTRODUCTION

Diffuse large B-cell lymphoma (DLBCL) accounts for
approximately 40% of non-Hodgkin B-cell lymphoma, with an
annual incidence rate of over 100,000 cases worldwide (1, 2).
Although the current frontline DLBCL therapy (the standard R-
CHOP chemotherapy regimen) is associated with a high
complete response rate of 70%–80%, 10%–15% of DLBCL
patients are refractory, and almost 40% of patients experience
relapse within 2–3 years after initial response (3, 4). With the
development of high-throughput technologies, germinal center
B-cell-like and activated B-cell-like DLBCL subtypes were
identified by gene expression profiling based on cell-of-origin
classification (5–7). More recently, several key cytogenetic
alterations including mutations, somatic copy number
alterations, and structural variants have been shown to classify
distinct genetic subtypes within the cell-of-origin subgroups,
providing insights into heterogeneous disease pathogenesis and
candidate treatment targets (1, 3, 7–9). Several prognostic factors
including cell-of-origin and the International Prognostic Index
(IPI) have already been identified in the rituximab era, which still
need further investigation in the context of targeted therapies (7,
9–12). Therefore, there is an urgent need to explore potential
molecular mechanisms and identify key biomarkers and
therapeutic targets.

Accumulating evidence has shed light on the prognostic role
of the tumor microenvironment (TME) in immune checkpoint
blockade therapy (ICB), which is mostly composed of a variety of
immune cells (T, NK, and B cells as well as macrophages) and
stroma (blood vessels and extracellular matrix [ECM]) (13–16).
Kotlov et al. (11) characterized the DLBCL TME into four
distinct microenvironment compositions including “germinal
center-like” (GC), “mesenchymal” (MS), “inflammatory” (IN),
and “depleted” (DP) form, which are associated with distinct
clinical behavior and provide novel potential targets for
innovative therapeutic interventions.

In this study, we identified immune-related hub genes in
DLBCL patients at different IPI levels by weighted gene co-
expression network analysis (WGCNA) and constructed an IPI-
based immune-related prognostic model (IPI-IPM). We then
characterized the somatic mutation and transcription profiles of
the IPI-IPM subgroups, investigated the expression of several
inhibitory immune checkpoints between low- and high-risk
subgroups, and applied an unsupervised clustering algorithm
to analyze the gene expression pattern of lymphoma
microenvironment (LME) signatures. The results showed that
IPI-IPM was a promising prognostic biomarker, which also has
potential for use in patient management.

RESULTS

Identification of Immune-Related Genes
Associated With IPI in DLBCL Patients
A flowchart is shown to demonstrate the procedure and results of
our study (Figure 1). RNA-seq data of 570 DLBCL patients were

obtained from The Cancer Genome Atlas (TCGA) (48 from
TCGA-DLBC, 41 from CTSP-DLBCL1, and 481 from NCICCR-
DLBCL). Among the 566 DLBCL patients with overall survival
(OS) data, 321 (56.71%) were male and 245 (43.29%) were
female. The age of the patients ranged from 14 to 92 years
(median, 62 years) at initial diagnosis. Other clinical
characteristics, including follow-up period, Ann Arbor stages,
lactate dehydrogenase (LDH) ratio, Eastern Cooperative
Oncology Group (ECOG) performance status, and number of
extranodal sites, are documented in Table 1 and Supplementary

Material 1. To remove the batch effect among these three
projects, we utilized the ComBat-seq function to transform the
raw count data using the sva R package. Then, principal
component analysis was performed to show that there was no
obvious batch effect among the samples (Figure 2A). After
excluding samples with unrecorded IPI scores or with an IPI
score crossing risk groups (such as 1–5 or 3–4), 458 DLBCL
patients were divided into low-risk (n = 118), intermediate-risk
(n = 221; 106 at low-intermediate risk, and 92 at high-
intermediate risk), and high-risk groups (n = 109) (Table 1).
Consistent with previous publications, patients in the low-IPI
risk group had a much longer OS (Figure 2B).

As shown by gene set variation analysis (GSVA), ECM receptor
interaction, CD28-dependent PI3K/AKT signaling, IL-6-type
cytokine receptor ligand interaction, and other immunologic
signaling pathways were significantly enriched in the low-risk
group (Figure 2C and Supplementary Figures S1A, B). A total
of 4,651 genes (633 upregulated and 4,018 downregulated) were
significantly differentially expressed between the IPI high- and low-
risk groups (Supplementary Figures S1C, D and Supplementary

Material 2). By intersecting with the immunologic signature gene
sets (combining 20,837 genes from ImmuneSigDB and Immport,
Supplementary Material 3), 1,927 immune differentially expressed
genes (DEGs) (254 upregulated and 1,673 downregulated) were
identified for further analysis (Figure 2D and Supplementary

Figures S1E, F).
We applied variance-stability-transformed (VST) expression

data via DESeq2 as the input data for WGCNA, including 13,329
genes with the top 25% variance among all samples (Figure 3A). All
clinical characteristics were enrolled as trait variables, and the best b
value in the co-expression network was calculated to be 9
(Supplementary Figure S2B). The distance threshold for merging
modules was set to be 0.30, so as to construct a reasonable number
of merged modules (Supplementary Figures S2A, D). As shown in
the module–trait relationship, eight modules were significantly
correlated with the IPI group (Figure 3B), and a high correlation
(p < 0.0001) between gene significance of IPI risk groups and gene
module membership was found in the genes of three modules
(brown, pink, dark red) (Figure 3C and Supplementary Figures

S2E, G). By intersecting 4,106 genes from the top three IPI-
correlating modules with 1,927 immune DEGs, a total of 371
genes were identified as immune-related genes associated with
IPI, which were used for prognostic risk model construction
(Supplementary Figure S2H). Several gene sets, such as ECM
organization, ECM receptor interaction, PI3K/AKT signaling, and
integrin cell surface interaction were enriched in the top three IPI-
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correlating modules (Supplementary Figure S2I and
Supplementary Material 4).

