
UCLA
UCLA Previously Published Works

Title
Internet congestion control using the power metric: Keep the pipe just full, but no fuller

Permalink
https://escholarship.org/uc/item/4cn9q7m4

Author
Kleinrock, Leonard

Publication Date
2018

DOI
10.1016/j.adhoc.2018.05.015
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4cn9q7m4
https://escholarship.org
http://www.cdlib.org/


Ad Hoc Networks 0 0 0 (2018) 1–16 

Contents lists available at ScienceDirect 

Ad Hoc Networks 

journal homepage: www.elsevier.com/locate/adhoc 

Internet congestion control using the power metric: Keep the pipe just 

full, but no fuller 

Leonard Kleinrock 

UCLA Computer Science Department, United States 

a r t i c l e i n f o 

Article history: 

Received 8 March 2018 

Accepted 21 May 2018 

Available online xxx 

Keywords: 

TCP Congestion control 

Bandwidth-delay product 

Internet 

Optimal power operating point 

Universal power profile 

Queueing 

a b s t r a c t 

Recently there has been considerable interest in a key paper [1] describing a new approach to conges- 

tion control in Internet traffic which has resulted in significant network performance improvement. The 

approach is based on a 1978 paper [2] and a companion 1979 paper [3] which identified a system oper- 

ating point that was optimal in that it maximized delivered throughput while minimizing delay and loss. 

This operating point is simply characterized by the insight that one should “Keep the pipe just full, but 

no fuller” and we show this is equivalent to loading the system so that in many cases (including those 

relevant to TCP connections) the optimized average number in the pipe is exactly equal to the Bandwidth- 

Delay Product . It is important to understand the reasoning and intuition behind this early insight and why 

it provides such improved behavior of systems and networks. In this paper, we first develop this insight 

using purely deterministic reasoning. We then extend this reasoning by examining far more complex 

stochastic queueing systems and networks using a function called Power to mathematically and graphi- 

cally extract exact and surprising results that support the insight and allow us to identify the optimum 

operating point for a broad class of systems. These observations allow us to study the impact of Power on 

networks leading eventually to supporting the statements about steady state congestion and flow control 

as presented in [1] for today’s Internet. We point out that the discussions about the latest congestion 

control algorithms [ 1 , 4, 5, 6, 7, 8, 9, 10, 11] address the dynamics of tracking flow, dealing with mul- 

tiple intersecting flows, fairness, and more, and which focus on the dynamic behavior of data networks 

whereas our work here focuses only on the steady state behavior. 

© 2018 Published by Elsevier B.V. 

1. Introduction 

We begin with the use of deterministic reasoning to develop in- 

tuition as regards the proper level of traffic to feed into an Internet 

connection so as to achieve high performance. This quickly leads 

us to recommend a level of traffic that translates into the rule of 

thumb, “Keep the pipe just full, but no fuller”1 . We then consider 

stochastic systems and seek to gain insight into the same question. 

To accomplish this, we find we must first establish a quantitative 

metric that considers the tradeoff between a connection’s delay 

and its throughput; and the metric we choose is Power. Power is 

first introduced as a very general metric and then specialized for 

the purposes of an Internet connection as the ratio of system ef- 

ficiency to normalized response time. The goal is then to find the 

E-mail address: lk@cs.ucla.edu 
1 Behind this rule of thumb, we often imply the slightly expanded phrase, “Keep 

the pipe’s bottleneck just full on average, but no fuller.”

optimum 2 traffic level that maximizes Power. We provide the so- 

lution which exposes some great simplicity that matches the rule 

of thumb we articulated above. We define and present a Univer- 

sal Power Profile that works for any system of flow and apply it to 

some important stochastic systems. We treat networks as stochas- 

tic systems for which we adjust the traffic level that optimizes 

Power. In providing the solution of the Power optimal operating 

point, we identify the Optimal Power Trajectory. Note, however, 

that this is an equilibrium (steady state) view which does not ad- 

dress the critical dynamics of traffic flow in networks. The issue of 

network dynamics is then discussed when we introduce some very 

recent work on network congestion control. That work focuses on 

dynamic algorithms that seek to track the network parameters and 

flows so as to match the rule of thumb we describe above while 

responding to the network dynamics. 

Let us begin with a general model and apply it first to a sim- 

ple deterministic system. Specifically, consider a “Good” (indepen- 

2 From here on, we use superscript ∗ to denote the (Power) optimized value of a 

variable. 

https://doi.org/10.1016/j.adhoc.2018.05.015 
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Fig. 1. A simple deterministic system. 

dent) variable, G in the domain G ≥0 which represents a quantity 

that we wish to increase , while at the same time, we consider a 

general (dependent) “Bad” function, B ( G ), whose value we wish to 

decrease . A simple and extreme example of a deterministic system 

of this type is shown in Fig. 1 . Specifically, in Fig. 1 (a) we show 

a B ( G ) that remains constant at its minimum value B min as G in- 

creases from G = 0 until the maximum value for G, namely, G max , 

is reached at which point the system can provide no further in- 

crease in G ; if we try to gain more G we will simply move ver- 

tically up the plot gaining no more G but incurring more B ( G ) 3 . 

Note further, as shown in Fig. 1 (b), that we cannot provide any 

less “Badness” than B min and so the horizontal cross-hatched re- 

gion is inaccessible; similarly we cannot provide any more “Good- 

ness” than G max and so the vertical cross-hatched region is also 

inaccessible. To find the operating point of optimal performance in 

the accessible region(clear white region in Fig. 1 (b)), it is clearly 

at the point β since that is where we achieve maximum Goodness 

at minimum Badness. No other operating point is better for any 

sensible definition of optimality. 

Later in the paper, we introduce our performance metric, Power 

and use it to mathematically and graphically identify the point 

of optimal performance (i.e., maximal Power) for this metric in 

more complex scenarios. Power has some remarkable properties 

3 We will interpret this behavior as a deterministic system of flow in Section 3 - 

and will, in Section 4 and beyond, consider complex stochastic systems that are 

more realistic than deterministic ones, and for which more sophisticated ap- 

proaches are necessary. 

and leads us to the insights about Internet congestion and flow 

control. 

2. Systems of flow 

We consider systems of flow in which a stream of arrivals 4 en- 

ter a system requesting service 5 from a network of finite capac- 

ity (service) resources 6 . In such systems, the inter-arrival times can 

be deterministic or stochastic as can be the size of their demands 

from the resources. The system can contain a single resource, or 

multiple resources arranged in some configuration through which 

the arrivals flow. 

We begin by defining notation for single resource 7 systems of 

flow in which arrivals enter the system requesting service from a 

single server and, if that server is busy, then the arrival joins a 

queue awaiting its turn for service. These systems of flow are the 

subject of queueing theory [12] for which we define x as the aver- 

age time a customer spends in service and t as the average time 

between customer arrivals. Often we use the following rate nota- 

tion for these quantities: x = 1 /µ (where µ is the service rate) and 

t = 1 /λ (where λ is the arrival rate). Further we combine these two 

quantities and define ρ = x / t = λ/µ as the system efficiency (also 

referred to as the utilization factor); in general, stable systems re- 

quire ρ < 1. The notation A / B / K is used for systems in which the in- 

terarrival time probability density function is of type A , the service 

time probability density function is of type B and the system con- 

tains K servers in parallel. In the multiple server case, ρ = λ/Kµ
since the total service rate available to the arrival stream is K µ. In 

all cases, if ρ > 1, then the system is unstable 8 in that the queues 

grow without limit (assuming the queue has enough storage space, 

and if not, then overflowing customers are ”lost”, i.e., forced to 

leave with no service). To instantiate the A and B types, we use 

the letter D to refer to a deterministic density, the letter M to de- 

note an exponential density, and the letter G to denote a general 

density. 

One of the most important and general results in the theory of 

such systems of flow (which applies to stochastic as well as deter- 

ministic systems) is Little’s Result [12] which states for any such 

system, that N , the average of N , the number of customers in the 

system, is given by 

N = ρµT (ρ) (2.1) 

where T ( ρ) is the mean system response time (time in queue plus 

time in service 9 ) and µT ( ρ) is referred to as the normalized mean 

response time. Note that the minimum mean response time is or- 

dinarily at the “no-load” point ρ = 0 (when there is no time spent 

in queue) and for single-server systems is simply equal to 1/ µ, 

that is T (0) = 1 /µ; this explains why µT (ρ) = T (ρ) /T (0) ≥ 1 is 

referred to as the normalized mean response time. 

If we consider flow along a connection for general networks, we 

identify the familiar Bandwidth-Delay Product ( BDP ) as the prod- 

uct of the BBandwidth (which is the maximum bandwidth that the 

pipe can support for the flow in this connection, namely, the band- 

width of the slowest link in this pipe, or, if you will, the Bottleneck 

Bandwidth of the link) times the NLDelay (which is the time to tra- 

verse the connection when there is no traffic interfering with the 

4 The (network) systems we consider refer to arrivals as the arrival of data blocks 

(e.g., bits, bytes, packets, messages, etc.). 
5 Typically transmission. 
6 Typically network links with a finite transmission rate, e.g., bits/sec. 
7 We extend this to networks of resources later. 
8 In queueing systems, it is generally recognized that the system is unstable for 

ρ ≥1, but the D / D /1 system is considered stable for ρ = 1 if its initial state has a 

finite queue (usually assumed to be zero). 
9 We do not explicitly address latency due to speed of light, but assume such 

latency is included in the service time. 
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Fig. 2. The D/D/1 deterministic queueing system. 

flow, i.e., the No-Load Delay ) 10 . The BDP plays an important role in 

our optimizations below (e.g., see Theorem 8.1 ). 