Construction and Validation of an IPI-
Based Immune Prognostic Risk Model
In the training cohort, of which 563 patients withmatched RNA-seq
data and overall survival follow up data, 93 out of 371 IPI-related
immune genes were significantly correlated with OS in the
univariate Cox regression analysis (Table 2 and Supplementary

Material 5). Next, we applied Lasso-penalized Cox regression to
identify the optimal number of genes (n = 10) for the risk score
model (Figure 4A and Supplementary Figure S3A). As a result of

multivariate Cox regression analysis with variable selection by
Akaike information criterion, eight genes were selected to
construct the most optimal IPI-IPM (Figure 4B). Risk score =
(expression level of CMBL * [0.360] + expression level of TLCD3B *
[-0.350] + expression level of SYNDIG1 * [-0.247] + expression level
of ESM1 * [-0.238] + expression level of EPHA3 * [-0.163] +
expression level of HUNK * [-0.156] + expression level of PTX3 *
[0.138] + expression level of IL12A * [0.111]). As shown in the time-
dependent receiver operating characteristic (ROC) curve, areas
under the curve (AUC) were 0.703, 0.738, and 0.733 for 1, 3, and
5 years, respectively (Figure 4C). As shown in Supplementary

Figure S3B, there was a significant difference in OS and PFS

FIGURE 1 | A flowchart for the process of the present study.
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between high- and low-risk groups, taking the median of IPI-IPM
risk scores as the cutoff value. According to the ROC curve of the
median survival time (Supplementary Figure S3C), we defined a
cutoff value of 0.982 and then divided all patients into high- and
low-risk groups according to their risk scores. As shown in
Figure 4D, Kaplan–Meier survival analysis showed worse OS of
patients in the high-risk score group (log-rank p = 3.13e-14). Similar
results showing that high-risk score patients had worse PFS (log-
rank p = 6.95e-14) are shown in Figures 4E, F. The C-index for OS
of the risk score model was 0.732 (95% CI: 0.684–0.779, p = 1.38e-
21), and that for PFS was 0.728 (95% CI: 0.679–0.776, p = 3.11e-20).
These results show that IPI-IPMhas a good capacity for OS and PFS
prediction. The distribution of the risk score, survival status, and the
eight-gene expression between the high- and low-risk score groups
is shown in Supplementary Figures S3D, E and Figure 4G. In
addition, we conducted Spearman’s rank-order analysis to examine
the correlation between IPI risk group and the eight-gene
expression. As shown in Supplementary Figure S3F, the
expression of almost all genes except PTX3 was significantly
correlated with IPI risk groups. Then, we tested the difference of
the eight-gene expression between high- and low-IPI risk groups.
There existed significantly difference of gene expression in seven
genes except PTX3.

Moreover, 335 patients with available clinicopathologic
parameters were enrolled in the multivariate Cox regression
analysis, presenting the risk scores and age as independent
prognostic factors of OS (Figure 4H). Risk scores, along with
age, Ann Arbor clinical stage, LDH ratio, ECOG performance
status, and number of extranodal sites, were integrated to
construct a nomogram model (Figure 5A). As shown in the
decision curve analysis (DCA), the nomogram and the risk score
from IPI-IPM showed a relatively high net benefit (Figure 5B).
Moreover, the bias-corrected lines for the nomogram were close
to the ideal line in the 1-, 3-, and 5-year and median survival time
periods (Figure 5C). The C-index for the nomogram was 0.790
(95% CI: 0.736-0.843, p = 2.38e-26). Altogether, these results
suggest that the nomogram has excellent capacity and
consistency for OS prediction in the training cohort. Moreover,
we collected patients with matched IPI-IPM risk score and
available IPI information. A total of 445 patients with OS data
and 386 patients with PFS data were enrolled to compare the

difference of IPI and IPI-IPM in prognostic predictability. As
shown in Figures 5D, E, the AUCs of time-dependent ROC for
IPI-IPM were almost larger than those for the IPI risk group,
indicating fairly equivalent prognostic predictability between IPI
and IPI-IPM. In addition, the C-indices for OS of IPI-IPM and
IPI were 0.749 (p = 3.78e-23) and 0.756 (p = 1.72e-13), and the
C-indices for PFS were 0.739 (p = 6.36e-21) and 0.738 (p = 8.40e-
11), respectively.

Three independent cohorts from different clinical centers (the
cohort of Staudt et al., GSE10846, n = 414; the cohort of Dubois
et al., GES87341, n = 221; the cohort of Sha et al., GSE117556, n =
928) were enrolled for further validation of IPI-IPM. The risk score
for each patient was calculated, and all patients were divided into the
high- and low-risk groups. As for the cohort of Staudt et al., the
AUCs were 0.619, 0.603, and 0.601 for 1, 3, and 5 years, respectively
(Figure 5F). Kaplan–Meier survival analysis showed significantly
shorter OS of patients in the high-risk group (log-rank p = 5.30e-05,
Figure 5G and Supplementary Figures S3G, H). Moreover,
patients in the high-risk group were shown to have a shorter OS,
regardless of the treatment regimens they received. Similar results of
large AUC, shorter OS, and PFS of high-risk patients were also
shown in the other two cohorts (Figures 5H–K and
Supplementary Figures S3F, G). Taking the results of the
training and testing cohorts together, the IPI-IPM and the
nomogram combined risk score with relevant clinical
characteristics (age, Ann Arbor clinical stage, LDH ratio, ECOG
performance status, and number of extranodal sites) was an
excellent model for predicting short-term or long-term OS in
DLBCL patients, which may guide therapeutic strategy decisions
and long-term prognosis.

MOLECULAR CHARACTERISTICS OF
IPI-IPM SUBGROUPS

Compared to the low-risk group, a total of 5,980 genes (690
upregulated and 5,290 downregulated), and 2,731 immunologic
genes (400 upregulated and 2,331 downregulated) were significantly
differentially expressed in the high-risk group (Supplementary

Figure S4A, Figure 6A, and Supplementary Material 6).

TABLE 1 | Clinical characteristics of 570 DLBCL patients from the TCGA.

Project TCGA_DLBCL NCICCR_DLBCL CTSP_DLBCL1

Gene expression data (RNA-seq) 48① 481 41

Overall survival follow-up 48 481 37

Age (range) 23~82 14~92③ 27~84

Gender Female 26 195 24

Male 22 286 13

IPI_group Low risk 9 103 6

Intermediate risk Low 13 5 185 88 23 13

High 5 77 10

High risk 3 98 8

NA② 23 95

①Thirty-seven samples from TCGA_DLBCL with WES data.
②IPI range groups: 0–1 (low risk); 2–3 (intermediate risk); 2 (low-intermediate risk); 3 (high-intermediate risk); 4–5 (high risk). If the IPI is not recorded or the range of the IPI spans among

groups (such as 1–5 or 1–2), this feature is marked as non-applicable (NA).
③Age of nine samples from NCICCR_DLBCL was not reported.
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Pre-ranked gene set enrichment analysis (GSEA) was performed to
show that several gene sets, including negative regulation of
immune response, DNA repair, and response to IL-12, were
enriched in the high-risk group, and several gene sets, including
ECM receptor interaction, IL-10 synthesis, and regulation of
humoral immune response, were enriched in the low-risk group.
Details are documented in Figure 6B, Supplementary Figures

S4B–E and Supplementary Material 6. Additionally, t-distributed
stochastic neighbor embedding (t-SNE) was applied to show
obvious genetic diversity between the high- and low-risk groups
(Figure 6C). Based on the Pearson correlation analysis, there was

either a positive or negative correlation between the eight genes
from the IPI-IPM (Figure 6D). Figure 6E presents the heatmap of
differentially expressed genes correlating IPI-IPM risk scores
between the high- and low-risk groups.

To gain further molecular insight into the molecular
characteristics of IPI-IPM, 176 genes correlating with risk
scores and the eight genes from the IPI-IPM were identified as
IPI-IPM-associated immune genes (absolute Pearson correlation
coefficient ≥ 0.3, FDR < 0.05). Overrepresentation analysis was
applied to identify the enriched biological functions and
pathways, such as ECM organization and T cell differentiation,

A B

C

D

FIGURE 2 | Analysis of immune-related genes in DLBCL patients of different IPI risk groups. (A) Principal component analysis of RNA-Seq count data from three

included projects. (B) Survival analysis of overall survival between IPI Risk groups. (C) Gene set variance analysis (GSVA) of enriched gene sets between IPI Risk

groups. (D) Volcano plot of differentially expressed immune-related genes (DEGs) between the high and low IPI risk groups.
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activation, and mediated immunity (Figures 7A, B). Detailed
results are listed in Supplementary Material 6. As shown by the
PPI network, the ECM organization, oncogenesis, and tumor
immunity-associated regulatory genes (COL6A2, COL16A1,

COL26A1, COL13A1, COL22A1, C3, ELN, MMP9, CLU,
FOXP3, and ADGRL1) were closely correlated, and acted as
hub genes (Figure 7C). In addition, the TFTRUST database was
used to explore the transcription factors (TFs) regulating the 184

A B

C

FIGURE 3 | Weighted gene co-expression network analysis (WGCNA) for the identification of modules related to IPI risk group. (A) Process of clustering

dendrogram of included genes, assigning module colors, and merging modules. (B) Analysis and visualization of Module-trait relationship to identify IPI risk group

related modules. (C) Correlation between gene module membership and gene significance for IPI risk group in brown, pink, and dark-red modules.

TABLE 2 | Univariate Cox regression analysis.

Group HR (95% CI) p-value

Age

Ref: >75

≤40 0.139 (0.041–0.469) 0.001

41–60 0.372 (0.204–0.678) 0.001

61–75 0.646 (0.369–1.130) 0.125

Ann Arbor clinical stage

Ref: I–II

III–IV 1.760 (1.114–2.780) 0.015

ECOG performance status

Ref: ≥2

0–1 0.395 (0.248–0.630) <0.001

Gender

Ref: Female

Male 1.149 (0.726–1.819) 0.554

LDH ratio

Ref: >3

≤1 0.155 (0.072–0.333) <0.001

1–3 0.380 (0.185–0.781) 0.008

Number of extranodal sites

Ref: ≥2

0–1 0.420 (0.243–0.727) 0.002

Risk levela

Ref: High_Risk

Low_Risk 0.197 (0.120–0.324) <0.001

HR, hazard ratio; 95% CI, 95% confidence interval.
aHR (95% CI) for continuous risk_score is 1.642 (1.464–1.842), p-value < 0.001.
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IPI-IPM-associated immune genes; thus, MMP9, FOXP3, and
PLAU were identified in the TF network (Figure 7D).

Based on the somatic mutational data of 37 samples from
TCGA, 18 out of 20 patients in the high-risk group and 13 out of
17 patients in the low-risk group were found to have altered gene
expression (Supplementary Figures S5A, B and Figure 8A).
Although most mutations were missense mutations, more
nonsense mutations and other mutations were identified in the
high-risk group (Figure 8A). In addition, the mutation frequency of
the top 10 genes in the high-risk group was much higher than that
in the low-risk group. Furthermore, we investigated specific
mutation sites of key genes corresponding to their amino acid
location, including KMT2D, MUC16, CARD11, LRP1B, BTG2, and
PIM1 (Figure 8B and Supplementary Figure S5C). As shown in
the Oncodrive plot, MYD88, CD79B, KHL6, and MUC4 were

identified as cancer driver genes in the high-risk group whereas
only PEG3 and ZNF337 were identified in the low-risk group
(Figure 8C and Supplementary Material 7).

Immune Landscape of IPI-IPM Subgroups
CIBERSORT was applied to analyze the infiltrating abundance of
various immune cell types in the different IPI-IPM subgroups
(Figure 9A and Supplementary Figure S6A). Activated memory
CD4+ T cells and resting NK cells showed high infiltration in the
high-risk group, whereas memory B cells, CD8+ T cells, follicular
helper T cells, regulatory T cells (Tregs), and non-activated
macrophages were more abundant in the low-risk group
(Figure 9B). In addition, the MCPCounter and xCell
algorithms were applied to show that myeloid dendritic cells
(mDCs) and common lymphoid progenitors showed high

A B C

G H

D E F

FIGURE 4 | Construction of an IPI-based immune prognostic model. (A) A plot for displaying the cross-validation error according to the log of lambda in the Lasso

penalized Cox regression. (B) A forest plot for hazard ratios of the eight genes composing the IPI-based immune prognostic model (IPI-IPM). (C) Time-dependent

ROC curves for the IPI-IPM risk scores on overall survival. (D) Kaplan–Meier Survival analysis of overall survival for patients of high and low IPI-IPM risk groups.