For the systems of flow considered below, we set G = ρ and we 

set B (G ) = µT (ρ) . 

3. Deterministic systems of flow & deterministic reasoning 

Let us now discuss the issue of deterministic reasoning for de- 

terministic systems. Deterministic reasoning is a useful approach 

even with stochastic systems since the Law of Large Numbers 

[12] tells us that in certain limits, systems with stochastic variables 

behave as if those variables are deterministic. The deterministic ap- 

proach allows us to develop insights, intuitions and rules of thumb 

regarding optimal performance that apply for stochastic systems as 

well. 

3.1. The D / D /1 system 

Let us begin with considering the D / D /1 system (below in 

Section 6 we consider more interesting systems such as the classi- 

cal M / G /1 queueing system). So, the system D / D /1 is a purely de- 

terministic system wherein a steady stream of arrivals enters, one 

every 1/ λ seconds, each of which spends exactly 1/ µ seconds in 

service. As long as ρ ≤1, then the previous arrival departs service 

before (or exactly when) the next arrival occurs; thus the queue is 

always empty and the server contains a customer a fraction ρ of 

the time. The response time for each customer is exactly its service 

time and so the system D / D /1 leads to the plot of B (G ) = µT (ρ) 

vs G = ρ as shown in Fig. 2 . 

In this figure, as was the case in Fig. 1 (a), for any reasonable 

definition of optimality, there is little question as to where we 

should operate for “optimality”, and that is exactly at the obvious 

“knee” of the curve at the point β where ρ = 1 . 0 ; this achieves 

the minimum response time and the maximum efficiency. At this 

point, it is clear from Eq. (2.1) , that the number in system, N , 

takes on the optimum value N ∗ = 1 , that is, for D / D /1 we note that 

we have that the exact number in system at optimality is equal 

to 1. Our deterministic reasoning is clear, namely, for optimality, 

we seek to have the server busy all the time (maximum through- 

put) and to have customers spend zero time in queue (minimum 

response time). One can think of the intuition described here as 

controlling the rate of customer arrivals so as to “Keep the pipe just 

full, but no fuller” where the pipe here has only one space to fill 

(i.e., the single server with a single customer in service and none 

in queue). Note further that the BBandwidth of this system is the 

10 Often NLDelay will be calculated as T (0) which is the no-load delay for the path 

under consideration. 

maximum rate of the server (pipe), that is µ customers/sec; more- 

over, the NLDelay for an arrival to move through the pipe is 1/ µ
sec, and so BDP for this system is exactly 1. We see that BDP = N ∗. 

These themes will repeat throughout this paper. 

Our main focus in this paper is to identify the optimum num- 

ber of customers to have in the system and, in particular, we do 

not focus on the dynamics and time-dependent behavior of this 

number. Nevertheless, we point out that the dynamics of deter- 

ministic systems are useful to help us gain insight. In that spirit, 

we point to the material in Section 2.7 of [13] in which we discuss 

the fluid approximation for queues and describe how to model 

time-dependent behavior. For example, when a queueing system 

is temporarily overloaded (as can occur in Internet connections 

when a bottleneck’s bandwidth is temporarily overloaded) then the 

backlog queue will grow until the load is reduced below the sys- 

tem’s capacity at which point the backlogged queue will begin to 

“drain”; the maximum backlog occurs just when the overload sub- 

sides. This concept of needing to drain an overloaded pipe comes 

up in the algorithms mentioned in Section 7.4 . 

3.2. The D / D / K system 

We now extend the D / D /1 system to include K servers, i.e., 

D / D / K . An arriving customer is assigned to any free server that is 

available upon its arrival. First we consider the case of equal rate 

deterministic servers, i.e., where a customer spends exactly 1 /µ
s in service, regardless which server serves that customer. Once 

again, we have a steady stream of arrivals, one such arrival en- 

tering every 1 /λ s. Since we have K servers, the total system ser- 

vice capacity is K µ customers/s and so, in this deterministic sys- 

tem, we can support a maximum input rate of K µ arrivals per sec- 

ond, i.e., λmax = Kµ arrivals per second, each of which arrives to 

find a server just going idle to serve it. The behavior of this sys- 

tem is the same as that shown in Fig. 2 , with β being the optimal 

operating point once again. In this case, we see that each of the 

K servers is always busy and no customers are in the queue; that 

is we have kept each of the K bottleneck servers just full, and no 

fuller (i.e., no overflow customers waiting in the queue), resulting 

in N ∗ = K. Note again that the NLDelay is 1/ µ and the BBandwidth 

is K µ, hence BDP = K which once again gives us BDP = N ∗. 

Now consider the D / D / K system with unequal rates for each 

server, namely the k th server has rate µk . The total service capacity 

is now 
∑ K 

k =1 µk customers/sec. In order to keep (each) bottleneck 

pipe (i.e., each server) just full, we feed the system with K arrival 

streams, the k th of which consists of µk customers/sec uniformly 

distributed in time and served by the k th server, and then super- 

impose these K streams to provide a total input of λmax = 
∑ K 

k =1 µk 

arrivals/s. We then draw the same conclusions as for the equal 

rate case above, namely, that each of the K servers is always busy 

(i.e., the number of customers in the system is equal to the num- 

ber of resources - servers) and no customers are in the queue, 

i.e., N ∗ = K leading to each of them being just full. Let us cal- 

culate BDP for this system. The BBandwidth is λmax and the no- 

load delay for traffic that flows through the k th server is 1/ µk 

so the average no-load delay is the fraction of the traffic served 

by the k th server, ( µk /λmax ), times that delay summed over all 

k which gives NLDelay = K/λmax ; hence we have BDP = K which 

once again shows that BDP = N ∗. 

3.3. K D / D /1 systems in series 

We investigate a chain of K D / D /1 systems in series as shown in 

Fig. 3 . 
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Fig. 3. K resources in series. 

3.3.1. K D / D /1 systems of equal capacity in series 

We first consider the case where each of the servers has equal 

capacity , i.e., µk = µ for all k = 1 , 2 , . . . , K. We drive the system 

with a deterministic input stream at the rate λ and so each node 

in the series network sees a utilization factor of ρ = λ/µ. Clearly, 

the time for a customer to pass through the entire series network, 

T ( ρ) is K / µ seconds since there is no queueing in this deterministic 

system (as before) and each customer spends exactly 1/ µ seconds 

in each of K nodes. The normalization factor for the response time 

is simply the no-load response time, namely T (0) = K/µ which, as 

earlier is the same as T ( ρ) for all ρ ≤1. The profile for this case is 

exactly the same as in Fig. 2 except that the vertical axis should 

now be labeled T (ρ) /T (0) = (µ/K) T (ρ) instead of µT ( ρ), reflect- 

ing the fact that customers must now pass through K nodes. Un- 

surprisingly, we identify β as the optimal operating point again, 

this being the point where we obtain maximum throughput ( µ
customers/sec) at minimum response time. We note at β that we 

have, once again, kept each of the bottleneck pipes (servers) just 

full, and no fuller , and that the number of customers in the system 

is equal to the number of resources, namely, K , that is, N ∗ = K; fur- 

thermore, each D / D /1 system contains, on average, one customer, 

i.e., N ∗
k 

= 1 . Calculating BDP we see that the BBandwidth is µ and 

the NLDelay is K / µ hence BDP = K and so, again, BDP = N ∗. 

3.3.2. K D / D /1 systems of dissimilar capacity in series 

Now consider the non-uniform case where each server has its 

own constant service rate, namely, the k th server has a rate µk . 

This being a series network, all customers must visit each of the K 

servers, so we must limit the input rate, λ, to assure that no server 
has a utilization, ρk that exceeds unity. Let us identify the service 

rate of the slowest server (and there may be more than one with 

the same slowest rate) and label it µs ( µs ≤µk for all k ); this node 

is clearly the bottleneck node of the network. Since we require 

that ρk = λ/µk ≤ 1 for each node, then λ≤µs . We seek the op- 

timum operating point, i.e., to maximize the throughput, λ, and so 
we set λ = µs . We see that nodes with service rates greater than 

the minimum µs will not be serving at their full capacity and so 

will be busy only µs / µk of the time, thereby reducing the number 

of customers in the system to less then K as opposed to the never- 

idle case for the optimized uniform case. Importantly, the optimum 

number of customers in the system has now been reduced from K 

to 
∑ K 

k =1 µs /µk , that is, 

N ∗ = 

K 
∑ 

k =1 

µs /µk (3.1) 

Once again, the same deterministic intuition applies, namely, 

that we must “Keep the pipe just full, but no fuller” where the bot- 

tleneck is the slowest node(s) in the series chain; the other nodes 

are not bottlenecks and therefore are not the critical pipes about 

which to be concerned. (The profile for this case, once again is 

exactly the same as that shown in Fig. 2 except that the vertical 

axis should now be labeled T (ρ) /T (0) = T (ρ) / 
∑ K 

k =1 1 /µk instead 

of µT ( ρ) and the maximum achievable value for the average uti- 

lization, ρmax , instead of reaching ρmax = 1 is ρmax = 

∑ K 
k =1 µs /µk 

K .) 

Calculating BDP we see that the BBandwidth is µs and NLDelay = 

T (0) = 
∑ K 

k =1 1 /µk , hence BDP = µs 
∑ K 

k =1 1 /µk = N ∗ again. 

3.3.3. The deterministic single resource finite population model 

Another manifestation that exposes the value of deterministic 

reasoning is evident in the extension we now consider. The model, 

Fig. 4. The finite population with a single resource deterministic model. 

shown in Fig. 4 (a), is that of a finite population of L users access- 

ing a single server resource (denoted as R 1 ) in a cyclic fashion, 

as in Section 4.11 of [13] as well as in [14] . We assume 1/ µ sec- 

onds is the deterministic service time a customer spends being ser- 

viced in the single server and that the deterministic time each user 

spends in the “Thinking Resource” (which we denote by R 2 ) think- 

ing up a new request for the single server (i.e., the classic notion 

of thinking time ), is 1/ λ seconds. The system response time, T ( L ), is 

defined as the time spent by a user in the cloud waiting for and 

using the server in this L-user system after that user has finished 

thinking and has just requested service. Referring to Fig. 4 (b) we 

see in the top row the behavior for a single user ( L = 1 ) denoted 

as “1” cycling through the system. We assume the cycle time for 

a user is his/her thinking plus service time, i.e. 1 /λ + 1 /µ which 

we denote by τmin . Note that if we begin to increase L , then we 

can insert 5 more users (for a total of L = 6 users) without “bump- 

ing into” the first user when he comes back for his next service, 

as can be seen in the middle row of Fig. 4 (b). That is, whenever 

a user requests service, the server is always available to him, as if 

that server was his private resource; this is a perfect fit. If we in- 

crease L beyond 6 as in the bottom row of Fig. 4 (b), we will cause 

users to wait in the queue until the now extended cycle time τ , 
ends. In this case, the critical number of users, which we denote 

as the saturation number , L s is 6. It is easy to see that L s is sim- 

ply the minimum cycle time, τmin divided by the service time 1/ µ, 

that is L s = 1 + µ/λ. In general, we see that this deterministic sys- 

tem model performs as if the first L s users appear as if they were 

collectively just one user and for each user beyond L s , the sys- 

tem response time increases by exactly one service time (i.e., by 

1/ µ seconds) and that user completely interferes with all the other 

users. As in our earlier observations, our ”Keep the pipe just full, but 

no fuller” intuition suggests that we drive the system with exactly 

L s customers (giving an always busy server and an always empty 

queue), thus achieving maximum throughput and no time wasted 

queueing (i.e., minimum T ( L )). 
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Fig. 5. Performance of the finite resource deterministic model. 

This deterministic performance curve is shown in Fig. 5 (a). 

Note, however, that this is not quite a B ( G ) vs G curve since L is 

not really a G function. Indeed, recall that in this Section 2 , we 

have chosen G = ρ, i.e., system utilization. The measure, ρ , for this 

finite population model, is simply the fraction of the service capac- 

ity of the service resource, R 1 that is utilized by our population. We 

have already established that L s is the maximum number of users 

that the system can support with no interference, and so we see 

that the relative efficiency ( ρ) of the server resource R 1 is the frac- 

tion of time the resource is being used in a cycle, which is simply 

ρ = L/L s . If we plot ρ vs L , we obtain the curve in Fig. 5 (b). Note 

that at the point where L = L s we have that there is exactly one 

user in service (i.e., in the ”system” - the cloud) at all times, and 

none in queue (all the rest are thinking) showing again that we are 

keeping the pipe just full, but no fuller. Clearly, N ∗ = 1 . Further- 

more, the BBandwidth is simply µ and the NLDelay in the cloud is 

1/ µ, hence, BDP = 1 . Once again we have BDP = N ∗ = 1 . 

Looking at Figs. 5 (a) and (b), we can create a single plot elim- 

inating L and mapping µT ( ρ) directly vs ρ . This produces Fig. 6 

below and we note that this is the same Fig. 2 that we saw in 

Sections 3.1 and 3.3 where β is again the optimal operating point 

(i.e., at the point of minimal µT ( ρ) and maximum ρ or, more gen- 

erally, at the point of minimum B ( G ) and maximum G ). This pro- 

cess of eliminating an intermediate variable (in this case, L ) will be 

used again when we discuss congestion control in the Internet in 

Section 7.4 below. 

Fig. 6. The finite resource deterministic queueing system. 

4. Stochastic systems of flow 

In Section 3 , we have been considering deterministic systems 

of flow. These considerations have led us to the dominant insight 

that we should “Keep the pipe just full, but no fuller”. This resulted 

in operating the systems at their minimum B ( G ) and simultane- 

ously at their maximum ( G ), which is the best we could hope 

for. However, few systems are truly deterministic and so we now 

ask what insights apply to stochastic systems of flow. Indeed, we 

find the remarkable and satisfying result that the deterministic in- 

sight holds very well (exact in some cases and approximate in 

others). Stochastic behavior leads us to consider queueing systems 

[12] in which the arrival process and/or the service process is ran- 

dom. The key observation here is that we cannot drive the system 

to utilizations that are as high as for the deterministic systems. 

This is because the uncertainties in the arrival times and the ser- 

vice times (and even in the path followed through the more com- 

plex networks we consider below) create unpredictable bunching 

of arrivals and variations in service times; this causes interference 

among the objects moving through the system and increases wait- 

ing times even when the system is not fully loaded. As a result, 

we find that the loads must be backed-off from the maximum so 

as to reduce the additional waiting times (reducing B ( G )) due to 

stochastic behavior while at the same time lowering the efficiency 

( G ). This suggests that we need a more sophisticated balancing of 

B ( G ) and G . 

Our journey here begins, as in Section 1 , with the considera- 

tion of a plot of B ( G ) vs G . The key observation is that the typi- 

cal performance function for stochastic systems is not as simple as 

that shown in Fig. 1 (a) but rather typically looks like that shown 

in Fig. 7 . Here we plot the generic performance curve B ( G ) vs G 

(instead of µT ( ρ) vs ρ) in order to prove a theorem ( Theorem 5.1 ) 

with great applicability. 

As earlier, we seek an “optimum” operating point for the pro- 

file in Fig. 7 . Looking at this Figure, one wonders if it is better to 

operate at the point α where we get lots of ”good” G while paying 

the price of lots of ”bad” B ( G ), or conversely, at the point γ where 

the reverse is true, i.e., getting little ”good” G and incurring only a 

little “bad” B ( G ). Somehow, we would like to identify the intuitive 

“knee” of the curve to help us with this trade-off when the knee is 

not clearly evident. This tradeoff was not in question for Fig. 1 (a) 

since the “knee” of the curve was readily apparent at the point β
in that figure. So how can we handle this tradeoff for more general 

cases? 
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Fig. 7. Stochastic systems. 

5. Power functions 

To resolve this tradeoff, we introduce a performance metric, 

called Power , which we will use to mathematically (and therefore 

precisely) identify the knee of the curve. Specifically, we define 

Power, P ( G ), as the ratio of G divided by the function B ( G ), namely, 

goodness divided by badness 11 . Our objective is to find that value 

of G which achieves maximum Power, i.e., to optimize the tradeoff

between maximizing G while minimizing the risks that come due 

to the system behavior B ( G ) 12 . 

Our Power definition below has the attractive property that it 

leads to intuitive rules of thumb that are totally consistent with 

the deterministic reasoning we explored in Section 3 . Specifically, 

Power leads to the same intuition that the optimal load on the 

system is to drive it to ”Keep the pipe just full, but no fuller” by 

choosing it to be the BDP , i.e., such that the average number in the 

system should be less than or equal to the number of resources in 

the pipe. 

5.1. The basic form for Power 

We define Power, P(G), as 

P (G ) = 
G 

B (G ) 
(5.1) 

First, let us assume that B ( G ) is differentiable and convex with 

respect to G and that B ( G ) > 0 for G ≥0. To obtain maximum Power, 

we differentiate to find 

dP (G ) 

dG 
= 

G 
dB (G ) 
dG − B (G ) 

B 2 (G ) 

Setting this to zero we find the condition for maximum Power to 

be: 

dB (G ) 

dG 
= 

B (G ) 

G 
(5.2) 

Let us interpret this condition. We first note that a straight line out 

of the origin of the [ G, B ( G )] plane that passes through any point, 

say [ G 1 , B ( G 1 )], has a slope equal to B ( G 1 )/ G 1 as shown in Fig. 8 (a). 

The value of the slope to any point [ G 1 , B ( G 1 )] is thus seen to be 

1/ P ( G 1 ), and so to find the value of G which maximizes P ( G ), we 

need simply to find that point on the function B ( G ) for which a 

line out of the origin to B ( G ) has a slope which is minimized . This 

optimum point occurs at G = G ∗ where the line out of the origin to 

11 We explore a more generalized definition of Power in the Appendix. 
12 Note that optimizing Power has application to any field of study well beyond 

those addressed herein. 

Fig. 8. Minimum slope is maximum Power. 

the point [ G ∗, B ( G ∗)] is tangent to B ( G ) as shown in Fig. 8 (b). We 

also observe that this satisfies the optimality condition given in Eq. 

(3), i.e., that the slope of B ( G ) at G ∗ is equal to the slope of a line 

out of the origin to the point [ G ∗, B ( G ∗)]. 

If, however, we drop the requirement that B ( G ) be convex, it is 

possible for this last condition (i.e., Eq. 5.2 ) to hold at some point 

G 1 and not maximize Power; an example is shown in Fig. 9 (a) 

where there are two points G 1 and G ∗ that satisfy Eq. 5.2 ; in this 

case the point β at G ∗ with minimum slope identifies the opti- 

mum. 