(E) Time-dependent ROC curves for the IPI-IPM risk scores on progression-free survival. (F) Kaplan–Meier survival analysis of progression-free survival for patients of

high and low IPI-IPM risk groups. (G) Heatmap of the gene expression in high and low IPI-IPM risk groups. (H) The multivariate analysis of IPI-IPM risk score and

clinicopathologic parameters including age, Ann Arbor clinical stage, LDH ratio, and ECOG performance status and the number of extranodal sites. P value, * < 0.05,

** < 0.01, *** < 0.001.
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infiltration in the high-risk group, whereas hematopoietic stem
cells, cancer-associated fibroblasts (CAFs), and T cells, especially
CD8+ T cells, were more abundant in the low-risk group
(Figure 9C and Supplementary Figure S6B).

In addition, DLBCL subtypes varied between the high- and
low-risk groups. As shown in Figure 10A, more patients with

higher IPI levels were classified into the IPI-IPM high-risk group,
with similar results for age, Ann Arbor clinical stage, LDH ratio,
ECOG performance status, and the number of extranodal
sites (Supplementary Figure S6C). The high-risk group
contained a higher proportion of activated B-cell-like DLBCLs,
whereas the low-risk group was more enriched in germinal

A

B

F G

H I J K

C D

E

FIGURE 5 | Construction of an IPI-based immune nomogram and validation of the IPI-IPM by using independent cohorts. (A) Nomogram for the prediction of the

survival probability of 1-, 3-, and 5-year overall survival. (B) The DCA analysis of all parameters in the nomogram. (C) Calibration plots of nomogram-predicted

probability of 1-, 3-, 5-year, and median survival. (D) Comparison of overall survival predictive ability between the IPI risk group and IPI-IPM via time-dependent ROC

curve analysis. (E) Comparison of progression-free survival predictive ability between the IPI risk group and IPI-IPM via time-dependent ROC curve analysis.

(F–K) Time-dependent ROC curve analysis of the IPI-IPM risk scores in validation cohorts on overall survival [(F) GSE10846, (H) GSE87371, (J) GSE117556] and

Kaplan–Meier survival analysis of overall survival for patients of IPI-IPM high and low-risk groups in validation cohorts [(G) GSE10846, (I) GSE87371,

(K) GSE117556].
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center B-cell-like DLBCLs (p = 1.34e-14). Schmitz et al. (4)
identified four prominent genetic subtypes in DLBCL with
different responses to immunochemotherapy: MCD (the co-
occurrence of MYD88L265P and CD79B mutations), BN2
(BCL6 fusions and NOTCH2 mutations), N1 (NOTCH1
mutat ions) , and EZB (EZH2 mutat ions and BCL2
translocations), and uneven distributions of these four subtypes
were found between the high- and low-risk groups. For example,
the poor-prognostic MCD subtype represented 40% of the high-
risk group and 12% of the low-risk group. In addition, the
correlation analysis showed that IPI-IPM risk scores were
positively correlated with the expression of BCL-2 and
MYC and negatively correlated with BCL-6 expression
(Figure 10B). Taken together, these data indicate that IPI-IPM
provides additional orthogonal information from previous
lymphoma classifications.

To further explore the interaction between DLBCL cells and
the microenvironment, Kotlov et al. (11) defined the LME into
four major transcriptionally defined categories with distinct

biological properties and clinical behavior, including GC, MS,
IN, and DP forms. Similarly, we utilized an unsupervised
clustering method to assign the samples into four groups by
using expression data from the 22 functional gene expression
signature (FGES) sets (Figure 10C). GSVA enrichment scores
were calculated to demonstrate distinct TME characteristics
among the four biological patterns (Figure 10D). Consistent
with the CIBERSORT results, the DP LME categories
represented 35% of the high-risk group whereas the GC-like
and MS LME categories were more enriched in the low-risk
group (Figures 10E, F and Supplementary Material 8).

Potential Therapeutic Value of IPI-IPM
To further understand the effects of the risk score on drug
response, 184 IPI-IPM-associated immune genes were mapped
into the connectivity map database (17). As shown in
Figure 11A, 14 genes (ADORA1, ADRA2A, CACNA1C, DBH,
DNM1, ELN, ENPP1, EPHA1, IL12A, MMP9, PLAU, S1PR2,
SLC1A2, and SV2A) were associated with 122 inhibitors,

A

B

C

D

E

FIGURE 6 | Gene expression analysis of IPI-IPM and identification of IPI-IPM-associated immune genes. (A) Volcano plot of immune-related DEGs between the high

and low IPI-IPM risk groups. (B) Pre-ranked GSEA of enriched gene sets between the high and low IPI-IPM risk groups. (C) The t-SNE algorithm was applied to

show the gene expression diversity between DLBCL patients in the high and low IPI-IPM risk groups. (D) Pearson correlation analysis of the eight genes composing

the IPI-IPM. (E) Heatmap of immune-related genes of which expression correlate with the IPI-IPM risk score.
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involving 54 mechanisms of action. The details are documented
in Supplementary Material 9.

The clinical development of cancer immunotherapy and the
advances in genomic analysis have validated the important role
of the TME in predicting cancer response to ICB therapy (13, 18,
19). We investigated the expression of several inhibitory immune
checkpoints between the high- and low-risk groups by using the
normalized gene expression data (VST transformed). As shown
in Figure 11B, the expression of PD-L1, BTLA, and SIGLEC7 was
significantly upregulated in the high-risk group. Expressions of
other inhibitory immune checkpoints such as B7-H3 were found

downregulated in the high-risk group (Supplementary

Figure S6D).
Various biomarkers were reported to predict the response to

immunotherapy, including tumor mutation burden and
expression of immune checkpoints, such as PD-L1. We
examined the value of the IPI-IPM to predict the response of
patients to ICB therapy based on a publicly accessible dataset, the
IMvigor210 Cohort (20). Using an optimal cutoff point
calculated through the “surv_cutpoint” function (a minimal
proportion of observations per group was set to 30%) of the
survminer R package for group assignment, we observed that

A B

C D

FIGURE 7 | Molecular characteristics of IPI-IPM-associated immune genes. (A, B) Over-representative analysis: a chord map of the enriched GO biological

processes and a Sankey plot of the enriched Reactome pathway terms. (C) Protein–protein interaction network (PPI) analysis based on the STRING database.