Let us now drop the requirement that B ( G ) be differentiable and 

convex. In fact, B ( G ) need not have any properties beyond B ( G ) > 0; 

that is, it need not be differentiable nor continuous nor convex, 

etc. In this case, our key observation above still holds, namely, that 

the slope of a line out of the origin to any point G 1 is seen to 

be 1/ P ( G 1 ), and so to find the value of G which maximizes P ( G ), 

we need simply to find that point on the function B ( G ) for which 

the slope of this line, 1/ P ( G ), is minimized. An example of such 

a situation is shown in Fig. 9 (b), where G ∗ is the optimal power 

point. 

Now let us consider the limiting case of B ( G ) as G → ∞ . If, in 

this limit, B ( G ) < ∞ , then the optimum G ∗ occurs for G → ∞ since 

a line out of the origin touching this finite limiting value of B(G) 

will have slope → 0 and the limiting value of P ( G ) will approach 

infinity. 
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Fig. 9. Finding the optimum operating Point G ∗ . 

Further, and trivially, we see that the optimum operating point 

we found for the deterministic systems in Section 3 also corre- 

sponds to optimal power (the slope of a line out of the origin is 

minimized at the point ρ∗ = 1 ). 

We can now state the following: 

Theorem 5.1 (Basic Power Theorem) . For a convex and differentiable 

B ( G ) > 0 defined for G ≥0, the Power, P ( G ), is maximized at that value 

of G, namely, G ∗, for which a straight line out of the origin is tan- 

gent to B ( G ) . The analytic condition for finding this point is simply 

Eq. (5.2) above, namely, 

dB (G ) 

dG 

∣

∣

∣

G = G ∗
= 

B (G ) 

G 

∣

∣

∣

G = G ∗

More generally, for any B ( G ) for which B ( G ) > 0 in the range G ≥0, 

then P ( G ) is maximized at that value of G, namely, G ∗, for which the 

slope of a straight line out of the origin to B ( G ∗) is minimized. 

Now what does the metric Power have to say about our intu- 

itive result, ”Keep the pipe just full, but no fuller”. We address this by 

studying some specific queueing systems as examples of stochastic 

systems of flow in the next sections. 

6. Using the power metric for queueing systems 

In this section we determine the optimal operating point for a 

number of queueing system configurations. The optimization met- 

ric we use is Power. We show for all M / G /1 systems that BDP = 

N ∗ = 1 at optimization. For some other systems, we show that the 

optimized average number in system, N ∗, is typically less than or 

equal to the number of resources in the pipe. 

Once again we set G = ρ and B (G ) = µT (ρ) . In this case we 

see that Power is expressed as the ratio of efficiency to normalized 

response time, i.e., 

P (ρ) = ρ/µT (ρ) (6.1) 

We will use this definition throughout the rest of this paper (and 

will introduce its generalization in the Appendix). 13 

Since P (ρ) = ρ/µT (ρ) and N = ρµT (ρ) , we see that 

P (ρ) = ρ2 / N (6.2) 

which offers another expression for Power. 

Furthermore, since ρ ≤1 and µT ( ρ) ≥1 we conclude from 

Eq. (6.1) that 

P (ρ) ≤ 1 (6.3) 

for all stable queueing systems. 

6.1. The universal power profile 

As we have said, the plot of µT ( ρ) vs ρ is the common per- 

formance plot for queueing systems. Now that we have intro- 

duced P ( ρ) as our important optimization metric, we find from 

Eqs. (6.1) and (2.1) that, independent of the queueing system in- 

volved , we can easily plot curves of constant power, P ( ρ), as well as 

curves of constant average number in system, N , on the µT ( ρ) vs 

ρ axes as shown in Fig. 10 (a). On this plot we note that a curve of 

constant power, say P 0 , is simply a (dashed) straight line out of the 

origin of slope 1/ P 0 since from Eq. (6.1) we have µT (ρ) = ρ/P 0 ; 

these are shown in Fig. 10 (a) for the sample values P 0 = 1.0, 0.9, 

0.8, ... , 0.1. In addition, since for any particular average number in 

system, say N 0 , we note from Eq. (2.1) that µT (ρ) = N 0 /ρ allow- 

ing us to plot the family of hyperbola as (solid) curves in Fig. 10 (a); 

we show these for a sample set of values, namely, N 0 = 1/10, 1/4, 

1/2, 3/4, 1, 4/3, 2 and 4. 

We now introduce the inverse of the normalized response time, 

namely, the function T (0)/ T ( ρ) (which we often write as 1/ µT ( ρ) 

when there is no ambiguity). When plotted against ρ , we conve- 

niently find that the range of this function is fully contained in the 

[1 × 1] unit square as shown in Fig. 10 (b) where we have plotted 

curves of constant Power and curves of constant N for essentially 

the same set of values as in Fig. 10 (a). We refer to this canonical 

plot of 1/ µT ( ρ) versus ρ as The Universal Power Profile . As above, 

these curves are independent of the queueing system involved. In 

this case we note the dual situation to that of Fig. 10 (a) in that 

the curves of constant power are now hyperbola (since for any P 0 , 

1 /µT (ρ) = P 0 /ρ shown as dashed lines) and curves of constant N 

are now straight lines out of the origin (since for any particular av- 

erage number in system, say N 0 , 1 /µT (ρ) = ρ/ N 0 shown as solid 

lines). 

For consistency, in both parts of Fig. 10 we have shown the 

constant Power curves as dashed lines and the constant N curves 

as solid lines. Let us observe in Fig. 10 (a), that at ρ = 1 , the con- 

stant Power curves intersect the vertical axis at 1/ P 0 and the con- 

stant N curves intersect this vertical axis at N 0 . This situation is 

reversed for the Universal Power Profile in Fig. 10 (b) in that at 

ρ = 1 the constant Power curves intersect the vertical axis at P 0 

13 The ratio throughput to response time was first introduced as a measure of 

power by Giessler, et al. [15] ; however note our Power definition in Eq. (5.1) is 

far more general and that the more specific version of Power we introduced in 

Eq. (6.1) is a ratio of normalized quantities which provides a metric that lends it- 

self better to optimization [16] . 
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Fig. 10. Performance curves for any single server queueing system. 

and the constant N curves intersect the vertical axis at 1 / N 0 . How- 

ever, in this normalized inverse case of the Universal Power Profile, 

we have in addition that the constant Power curves intersect the 

line 1 /µT (ρ) = 1 at ρ = P 0 and the constant N curves intersect the 

line 1 /µT (ρ) = 1 at ρ = N 0 . Another advantage of the Universal 

Power Profile is that we can see the full range of P and N curves 

in the compact region of the [1x1] plot whereas in the ordinary 

plot of µT ( ρ) vs ρ , the upper limit of the vertical axis shown will 

limit the visibility of large values of N (note that for these queue- 

ing systems, we need only consider P ( ρ) ≤1 as seen in Eq. (6.3) ). 

Given our discussion earlier for deterministic systems, we note 

that β , the optimal deterministic operating point for our systems, 

is easily located on both plots of Fig. 10 . Specifically, β is identi- 

fied with the point N ∗ = 1 and ρ∗ = 1 (where also P (ρ) = 1 and 

µT (ρ) = 1 ) as shown in both parts of the Figure. In addition, for 

all single resource systems, we have that BDP = 1 . 

Once we apply both plots in Fig. 10 to a given class of queueing 

systems (as for example in Section 6.3 for M / G /1), we can plot the 

actual 1/ µT ( ρ) vs ρ curves to investigate the behavior of that class. 

6.2. The M / M /1 queueing system 

We begin by applying the Power metric to the classic queueing 

system M / M /1 [12] . 

For M / M /1, we know that µT (ρ) = 1 / (1 − ρ) . Thus, 

d µT (ρ) /d ρ = 1 / (1 − ρ) 2 . Applying Eq. (5.2) , we see that op- 

timal Power occurs for that ρ which satisfies ρ = 1 − ρ, i.e., 

ρ = 0 . 5 . That is, the maximum Power occurs at the point G ∗, 

where G ∗ = ρ∗ = 0 . 5 . In addition, at maximum Power, µT (0.5) = 

2 = 2 µT (0). Thus, for M / M /1, the optimum Power point occurs at 

half the maximum efficiency and twice the minimum normalized 

response time. Moreover, the maximum Power is 1/4. Further- 

more, we know for M / M /1 that N , the average number in system, 

is given by N = ρ/ (1 − ρ) . Hence, at optimality, we see that N ∗ = 1 . 

Thus, we have the key result for M / M /1 

N ∗ = 1 (6.4) 

and ρ∗ = 0 . 5 . Furthermore, the BBandwidth is simply µ and the 

NLDelay is the average service time 1/ µ; hence, BDP = 1 . Once 

again we have BDP = N ∗ = 1 . This result in Eq. (6.4) is especially 

pleasing since, as we saw from Section 3 , our deterministic reason- 

ing of “Keep the pipe just full, but no fuller” suggests that we keep 

exactly one person in the system in order to maximize efficiency 

(the single server is always busy) while minimizing response time 

(no one is on queue wasting time). However, we cannot control 

the M / M /1 system deterministically (it is a stochastic system), and 

so this optimum Power result says that for M / M /1, control the in- 

put rate so as to keep one person in the system on average ; oc- 

casionally, there will be more than one in system which adds ad- 

ditional (wasted) response time and occasionally there will be no 

one in the system which reduces efficiency, but by setting the aver- 

age number in system = 1, we are doing the best possible . From now 

on, we will imply, but usually omit, the additional phrase on aver- 

age to our intuitive rule “Keep the pipe just full on average, and no 

fuller”. These results for M / M /1 were first shown by the author [2] . 

Another way to think about these results is as follows. We rec- 

ognize that in a pure deterministic system, we keep exactly one 

person in the system in order to maximize Power (i.e. ρ = 1 giv- 

ing 100% utilization of the server and no one ever in the queue 

wasting time). However, in a stochastic system, we must account 

for fluctuations which cause queues to form, and to ameliorate the 

waste due to these queues, we allocate some residual system ca- 

pacity to absorb the random fluctuations (this is the “Balance of 

Power Principle” for Pareto optimal power as articulated by Yemini 

[17] ). In the case of M / M /1 we just found it optimal (with regard to 

Power) to load the server at only 50% efficiency, leaving the other 

50% to absorb the stochastic fluctuations. We will see this numer- 

ous times below where we find it optimal to back off from the 

100% utilization that optimizes pure deterministic systems and ac- 

cept lower utilization of bottleneck resources to ameliorate the ef- 

fects of stochastic traffic, while at the same time accepting some 

additional response time. 

6.3. The M / G /1 queueing system 

We now extend our analysis to the more general M / G /1 queue- 

ing system [12] . As in Sections 2 and 6 we set G = ρ and B (G ) = 

µT (ρ) . We will now apply the results of Section 5.1 to M / G /1. We 

know from Eq. (5.71) of [12] that µT (ρ) = 1 + 
ρ(1+ C 2 

b ) 

2(1 −ρ) 
where C b 

is the coefficient of variation for the service time (i.e., the ser- 

vice time standard deviation divided by its mean). Preparing to ap- 

ply Theorem 5.1 , we observe that d µT (ρ) /d ρ = 
1+ C 2 

b 
2(1 −ρ) 2 

and that 

µT (ρ) /ρ = 1 /ρ + 
1+ C 2 

b 
2(1 −ρ) 

. Equating these last two as the condi- 

tion for optimality, we see that maximum Power occurs at that 

ρ , namely ρ∗, which satisfies 1 = 
ρ∗2 (1+ C 2 

b ) 

2(1 −ρ∗) 2 
. Now recall that N = 

ρµT (ρ) and using ρ∗ in this expression for N produces N ∗ = 1 

as the condition for optimal Power for all M/G/1 queueing systems ! 

This interesting result for M / G /1 was first shown by the author in 

[3] . Once again, we see that our deterministic reasoning of ”Keep 

the pipe just full, and no fuller”, leads us to obtaining optimal Power 
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Fig. 11. The queueing system M / G /1. 

by running the system at a level such that the optimal average 

number in system, N ∗, is exactly equal to 1, i.e., 

N ∗ = 1 f or M/G/ 1 (6.5) 

Just as for D / D /1 and M / M /1, the BBandwidth is clearly µ and the 

NLDelay is T (0) = 1 /mu, hence BDP = 1 = N ∗. 

Moreover, as shown in [3] , the optimal load, ρ∗, is 

ρ∗ = 
1 

1 + 

√ 

(1 + C 2 
b 
) / 2 

f or M/G/ 1 (6.6) 

As noted earlier, with stochastic systems, at optimality, we must 

allocate some residual capacity, 1 − ρ∗, to absorb the stochastic 

fluctuations, and for M / G /1 we see that this allocation of 1 − ρ∗

ranges from 
√ 
2 − 1 = 0 . 414 (when C 2 

b 
= 0 , i.e., M / D /1) to 0.5 (when 

C 2 
b 

= 1 , i.e., M / M /1), to 1 (when C 2 
b 

= ∞ ). This basic results in this 

paragraph are generalized in Appendix B. 

Let us now examine the performance of the M / G /1 system 

by filling in its behavior on the plot we showed in Fig. 10 (a) 

(we choose not to clutter this figure with the full set of curves 

from Fig. 10 (a) - specifically, we only need N ∗ = 1 ); this gives us 

Fig. 11 (a) in which we show µT ( ρ) vs ρ for a number of M / G /1 

cases (i.e., C 2 
b 

= 0 which is M / D /1, C 2 
b 

= 1 which is M / M /1, and oth- 

ers up to C 2 
b 

= 32 ). We show the tangent out of the origin which 

locates the optimum operating point 14 for each of these curves 

14 We denote these optimal operating points as βC 2 
b 
. 

and the locus of these optimal points is exactly at N ∗ = 1 as just 

proven. Note, as with M / M /1, that the optimum has moved from 

the deterministic optimum at point β to the set of points { β
C 2 
b 
} in 

the interior of the diagram at various values of ρ and µT ( ρ), but 

still maintaining the value of N ∗ = 1 . This is interesting and elabo- 

rated upon in the next paragraph. 

We now examine the performance of M / G /1 on the Universal 

Power Profile of Fig. 10 (b) giving us Fig. 11 (b) in which we show 

1/ µT ( ρ) as curved solid lines and P ( ρ) as thin concave solid curves. 

Once again, in order to reduce any possible clutter, we show only 

N ∗ = 1 and a smaller number of power curves than we did in 

Fig. 10 (b). Note that maximum Power occurs for a set of points 

that lie on the line f (ρ) = ρ shown as a linear heavy solid line at 

unit slope. This follows since, as we noted above, N = ρµT (ρ) and 

if we set N = 1 in this last equation, we see that the intersection 

of 1 /µT (ρ) = ρ occurs at N = 1 . That is, once again we see that 

the optimum occurs at N ∗ = 1 . Observe that β is the optimal oper- 

ating point for the deterministic case of D / D /1, but that for M / G /1 

we find { β
C 2 
b 
}, the set of optimal operating points, moving down 

the line f (y ) = ρ as C 2 
b 

grows. Note well that all of the optimal 

operating points lie on the line N ∗ = 1 and so we may refer to 

this line, N ∗ = 1 , as the “Optimal Power Trajectory”. As we have 

remarked, the best one can hope for is to operate at the determin- 

istic point µT (ρ) = 1 and ρ = 1 , but as the stochastic component 

increases (in the case of M / G /1 as C 2 
b 
grows), we must leave more 

and more capacity (i.e., lower utilization ρ while incurring more 

delay µT ( ρ)) to allow the system to absorb the fluctuations. The 

point to be made is that, wherever we are on the Optimal Power 

Trajectory, we always maintain N ∗ = 1 ( “Keep the pipe just full, and 

no fuller”). And, this intuition comes right out of our deterministic 

reasoning supported by the BDP . 

Let’s examine this M / G /1 Universal Power Profile plot a bit fur- 

ther. We define y (ρ) = 1 /µT (ρ) . First we show that y ( ρ) is sym- 

metrical around the line f (ρ) = ρ . This requires that ρ = y (y (ρ)) 

and this is easily established from the expression for y (ρ) = 
2(1 −ρ) 

2(1 −ρ)+ ρ(1+ C 2 
b ) 
. Further, we recall from Section 6.1 that Power on 

this plot is a set of hyperbolas (shown as dashed lines), each for a 

constant value of Power (i.e., 1 /µT (ρ) = P 0 /ρ). By definition, these 

hyperbolas are clearly symmetrical about the line f (ρ) = ρ . For a 

given y ( ρ), one seeks that constant Power curve (dashed hyper- 

bola) of maximum value with which y ( ρ) intersects. Since both 

functions are symmetric about the line f (ρ) = ρ this will be a 

point of tangency (at a slope of −1 ) and will provide maximum 

Power, which, as was stated above, will lie on the line f (ρ) = ρ
which we have shown is the line N ∗ = 1 . 

6.4. The G / M /1 queueing system 

The queueing system G / M /1 does not enjoy the canonic proper- 

ties of the M / G /1 system. That is, we no longer find that the opti- 

mal Power point occurs when N = 1 as we did for all M / G /1 sys- 

tems. However, we do find intuitive results similar to our earlier 

intuition which warns us about pumping too much traffic into the 

pipe’s bottleneck, i.e., we find for a large class of G / M /1 systems 

that N ∗ ≤ 1 . 

We begin by looking at a class of G / M /1 systems in which C a 
2 , 

the coefficient of variation of the interarrival time, satisfies C a 
2 ≤1. 

This is the class of systems where the interarrival time distribution 

is a k -stage Erlangian distribution [12] . In particular, it is shown 

in [16] for all k -stage Erlangian distributions, that 0 . 796 ≤ N ∗ ≤ 1 . 0 

with N ∗ = 1 for k = 1 (which is equivalent to M / M /1) and decreas- 

ing monotonically to N ∗ = 0 . 796 as k → ∞ (which is equivalent 

to D / M /1). Thus we see that N ∗ hovers near N ∗ = 1 ; apparently the 

Power metric is more sensitive to the stochastic behavior of the ar- 

rivals than it is to the stochastic behavior of the service times, but 
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Fig. 12. Optimality for the queueing system E 2 / M /1. 

similarly drops the load (reducing the system efficiency) to avoid 

potential queue buildups. By way of illustration, we show an exam- 

ple of a G / M /1 system that behaves approximately as does M / G /1. 

Specifically, our example is the E 2 / M /1 system described in Prob- 

lem 6.2 of [12] . We find N ∗ = 0 . 890 as the condition for optimal 

Power. Of special note is how close to our earlier M / G /1 optimal 

value of N ∗ = 1 is this case. In Fig. 12 , we show the usual Power 

Profile for this E 2 / M /1 system. Note that the optimum, denoted by 

the label β , is close, but not (as earlier) at, the intersection of ρ
and 1/ µT ( ρ). 

Let us now look at G / M /1 systems in which C a 
2 ≥1. Such a class 

includes the Hyperexponential interarrival time distribution [12] . 