(D) Transcription factor network analysis based on the TFTRUST database.
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patients with high IPI-IPM risk scores had shorter OS after anti-
PD-L1 treatment (log-rank p = 0.029, Figure 11C).

DISCUSSION

Recent groundbreaking insights into the pronounced genomic
heterogeneity of DLBCL have identified potential biomarkers for
patient diagnosis and prognosis, paving the way for a
standardized application of precise medicine (3, 5, 13).
Multiple subtype classifications as well as IPI and enhanced
NCCN-IPI were built to stratify prognostically relevant
subgroups of DLBCL patients with R-CHOP therapy, whose
robustness requires further investigation in the context of
targeted therapies (7, 11, 13, 21). In the current study, we used
WGCNA to profile IPI correlating immune gene sets and
constructed and validated an eight-gene IPI-IPM (CMBL,
TLCD3B, SYNDIG1, ESM1, EPHA3, HUNK, PTX3, and IL12A)
with shorter OS in the high-risk patients and longer OS in the
low-risk patients in both TCGA and three independent cohorts.

ESM1, also known as endocan, has been shown to regulate
endothelial cell function in the initiation and progression of
human cancers, including esophageal cancer, hepatocellular

carcinoma, bladder cancer, and breast cancer (22). The aEphA3
receptor plays a critical role in cell adhesion and migration
during development and homeostasis of many tissues as well
as in cancer growth, progression, and angiogenesis (23). In
addition, EphA3 is highly expressed in tumors, but not in
normal tissues, which, together with antitumor properties of
anti-EphA3mAb (chIIIA4), defined EphA3 as a potential target
for antibody-based anticancer therapies (23). PTX3 is secreted by
dendritic cells, macrophages, and fibroblasts and is actively
involved in the regulation of inflammation, tissue remodeling,
and cancer (24). PTX3 interacts with the PI3K/AKT/mTOR
signaling pathway or the fibroblast growth factor-2/receptor
system to regulate tumor cell proliferation, apoptosis, and
metastasis in lung cancer, breast cancer, melanoma, prostate
cancer, and multiple myeloma (24, 25). IL12A is a potent
immunosuppressive cytokine produced by regulatory B cells,
Treg cells, macrophages, dendritic cells, and tumor cells, which
suppresses the effector functions of CD4+ and CD8+ T cells but
strongly favors Treg proliferation (26). Furthermore, Larousserie
et al. found that high levels of IL12A were associated with poor
survival in DLBCL patients (27).

High-throughput gene expression databases and
bioinformatics analysis have enabled systematic profiling of
prognostic signatures in DLBCL. For example, Zhou et al.

A

B C

FIGURE 8 | Somatic mutational analysis of the high and low risk IPI-IPM groups. (A) Mutated genes of high and low IPI-IPM risk groups. Top 10 mutated genes

(rows) are ordered by mutation rate. The color-coding legends indicate the mutation types and survival status of patients. (B) Lollipop plots for amino acid changes

of KMT2D and MUC16. (C) Oncodrive plots of the high and low risk IPI-IPM groups.
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uncovered differentiated lncRNA expression patterns between
germinal center B-cell-like and activated B-cell-like DLBCL and
identified an immune-associated 17-lncRNA signature for
subtype classification and prognosis prediction (28). Chapuy
et al. defined five distinct DLBCL subsets by integrating
recurrent mutations, somatic copy number alterations, and
structural variants (5). Hu et al. built a predictive model
combining drug resistance signature with clinical factors,
including age at diagnosis, stage, number of extra nodal sites,
and ECOG performance score (21). In the current study, IPI-
IPM risk score remained an independent prognostic factor after
modification of clinical characteristics; thus, we developed a
nomogram model combining the risk score and other clinical
features (age, Ann Arbor clinical stage, LDH ratio, ECOG
performance, and number of extranodal sites) to predict the

OS probability of DLBCL patients in 1, 3, and 5 years, and the
median survival time. Both the calibration curve and DCA
analysis supported the notion that our nomogram provides a
complementary perspective on individualizing tumors and
develops an individual scoring system for patients, thus
making it a promising tool for clinicians in the future.

In the GSEA analysis of the high- and low-risk groups, several
immune-related gene sets, including negative regulation of
immune response, B cell and T cell proliferation, response to
IL-12 and g-IFN, and NOD-like and TOLL-like receptor
signaling, were enriched in the high-risk group whereas ECM
receptor interaction, IL-10 synthesis, and regulation of humoral
immune response were enriched in the low-risk group.
Therefore, we speculated that the local immune signature
conferred a weaker immune phenotype in the high-risk group,
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C

FIGURE 9 | Tumor immune microenvironment characteristics of IPI-IPM subgroups. (A, B) Analysis of immune cell infiltration by using the CIBERSORTx algorithm:

relative proportion of each type of cell infiltration in DLBCL patients and bar plots for visualization of significantly differentially TME-infiltrating cells between high and

low IPI-IPM risk groups. (C) Analysis of immune cell infiltration by using the MCPcounter and xCell algorithm. P value, * < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001.
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but an intense immune phenotype in the low-risk group.
Moreover, overrepresentation analysis identified several
immune-related pathways, including ECM organization and T
cell activation, which were enriched with IPI-IPM-associated
immune genes. The ECM plays important roles in supporting
cells and regulating intercellular interactions, thus contributing
to the progression of several malignancies (11, 14). Lenz et al.
built a survival model with two stromal gene signatures for

DLBCL patients who received CHOP or R-CHOP, where the
prognostically favorable stromal-1 signature reflected ECM
deposit ion and histiocytic infi l tration, whereas the
prognostically unfavorable stromal-2 signature reflected tumor
blood vessel density (12).