In [16] , it is shown for a class of Hyperexponential distributions, 

that as C a 
2 → ∞ , then N ∗ → 0. Again we suspect this is the effect 

of the Power metric responding to the potential queue buildups as 

C a grows. It is worthwhile to note that N ∗ ≤ 1 for these G / M /1 sys- 

tems which supports the “... but no fuller” portion of our intuitive 

conclusions. 

6.5. The M / M / K queueing system 

As a further extension, let us extend this concept of “Keep the 

pipe just full, and no fuller” by looking at the multiple server system 

M / M / K [12] . As usual, we set G = ρ and B (G ) = µT (ρ) . 

The limiting behavior of µT ( ρ) vs ρ for M / M / K as K → ∞ is the 

same as the behavior of D/D/1 as was shown in [3] . This behav- 

ior is shown in Fig. 13 (a). Moreover, we see from Fig. 13 (b) that as 

K increases, the optimum Power occurs at an increasing value of 

ρ which suggests that the optimum N ∗ is also increasing with K . 

Specifically, we see from [3] as shown in Fig. 14 below, that at op- 

timum Power, there are, on average, approximately K customers in 

the system (one for each server), i.e., N ∗ ≈K , but also N ∗ ≤K once 

again supporting “Keep the pipe just full, but no fuller” where the 

pipe consists of K servers, each of which is busy serving approx- 

imately one customer on average (and no “extra” customers are 

wasting their time waiting in the queue). 

6.6. Summary for the power metric for queueing systems 

The overwhelming intuition we extract from this Section 6 is 

that optimizing Power leads to the same deterministic intuition as 

earlier, namely that the optimal load on the system drives it to 

“Keep the pipe just full, but no fuller” by choosing N ∗ to be the BDP 

(which results in N ∗ typically being less than or equal to the num- 

ber of resources in the pipe). In addition, we introduced the Uni- 

versal Power Profile and the Optimal Power Trajectory as tools of 

Fig. 13. The queueing system M / M / K . 

Fig. 14. The optimum number in system is approximately K for M / M / K . 

great generality in the study and evaluation of stochastic systems 

of flow. 

7. Applications to optimization of networks 

Let us now extend our use of Power to find optimum operating 

points for networks with stochastic traffic. By networks, we mean 

networks of queues, i.e., systems of more than one service station, 
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be it in a parallel network 15 , a finite population network, a series 

network, or a more general network of arbitrary topology. The se- 

ries networks discussed in Section 7.2 below are of special interest 

to our later discussion in Section 7.4 on Internet congestion con- 

trol since an Internet TCP connection can be modeled as a path of 

links in series between the source and destination nodes of that 

Internet connection. 

As usual in these systems of flow, we set G = ρ and B (G ) = 

T (ρ) /T (0) , the normalized average response time for data to tra- 

verse the network. In these networks, the normalization constant 

we use is T (0) which is the average time to traverse the network 

when no other traffic is in the network (i.e., the “no-load” response 

time); for each of the networks considered below, we will give ex- 

plicit expressions for T (0). 

In the case of networks below, we find we occasionally need to 

distinguish between maximizing global network power and maxi- 

mizing the power of the individual flows. In addition we will dis- 

cuss the issue of whether we can control all the flows in the net- 

work or if the flows act on their own. These issues add consider- 

able complexity to the discussion. 

7.1. The stochastic finite population model 

This discussion of finite population networks is of limited im- 

portance for us, but we include it to expose the way in which these 

networks reinforce our continuing theme of the value of determin- 

istic reasoning and its affirmation of the rule of thumb “Keep the 

Pipe Just Full, But No Fuller”. 

We now return to the single resource finite population model of 

Section 3.3.3 shown earlier in Fig. 4 (a), but this time we consider 

a stochastic system in which the service times are exponentially 

distributed with the same mean as earlier, namely 1/ µ seconds, 

and the thinking time is exponentially distributed with the same 

mean as earlier, namely, 1/ λ seconds. The mean response time, 

T ( L ), is defined as the mean time spent by a user in the cloud wait- 

ing for and using the cloud server, R 1 , in this L-user system after 

that user has finished thinking and has requested service from the 

cloud shown. The deterministic system model of Section 3.3.3 gives 

us a lower bound for µT ( L ) in this stochastic system, and that is 

shown in Fig. 15 (a) as the dashed line whereas the true mean re- 

sponse time for the stochastic system is shown as the solid line in 

Fig. 15 (a) (this curve was calculated using Eq. (4.65) from [13] for 

which the parameters were chosen as λ = 0 . 2 , µ = 1 . 0 and thus 

L s = 6 ). We also plot the efficiency, ρ vs L in Fig. 15 (b) for these 

same parameters (where the dashed line is the deterministic ideal 

upper bound case from Section 3.3.3 and the true efficiency is the 

solid line). Our “Keep the pipe just full, but no fuller” intuition sug- 

gests that we drive the system with the optimum value L ∗ in the 

range of L s customers (giving an almost busy server and an almost 

empty queue), but since the system is actually stochastic we expect 

to load it below it’s saturation point (as discussed in Section 4 ), 

that is, we expect L ∗ < L s . As we did in Section 3.3.3 , we can cross- 

plot the two graphs of Fig. 15 and create a single plot eliminating 

L and mapping µT ( ρ) directly vs ρ; this is shown in Fig. 16 . 

15 We do not pursue parallel networks in this paper, but point to some of the re- 

sults in [18] and [19] which include the following. Consider a Poisson arrival stream 

at rate λ which splits into K streams, where the k th stream has rate λk = p k λ ac- 

cording to a given set of probabilities, p k . Each stream is served by its own par- 

allel server with mean service time x k . If the service time for each is exponen- 

tially distributed and if we scale λ to maximize Power for the system, we find that 
∑ K 

k =1 µs /µk ≤ N ∗ ≤ K where, as usual, µk is the service rate of the k th server and 

µs is the slowest of the exponential servers. If the λk can be selected independently 

to maximize Power for the system, then N ∗ = K. On the other hand, if the service 

time for each is of its own General type ( G ), and if ρk = ρ ∀ k , then optimum Power 

gives N ∗ = K. 

Fig. 15. Performance of the finite resource stochastic model. 

Fig. 16. The finite resource queueing system. 

Unsurprisingly, it turns out that when we calculate the Power 

for this stochastic system we find that the optimum Power point 

does actually result in L ∗ < L s ; indeed, for the example shown in 

Fig. 15 , we find that the optimum L ∗ ≈ 4 and this corresponds to 

the tangent line out of the origin of Fig. 16 which occurs at ρ ≈0.6 

and identified by the optimal operating point β as usual. Most im- 

portantly, we find for this example our earlier intuition that the 

deterministic optimum N ∗ = 1 holds very well in this example for 

which we find the stochastic optimum N ∗ ≈ 1 . As in the determin- 

istic case in Section 3.3.3 , BDP = 1 . 



12 L. Kleinrock / Ad Hoc Networks 0 0 0 (2018) 1–16 

7.2. Series networks 

As we stated above, the series networks discussed herein are of 

special interest to our later discussion in Section 7.4 on Internet 

congestion control since a single Internet TCP connection can be 

modeled as a path of links in series between the source and desti- 

nation nodes of that Internet connection. This discussion of series 

networks is of value in modeling and optimizing the performance 

of single flows over Internet connections. A summary of our find- 

ings for series networks, as well as other related results is given in 

Theorem 8.1 of Section 8 . 

7.2.1. The series network of K identical M / M /1 queueing systems 

We first consider a series network consisting of K identical 

M / M /1 queueing systems in tandem, i.e, a stochastic version of the 

series network considered in Section 3.3.1 . This system was con- 

sidered in our previous paper [2] in which we assume each M / M /1 

system is independent of the others (see the Independence As- 

sumption of [12] ). ρ is, as usual, the efficiency of each queueing 

system (and, due to them being identical, is also the efficiency 

of the entire tandem system). The results for this network are 

that optimal Power occurs at ρ∗ = 0 . 5 for each member of the K- 

member chain and that N ∗, the average number of customers in 

the full chain, is 

N ∗ = K (7.1) 

and these K are uniformly distributed among the K members such 

that for each member, say the k th member of the chain, the Power 

optimal average number is N ∗
k 

= 1 (as in Section 3.3.1 ). Once again, 

we see that each node is an equivalent bottleneck, and so each 

node satisfies “Keep the pipe just full, and no fuller”. The BBandwidth 

is obviously µ and the NLDelay to pass through the chain is K / µ, 

hence, BDP = K. Once again we have BDP = N ∗ = K. 

7.2.2. The series network of K heterogeneous M / M /1 queueing 

systems 

Next we consider a series network consisting of K heteroge- 

neous M/M/1 queueing systems in tandem, i.e., the k th server has 

a mean service time of 1/ µk seconds; this is a stochastic version 

of the series network considered in Section 3.3.2 . As shown in 

[16] and [20] , we find that when Power is optimized, then N ∗ ≤ K

and also N ∗ = 
∑ K 

k =1 ( N ∗
k 
) 2 where N ∗

k 
is the Power optimized aver- 

age number in the k th node of the tandem. Furthermore, in [16] it 

is shown that 
∑ K 

k =1 µs /µk ≤ N ∗ where µs is the rate of the slowest 

server, i.e., µs ≤µk for all k . Thus, at optimal Power we see that N ∗

is bounded above and below by 

K 
∑ 

k =1 

µs 

µk 
≤ N ∗ ≤ K (7.2) 

The BBandwidth is simply µs and the NLDelay to pass through the 

chain is 
∑ K 

k =1 1 /µk , hence, BDP = 
∑ K 

k =1 µs /µk . In this case we 

have BDP ≤ N ∗ ≤ K. 