To further explore the immunological nature of the IPI-IPM
subgroups, we analyzed the somatic mutational profiles of 37
samples and found higher mutation counts in the high-risk

A C D

E F

B

FIGURE 10 | Molecular and TME subtypes for DLBCL of IPI-IPM subgroups. (A) Distribution of IPI groups, gene expression subtypes, and genetic subtypes

between high and low IPI-IPM risk groups. (B) Correlation analysis of the IPI-IPM risk score and Bcl-2, Bcl-6, and c-Myc. (C) Consensus clustering to detect

lymphoma microenvironment (LME) clusters. (D, E) Distribution of LME patterns between high and low IPI-IPM risk groups. (F) GSVA enrichment score of LME

functional signature between high and low IPI-IPM risk groups.
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FIGURE 11 | Potential therapeutic value based on IPI-IPM. (A) Connectivity map (CMap) results of top IPI-IPM associated immune genes. (B) The expression of

inhibitory immune checkpoints between high and low IPI-IPM risk groups. (C) Kaplan–Meier survival analysis of overall survival for patients of IPI-IPM high and low

risk groups in the IMvigor210 Cohort.
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group with more nonsense mutations, although missense
mutations were the most common type. The largest difference
in mutations between high- and low-risk groups was in the
KMT2D mutation (40% in high-risk samples vs. 17.65% in low-
risk samples) (29). KMT2D is a tumor-suppressor gene in
DLBCL, and genetic ablation of KMT2D in a BCL2-
overexpression-driven model promotes higher DLBCL
penetrance (30). Moreover, MYD88 and CD79B were identified
as cancer driver genes in the high-risk group, which is in good
agreement with the previous findings that MYD88 and CD79B

mutations have been associated with tumor response and
survival in DLBCL patients (31–33). Ngo et al. initially
identified activating MYD88 mutations in DLBCL, where
L265P was the most frequent and oncogenic form. MYD88 was
shown to interact with IRAK1 and IRAK4 and activate the NF-kB
and JAK-STAT3 pathways, promoting malignant cell
proliferation and causing worse survival of DLBCL patients
(34). CD79B mutations are frequently detected in the first
tyrosine (Y196) of the immunoreceptor tyrosine-based
activation motif. CD79B mutations were shown to cause
chronic activation of BCR signaling and constitutive NF-kB
activation, further promoting tumor cell growth within the
immunosuppressive TME.

Consistently, the composition of immune cells was different
between the two IPI-IPM subgroups, where memory B cells,
CD8+ T cells, Tregs, non-activated macrophages, and CAFs were
more abundant in the low-risk group. It is generally accepted
that cytotoxic CD8+ T cells, following successful priming,
recognize tumor-specific (neoantigens) or tumor-associated
antigens and exert antitumor function primarily via the release
of cytotoxic molecules such as perforin and granzymes (35–37).
However, Tregs suppress CD8+ T cells by direct cell contact and
secretion of inhibitory cytokines including IL-10 and TGF-b (36,
38). TAMs have been shown to mediate antibody-dependent
cellular phagocytosis of rituximab in malignant B cells, limit
CD8+ T cell activity through PD-L1 expression, and release IL-10
and TGF-b or inhibiting enzymes, thus regulating antitumor
immunity and response to therapy (39). CAFs, the resident
fibroblasts activated in a chronically inflamed TME, have been
shown to promote recruitment and polarization of regulatory
cells including Tregs, monocytes, and M2-macrophages by
secreting IL-6, CXCL12, Chi3L1, MCP-1, and SDF-1, thus
actively shaping immune infiltration in the TME (40). In
addition, CAFs have been shown to impact the cytolytic
activity of CD8+ T cells through different mechanisms, such as
the production of prostaglandin E2 and nitric oxide to dampen
CD8+ T cell proliferation, expression of PD-L2 and FasL to
promote CD8+ T cell apoptosis, and induction of abnormal ECM
deposition and remodeling to physically trap CD8+ T cells and
prevent effective tumor access (41).

In addition, DP LME represented more of the high-risk
group, whereas immune-rich GC LME was more enriched in
the low-risk group. Kotlov et al. characterized the DLBCL
microenvironment by analyzing gene expression profiles,
developing TME-derived FGES, analyzing ECM composition by
proteomics, and establishing patient-derived tumor xenograft

models (11). Four basic categories of DLBCL LME with distinct
clinical and biological connotations were identified to uncover
the bidirectional interaction between DLBCL cells and the LME.
Remarkably, immune-rich GC LME confers a better prognosis
than DP LME, suggesting the fundamental role of LME in
preventing lymphomagenesis. In turn, DLBCL cells develop
genetic and epigenetic traits that contribute to immune evasion
from LME.

Finally, we applied Spearman correlation analysis to estimate
the potential therapeutic effects of IPI-IPM and explored the
expression of several inhibitory immune checkpoints between
IPI-IPM subgroups to predict the response to immunotherapy.
The results showed that IPI-IPM-associated genes were
correlated with sensitivity to drugs targeting the Aurora kinase,
DNA methyltransferase, histone acetyltransferase, FLT3, EGFR,
and VEGFR signaling pathways, indicating that high-risk
DLBCL patients may benefit from novel inhibitors targeting
these signaling pathways. As for the expression of inhibitory
checkpoints, PD-L1, BTLA, and SIGLEC7 were significantly
upregulated in the high-risk group. Upregulation of
checkpoints (PD-1, CTLA-4, and TIM-3) and their ligands
(PD-L1 and PD-L2) in the TME can mediate tumor cells to
escape immune surveillance by modulating T-cell activity (13,
18, 42, 43). Thus, ICB exerted significant antitumor effects in
both solid tumors and hematologic malignancies. Although
nivolumab monotherapy showed low efficacy in unselected
DLBCL patients, pembrolizumab combined with R-CHOP was
safe and associated with a high complete response rate and
improved 2-year progression-free survival (19, 44). BTLA has
been reported to mark a high-checkpoint-expressing T-cell
subset (PD-1, TIM-3, LIGHT, and LAG-3) with decreased
cytolytic function and increased proliferation ability, thus
correlating with poor prognosis in DLBCL (13, 45).

Taken together, the IPI-IPM risk score was compatible with
the ability of tumor-infiltrating immune cells to determine the
expression of immune checkpoints, suggesting that the poor
prognosis of the high-risk group may be due to the stronger
immunosuppressive TME and that high-risk patients will benefit
more from immune checkpoint inhibitors than low-risk patients,
resulting in a better prognosis. Our research provides new
insights into the TME and immune-related therapies for
DLBCL. However, it is noteworthy that some limitations arose
because the conclusions were drawn from data from
retrospective studies, and prospective studies are warranted to
further confirm our results. In addition, functional and
mechanistic studies should be conducted to support their
clinical application of the genes in our risk model.

MATERIALS AND METHODS

Data Selection and Acquisition
Data acquisition of the present study is fully under the TCGA
publication guidelines (https://www.cancer.gov/tcga). Gene
expression data (RNA-seq) of 570 samples, masked somatic
mutation data of 37 samples, and clinical follow-up data with
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clinicopathological characteristics of 566 patients of DLBCL
projects (TCGA-DLBC, CTSP-DLBCL1, NCICCR-DLBCL)
were obtained from the Cancer Genome Atlas (TCGA) by
using the TCGAbiolinks (46) R package in R software (version
4.0.2, https://www.r-project.org). Clinical information, gene
expression subtype, and genetic subtype of the DLBCL patients
were supplemented by referring to open-access supplementary
files of the GDC DLBCL publication (4). Matched gene
expression data and survival follow-up data can be obtained in
563 samples. Matched gene expression data and survival follow-
up data with available IPI data can be obtained in 445 samples
(Supplementary Table 1). Gene expression data (Microarray)
with matched clinical information of 414, 221, and 928 DLBCL
patients were obtained from GSE10846, GSE87371, and
GSE117556, respectively (12, 47–49), by accessing the Gene
Expression Omnibus (GEO) database (www.ncbi.nlm.nih.gov/
geo). The immunologic gene lists used in the present study were
downloaded from the ImmPort (www.immport.org/shared/
home) and ImmuneSigDB (50) through MSigDB Collections
(www.gsea-msigdb.org/gsea/msigdb). For the RNA-Seq data,
HTSeq-count data were downloaded. The Combat-Seq
function of the Sva (51) R package was used to remove batch
effects among different projects. The principal component
analysis was performed and visualized to examine the batch
effect (52). For each gene, the effective gene length was extracted
by using the EDASeq (53) R package and TPM (Transcripts Per
Kilobase Million) gene expression data were calculated through
the count2TPM function utilized in the IOBR (54) R package by
using the corresponding effective gene length. A Homo sapiens
GRCh38 annotation file (Ensembl 103) downloaded from
Ensembl (55) was used for gene symbol annotation. The
DESeq2 (56) R package was applied for the normalization of
RNA-seq count data, and variance stabilizing transformation
(VST) data were used for downstream analysis. DLBCL
microenvironmental (LME) signatures and LME subtype
categorizing method were referred to the publication of Kotlov
et al. on Cancer Discovery (11).

Identification of Differentially
Expressed Genes
Samples with available IPI information were categorized to high-,
intermediate-, and low-risk groups according to criteria of IPI, and
the DESeq2 (56) R package was applied to identify differentially
expressed genes (DEGs) between high- and low-risk groups. The
differential expression was defined with a fold change of threshold at
1.5 and a false discovery rate (FDR) value < 0.05.

Gene Functional Enrichment Analysis
The clusterProfiler (57) R package was used for both
overrepresentation analysis and pre-ranked gene set
enrichment analysis (GSEA). Analysis of Gene Ontology (GO)
(58), Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway (59), and Reactome pathway (60) were contained in
the present study. An adjusted p value<0.05 was considered
statistically significance. The threshold for GSEA was set at the p-
value < 0.05, FDR < 0.05, and | normalized enrichment score

(NES) | > 1.0. The non-parametric gene set variation analysis was
further performed with the GSVA (61) package of R.

Weighted Gene Co-Expression
Network Analysis
Weighted gene co-expression network analysis (WGCNA) is
commonly used for analyzing high-throughput gene expression
data with different characteristics, so as to mine gene co-
expression networks and intramodular hub genes based on
pairwise correlations in genomic applications. In the present
study, we applied the WGCNA (62, 63) R package to analyze key
gene clusters that were most relevant to IPI risk groups in
DLBCL samples.

Construction and Validation of IPI-Based
Immune-Related Prognostic Model
IPI-based immune-related genes were selected to construct the
prognostic risk model. The training cohort (563 patients with
matched normalized RNA-seq data and survival data from
TCGA) was used for the construction of IPI-IPM, and three
testing cohorts (GSE10846, GES87341, and GSE117556) were
used for validation of the prognostic risk model. The Survival R
package was used to analyze the correlation between the
expression of objective gene sets and DLBCL patients’ overall
survival (OS). Univariate Cox regression analysis was performed
to screen genes, of which the expression was associated with OS
with a p value < 0.05. Lasso (least absolute shrinkage and
selection operator) regression analysis was applied for variable
selection and regularization to enhance the prediction accuracy
and interpretability by using the glmnet (64) R package.
Multivariate Cox regression analysis was then carried out to
select the optimal genes, based on the method of the Akaike
information criterion (AIC) (65). For each sample, the risk score
equals the sum of the normalized expression of each gene
multiplying its corresponding regression coefficient. Time-
dependent ROC curves were plotted by using the survivalROC
(66) R package. Five hundred sixty-three DLBCL patients in the
training cohort were divided to low- and high-risk score groups
according to the optimal cutoff value with largest AUC in the
receiver operating characteristic (ROC) curve of the median
survival time. Then, Kaplan–Meier survival analysis and time-
dependent ROC curve analysis were performed to evaluate the
prognostic significance and accuracy of IPI-IPM (67). Besides,
Harrell’s concordance index (C-index) was calculated by using
the survcomp (68) R package. Univariate and multivariate Cox
regression analyses were performed on the risk score and all
available clinicopathologic parameters, including age, gender,
Ann Arbor clinical stage, LDH ratio, ECOG performance status,
and number of extranodal site. Then, we utilized the rms (69) R
packages which set up a prognostic nomogram for OS
probability assessment by enrolling all the independent
prognostic factors. The discriminative efficacy, consistency, and
clinical judgment utility of the nomogram score was evaluated by
time-dependent calibration plots and decision curve analysis
(DCA) (70) using the rms and rmda (71) R package.
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Comprehensive Analysis of Molecular and
Immune Characteristics in Different
IPI-IPM Subgroups
DEGs between high- and low-risk score groups were analyzed
following the fold change of a threshold at 1.5 and FDR value <
0.05. The gene expression of samples between IPI-IPM
subgroups were analyzed with the t-distributed stochastic
neighbor embedding (t-SNE) method by using the Rtsne (72)
package of R and then visualized on the 3D map with the
scatterplot3d (73) package of R. Somatic mutations of IPI-IPM
subgroups were analyzed by using the Maftools (74) R package.
The intersection of DEGs and immune-related gene set was used
to construct a protein–protein interaction (PPI) network based
on the STRING (75) database. Cytoscape (76), plugin MCODE
(77), and cytoHubba (78) were utilized to identify top 10 degree
genes in the network. The TRRUST (79) database was browsed
to explore the curated transcriptional regulatory networks. Gene
expression data (TPM) of 570 DLBCL samples were imported
into CIBERSORT (80), MCPCounter (81), and xCell (82) to
calculate the score to estimate the proportion of TME cells
including immune and stromal cells.