7.2.3. The series network of K identical “M / D /1” queueing systems 

Again we consider K servers in series, the first of which is fed 

with Poisson traffic, but now where the service time of each user is 

constant (and identical) at each server. The first node is an M/D/1 

queue, but the subsequent nodes are more complicated; we abuse 

the notation and refer to this as a series of ”M / D /1” systems. In 

[19] we show that 

N ∗ = K (7.3) 

This equation is true even though the average number in the 

first member of the chain is considerably larger than the num- 

ber in each of the subsequent members of the chain; specifically, 

all queueing occurs in the first node, and no queues form at any 

nodes beyond the first. We also note that the (Power) optimal load 

for this system is ρ∗ = 

√ 
2 K 

1+ 
√ 
2 K 

. Here, as in both series systems with 

identical servers we studied above (i.e., the K D / D /1 systems of 

Section 3.3.1 and the K M / M /1 systems of Section 7.2.1 ), we see 

the full meaning of ”Keep the pipe just full, and no fuller” at optimal 

Power, i.e., on average, as many customers are allowed in the tan- 

dem as there are nodes in the tandem (i.e., K ). The BBandwidth is µ
and the NLDelay to pass through the chain is K / µ, hence, BDP = K. 

Once again we have BDP = N ∗ = K. 

7.2.4. The series network of K heterogeneous M / D /1 queueing systems 

Here again we consider K servers in series, the first of which is 

fed with Poisson traffic, and where the service time of each user is 

constant at each server, but in this case, they need not be identical; 

hence we refer to this as a heterogeneous system. Again, the first 

node is an M/D/1 queue and the subsequent nodes are more com- 

plicated. As in Section 7.2.2 , let us label the slowest server in the 

chain as the “saturated” server and denote it by the subscript s and 

whose average service time is 1/ µs . It was shown in [21–23] that 

this series chain has a mean response time equal to the sum of 
∑ K 

k =1 1 /µk for k 
 = s plus the response time of a single M/D/1 queue 

with a service time equal to the maximum of the service times of 

the chain (i.e., with a service time = 1 /µs ); thus we see that 

T (ρ) = 
ρs 

2 µs (1 − ρs ) 
+ 

K 
∑ 

k =1 

1 /µk (7.4) 

For this system, we show in [19] that at maximum Power, we 

have 

N ∗ = 

K 
∑ 

k =1 

µs 

µk 
≤ K (7.5) 

The BBandwidth is the service rate of the slowest server, µs , and 

the NLDelay to pass through the chain is 
∑ K 

k =1 1 /µk , hence, BDP = 
∑ K 

k =1 µs /µk . In this case we have BDP = N ∗ ≤ K. 

Note if we compare Eqs. (7.2) and (7.5) , we see that for the het- 

erogenous cases, we have 

N ∗M/D/ 1 ≤ N ∗M/M/ 1 (7.6) 

whereas for identical cases ( Eqs. (7.1) and (7.3) ) we have that 

N ∗M/D/ 1 = N ∗M/M/ 1 = K, and, of course, for both identical cases we 

have BDP = N ∗ = K. 

It is also interesting to see that whereas N ∗ is independent 

of the order of the individual nodes, the individual values for 

N ∗
k 

do depend on their order (and although it is tempting from 

Eq. (7.5) to think that N ∗
k 

= µs /µk , it is not true). 

In this important case, we have the same guiding intuition, 

“Keep the pipe just full, and no fuller”. Note as well that whereas 

queueing systems in general can operate with N at very large num- 

bers, our result in Eq. (7.5) shows that the Power optimal average 

number in system does not exceed the number of servers in the 

system! Furthermore, since the message length does not change as 

it travels along an Internet connection, this M / D /1 series network 

is often used to model a TCP connection in today’s Internet which 

we discuss below in Section 7.4 . 

7.3. The general network of K heterogeneous M / M /1 queueing 

systems 

A general computer network with K nodes was modeled and 

analyzed by the author in [24] and used to evaluate its perfor- 

mance. The model used was a modification of Jackson networks 

[25] . The Power metric can be extended to this model as well, and 

it can be shown [26] that maximizing Power based on the mean 
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response time of the network derived in [24] leads to the con- 

sistent conclusion that, if the traffic can be so arranged, then the 

traffic at each node in the network should be chosen so that there 

should be an average of exactly one customer in each node, i.e., 

N ∗
k 

= 1 ; this also gives us that N ∗ = K. Once again we see the deter- 

ministic rule of thumb “Keep the pipe just full, but no fuller” where 

each node may be a bottleneck. However , it is not generally true 

that this traffic pattern can be achieved for an arbitrary network. 

For the more realizable model where the traffic matrix is given 

(rather than designed as with [26] ), then in [16] , it is shown that 

if we scale all traffic levels so as to optimize Power for the total 

network, then N ∗ = 
∑ K 

k =1 ( N ∗
k 
) 2 and in particular, N ∗ ≤ K, where K 

is the number of links in the network, a result we have seen so 

many times. 16 

Selecting a feasible set of Power optimum flows in a general 

network is challenging. One approach to the problem is that pre- 

sented in [17] in which is considered Pareto optimum allocations 

of flow using the metric of Power which balances the individual 

gains of a flow against the interference that flow may cause other 

users. We mentioned this approach earlier in Section 6.2 where we 

saw the need to leave sufficient server capacity to absorb the fluc- 

tuations in the traffic. Another approach for general networks as 

considered in [27] uses Nash Equilibrium as the greedy algorithm 

for flow control formulated as a multi-user noncooperative game 

and it is shown that there exists an equilibrium set of Power opti- 

mized (Nash) flows. 

7.4. Internet congestion control 

The concept of optimal Power (and thus optimal traffic in the 

pipe) is a natural metric for computer networks. Recently, the 

Google “make-TCP-fast” team [1] used the principle of optimum 

Power to control of the amount of in-flight data as articulated in 

[2] and [3] to dramatically improve congestion control in the Inter- 

net. 17 This is a TCP flow control algorithm from Google that they 

call BBR (Bottleneck Bandwidth Round-trip propagation time). They 

provide a fine elucidation of the behavior of a (full-duplex) TCP 

connection in a network by recognizing that the behavior of that 

connection is the same 18 as a single link with the same round- 

trip time and the same bottleneck bandwidth as has the connec- 

tion itself. By using a deterministic model, they identify the bounds 

on performance in terms of RTprop , the minimum round-trip time 

to cycle the connection with no congestion, and BtlBW , the bot- 

tleneck bandwidth of the connection. They refer to the product 

BtlBW ∗RTprop as the “pipe’s bandwidth-delay-product”; of course 

this is the same as our BDP (except we consider the one-way Band- 

width Delay Product, which is easily converted to theirs). They 

plot the round-trip time as well as the delivery rate, each versus 

the amount of data in flight (as shown using two coupled graphs 

in their Fig. 1 ). Their coupled plot is similar to the plot that we 

presented as two separate plots in Figs. 15 (a) and (b). Here we 

choose to replot the information in their coupled graph onto a sin- 

gle graph of Round-Trip Time vs. Delivery Rate, (similar to what we 

did to create the graph in Fig. 16 ) as shown in Fig. 17 ; the straight 

16 The problem of finding optimal flow to minimize response time alone (this was 

before the concept of Power was introduced) in these general networks was solved 

much earlier and led to the Flow Deviation algorithm [28] . 
17 The reason that the early work of 40 years ago took so long to make its current 

impact is because in [31] it was shown that the mechanism presented in [2] and 

[3] could not be implemented in a decentralized algorithm. This delayed the appli- 

cation of Power until the recent work by the Google team in [1] demonstrated that 

the key elements of response time and bandwidth could indeed be estimated us- 

ing a distributed control loop sliding window spanning approximately 10 round-trip 

times. 
18 As we commented in Section 7.2.4 , this equivalence derives from earlier work 

by [21] –[23] . 

Fig. 17. Comparing BBR ( β), TCP ( α) and Power ( β ′ ). 

line behavior is a consequence of their deterministic model, but 

to show the qualitative performance of a stochastic connection, we 

have added the convex dashed line as the round-trip response time 

curve. Note that this is a B ( G ) vs G plot where G = Delivery Rate (i.e., 

throughput) and B ( G ) = Round-trip Time (i.e., response time). This 

straight line plot is very much like the plot of K D / D /1 systems 

in series shown above in Fig. 2 . From our usual considerations, 

the optimal Power point is at the “knee” of the curve which, for 

the deterministic case is located at the intersection of G = BtlBW 

and B (G ) = RT prop, this point being denoted by β in Fig. 17 , as 

we have used earlier to identify the location of the optimal de- 

terministic Power point. At this maximal Power point, we get the 

minimal Round-trip Time with the maximum Delivery Rate. This 

point also satisfies “Keep the pipe just full, and no fuller” by send- 

ing exactly as many message units (packets in Internet terminol- 

ogy) as the pipe can hold without causing congestion. In [1] , it is 

clearly stated that many of the current loss-based congestion con- 

trol versions (e.g., Reno [29] and Cubic [30] ) of the Internet’s TCP 

protocol tend to put excessive flow into the pipe and cause queues 

to form at the bottleneck, thereby driving the flow away from the 

point β up to the point α which is an undesirable situation since 

it leads to buffer bloat and/or packet loss. BBR , on the other hand, 

recognized the value of the Power optimization approach taken 

in [2] and [3] which leads the system to operate at the point β . 