Clustering Analysis of Expression Pattern
of LME Signatures
An unsupervised clustering algorithm was applied to analyze the
gene expression pattern of LME signatures in 563 DLBCL
samples. By using the ConsensusClusterplus (83) R package,
we performed the k-means clustering algorithm with 1,000
repetitions to ensure the stability. The Pearson distance matrix
calculated from the clustering was then imported to Cytoscape
for the visualization of distribution of samples corresponding to
LME signature clustering.

Data Analysis
All statistical data were analyzed in the R software (version 4.0.3). A
Wilcoxon test was applied to compare continuous variables between
two groups of sample data. A Kruskal–Wallis test was applied to
compare continuous variables among three or more groups of
sample data. A test is considered with statistical significance at
two-sided p < 0.05. Pearson correlation was used to test the
correlation between two sets of continuous data, and an absolute
Pearson correlation coefficient larger than 0.3 was considered to be
correlated. A Pearson correlation is considered with statistical
significance at FDR < 0.05. Spearman correlation was used to test
the correlation between gene expression and IPI groups. We used
ggplot2, ggstatsplot, and ggpubr R packages (84, 85) for data
analysis and visualization.
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Supplementary Figure 1 | Identification of DEGs of different IPI risk groups and

gene functional enrichment analysis. (A) Volcano plot of differentially expressed

genes (DEGs) between the high and low IPI Risk groups. (B) Heatmap of

differentially expressed genes (DEGs) between the high and low IPI Risk groups.

(C) Venn plot of intersection of DEGs and immune-related gene sets. (D) Heatmap

of differentially expressed immune-related genes (DEGs) between the high and low

IPI Risk groups. (E) Over representative analysis of the differentially expressed

immune-related genes on GO biological process, KEGG and Reactome Pathway

terms. (F) Comparation of GSVA results of IPI Risk groups on immune-related

pathways.

Supplementary Figure 2 | WGCNA for the identification of modules related to IPI

risk group and gene functional enrichment analysis for module genes. (A–D) Process

of sample clustering and outlier detection, sample dendrogram, calculation of Beta

value and soft thresholding, and clustering of module eigengenes. (E) Correlation

between gene module membership and gene significance for IPI risk group in

Darkgreen, Blue and Lightyellow modules. (F, G) Heatmaps of the Topological

Overlap Matrix (TOM) and Eigengene adjacency. (H) Venn plot of intersection of IPI

related module genes identified by WGCNA and immune-related gene sets. (I) Over

representative analysis of the intersected module genes on GO biological process,

KEGG and Reactome Pathway terms.

Mu et al. IPI-Based IPM for DLBCL

Frontiers in Immunology | www.frontiersin.org October 2021 | Volume 12 | Article 73200616

https://www.cancer.gov/tcga
https://www.frontiersin.org/articles/10.3389/fimmu.2021.732006/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2021.732006/full#supplementary-material
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Supplementary Figure 3 | Construction and validation of an IPI-based immune

prognostic model. (A) Plot for the estimated coefficients with respect to the change of

the penalty parameter of the Lasso penalized Cox regression. (B) Kaplan-Meier

Survival analysis of OS and PFS for patients of high and low IPI-IPM risk groups

(median as cutoff point). (C) Plot for median survival time of training cohort. (D and E)

Risk scores and survival status of patients in high and low IPI-IPM risk groups. (F and

G) Time-dependent ROC curve analysis of the IPI-IPM risk scores and Kaplan-Meier

Survival analysis for patients of IPI-IPM high and low risk groups on PFS in validation

cohorts (F: GSE87371 andGGSE117556). (H) Spearman correlation analysis of gene

expression and IPI Risk group and difference test of gene expression between high

and low IPI Risk group for the eight genes.

Supplementary Figure 4 | Gene expression analysis of IPI-IPM and gene

functional enrichment analysis. (A) Volcano plot of DEGs between high and low IPI-

IPM risk group. (B–E) Pre-ranked GSEA of enriched gene sets between high and

low IPI-IPM risk group on GO biological process, Hallmark gene sets, KEGG and

Reactome Pathway terms.

Supplementary Figure 5 | Somatic mutational profiles of IPI-IPM subgroups.

(A and B) SNV landscape and top mutated genes of all included samples.

(B) Lollipop plots for amino acid changes of selected genes.

Supplementary Figure 6 | TME characteristics, clinicopathological features and

expression of inhibitory immune checkpoints in IPI-IPM subgroups.

(A) Composition of immune cells infiltration by using the CIBERSORT algorithm.

(B) Analysis of specific types of infiltrating immune cells by using the MCPcounter

and xCell algorithm. (C) Relation of IPI-IPM Risk group and DLBCL

clinicopathological features. (D) The expression of multiple inhibitory immune

checkpoints between high and low IPI-IPM risk groups.

Supplementary Table 1 | Data Source and Clinical Table.

Supplementary Table 2 | Immunologic signature gene sets.

Supplementary Table 3 | DEG of IPI High and Low Risk group and over-

representative analysis.

Supplementary Table 4 | WGCNA results and over-representative analysis.

Supplementary Table 5 | Construction of IPI-IPM.

Supplementary Table 6 | Analysis Results of IPI-IPM (DEG, GSEA, ORA and

PPI).

Supplementary Table 7 | Onco-driven mutation and TMB.

Supplementary Table 8 | TME pattern analysis and DLBC subtypes data.

Supplementary Table 9 | Connectivity map results of top enriched immune

related genes.
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