However, in reality, the flow has certain stochastic properties and 

so the point β may be unattainable since the performance profile 

may look like the dashed curve in Fig. 17 (this is an example of 

the performance profiles µT ( ρ) shown in Fig. 11 (a)). To find the 

optimal operating point in this case, we can revert back to the dis- 

cussion in Theorem 5.1 and seek to find the appropriate tangent 

to the dashed curve (or the line of minimum slope) to identify the 

optimal point as, for example in Fig. 17 at the point β ′ represent- 
ing a point such as we saw in the Fig. 11 (a) profiles (in which ex- 

amples of β ′ were shown as the points { β
C 2 
b 
}). This leaves us with 

the need to develop an algorithm to find this point dynamically 

in an operating network, an issue we discuss further below. The 

basic ideas of the BBR algorithm are to: (i) track the windowed 

maximum bandwidth and the minimum round-trip time on each 

ACK that gets returned to the source end of the link, to control the 

sending rate based on the model; (ii) to sequentially probe for the 

maximum bandwidth and minimum round-trip times to feed the 

model samples; (iii) to seek high throughput with small queues; 

(iv) to approach the maximum achievable throughput for random 

losses less that 15%; and (v) to maintain small bounded queues in- 

dependent of the depth of the buffers. 

Following the introduction of the BBR paper [1] in late 2016, 

there has followed a continual flurry of discussions, papers and 

active work in progress by the community on the BBR Develop- 

ment site [4] which addresses improvements to [1] . The issues re- 

volve around improving the dynamics of the flow rate algorithm 
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so as to enhance fairness among multiple flows, prevent underuti- 

lization, reduce high queueing delays and avoid packet loss. Let us 

review some of these contributions/discussions. In May, 2017, Hus- 

ton [11] was early to blog a lucid summary of the history of TCP 

flow control algorithms 19 including Reno, Cubic, Vegas, and BBR 

and then pointed out some issues with the first version of BBR 

including unfairness among multiple flows (especially with differ- 

ent TCP versions running). In July, 2017, the Google team provided 

a specification [9] of their BBR congestion control algorithm v1.0 

including an overview of the design and details of the algorithm. 

Around the same time, Ma, et al. published some measurements 

that showed a fairness issue related to competing flows with dif- 

ferent round-trip times [5] . In October, 2017, Hock, et al. [6] , looked 

deeper into the issue of multiple flows competing for a share of 

the bottleneck link, confirming that BBR works well with a sin- 

gle flow but that the behavior of multiple flows at the bottleneck 

presents some challenges including unfairness among competing 

flows along with increased delays with large buffers as well as 

packet loss with small buffers; in addition, they summarize a num- 

ber of approaches that have been made over the years to address 

congestion control. A subsequent paper [7] by the same group in 

October, 2017 offered their delay-based congestion control algo- 

rithm, TCP LoLa, as their approach to limit queueing delay while 

maintaining high utililization at the bottleneck link 20 as does BBR , 

but with the ability to provide flow rate fairness independent of 

round-trip times of competing flows using a technique they call 

“fair flow balancing”. The group at Google described their version 

v2.0 of BBR in November, 2017 offering their effort s in the new 

version to address reducing loss rate in shallow buffers, reducing 

queueing delay, improving fairness, improving throughput on wifi, 

cellular, cable networks with widespread ACK aggregation, and re- 

ducing queueing and loss in data center networks with large num- 

bers of flows; their slides and their presentation can be found at 

[10] and [8] . Active progress continues to be made as reported in 

[4] . 

8. Conclusion 

In this paper, we studied congestion control in networks by 

generalizing our work in 1978 [2] and 1979 [3] and identified the 

optimal amount of data ( N ∗) to pump into a network connection. 

By focusing on the performance metric Power , we identified the 

Power-optimal operating point β (or, more realistically, β ′ ). Our 
approach began with developing deterministic reasoning as a rule of 

thumb which was confirmed in the stochastic flow case by consid- 

erations of Power both of which are supported by the Bandwidth- 

Delay Product BDP . 

Theorem 5.1 describes how to find the optimal power point. 

When applied to queueing systems (which are models of Internet 

traffic flow), this informs us as to how much traffic to pump into 

the TCP connection to achieve optimality and drive us toward the 

operating point β . The general rule of thumb that emerges is “Keep 

the pipe just full, and no fuller”. We constructed a new diagram, the 

Universal Power Profile, which allows one to see the performance 

of any queueing system and, from that diagram, to define the Op- 

timal Power Trajectory which identifies the location of the optimal 

operating point as the input process changes in its level of stochas- 

tic behavior (and for a large class of queueing systems, the trajec- 

tory travels along the line N ∗ = 1 ). 

In this paper, we showed a number of cases (e.g., the important 

case of a series chain of K links of identical M / D /1 queueing sys- 

tems - as in Section 7.2.3 ) in which N ∗, the optimum number to 

19 A detailed survey of the development of TCP published in 2010 can be found in 

[32] . 
20 Note how this implies using Power as a useful metric. 

place in a pipe of length K (i.e., how much traffic to keep in flight) 

is equal to the length of the pipe, i.e., N ∗ = K. We also showed 

that N ∗ = BDP which further confirms our intuitive reasoning. In 

other cases (e.g., the important case of a series chain of K links 

of heterogeneous M / D /1 queueing systems - as in Section 7.2.4 ), 

the optimum number to place in a pipe of length K was given by 

the result in Eq. (7.5) , namely, N ∗ = 
∑ K 

k =1 µs /µk ≤ K. Once again, 

it turns out that N ∗ = BDP . In this case, the reduction from K to 

N ∗ allows the system to absorb some of the stochastic fluctuations 

to which we referred earlier, and accounts for the convex dashed 

line behavior of the response time in Fig. 17 leading to the optimal 

operating point β ′ . In all these cases, we observe that N ∗/K ≤ 1 

which makes clear that the network connection should hardly ever 

be driven into congestion! 

The relation between N ∗, BDP and the pipe length K is remark- 

ably simple and links together three key variables for our systems. 

We summarize this relation in the following Theorem (proofs are 

in Sections 3, 6.3 and 7.2 ): 

Theorem 8.1. For all the systems considered below 

N ∗ = BDP (8.1) 

• For D/D/1 and for all M/G/1 systems 

N ∗ = 1 (8.2) 

• For D/D/K and any series network of K identical D/D/1 systems or 

of K identical M/M/1 systems or of K identical M/D/1 systems 

N ∗ = K (8.3) 

• For any series network of K heterogeneous D/D/1 systems or of K 

heterogeneous M/D/1 systems 

N ∗ = 

K 
∑ 

k =1 

µs 

µk 
≤ K (8.4) 

Note carefully, however, that our work focuses on the optimal 

steady state operating point and does not address the design of an 

algorithm that tracks the dynamics of traffic that interferes with 

our connection. In this case we must track and adapt the allocation 

of bandwidth and adjust the amount of data inflight to achieve 

optimal performance. It is this latter, more difficult problem, that 

[1,5–11] and its variations seek to solve. Based on the results of 

Theorem 5.1 we here suggest that one could build an algorithm 

that continually measures the tangent of B ( G ) (i.e, µT ( ρ)) at the 

current operating point and then adapt the operating point ( N ∗) so 

that the tangent intersects the origin of the [ B ( G ), G ] axes. 

Appendix A. Generalizations of the Power function 

Let us consider the following simple, but useful, generalization 

of the definition of Power in Eq. (5.1) which we denote by P r ( G ): 

P r (G ) = 
G r 

B (G ) 
(A.1) 

The reason for introducing this generalization of the basic Power 

function as given earlier in Eq. (5.1) is to account for the case 

where one perhaps values G more than one deplores B ( G ) (i.e., 

r > 1), or vice-versa (i.e., r < 1). Assuming for the moment that B ( G ) 

is differentiable and convex, and following the same procedure as 

in Section 5.1 above, we find the condition for maximum Power to 

be: 

dB (G ) 

dG 
= 

rB (G ) 

G 
(A.2) 

This says that the optimal G , say G ∗, occurs when the slope of 

B ( G ) at G ∗ is r times the slope of a line out of the origin to the 

point [ G ∗, B ( G ∗)]. In Section 5.1 , this was easy to visualize since all 
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we had to do was to find the tangent with minimum slope; in this 

generalization it is not that simple. However, we do note that if we 

plot B ( G ) vs G r , then, in these axes, the slope of a line out of the 

origin to the point [ G r , B ( G )] is B ( G )/ G r and this is exactly 1/ P r ( G ). 

As usual, we wish to maximize P r ( G ), and so we desire to find the 

optimum G ∗ for which this slope is a minimum. Thus we see that 

plotting B ( G ) vs G r allows us to proceed as in Section 5.1 to find 

the optimal operating point via a simple (minimum slope) tangent 

to B ( G ) on these new axes. On the other hand, since P r ( G ) ≥0, then 

raising P r ( G ) to any power does not change the location of its max- 

imum. This observation offers another way to find the optimum 

point, G ∗, namely, to plot B 1/ r ( G ) vs G . On these axes, the slope of 

a line out of the origin to the point [ G, B 1/ r ( G )] is B 1/ r ( G )/ G and 

this is exactly (1/ P r ( G )) 1/ r . In this case, if we find the point G ∗ for 

which this slope is a minimum, then we have found the point of 

maximum P r ( G ). In some cases, it might well be more convenient 

to consider this plot to find the optimum. 

We further observe that if we do not require any condition on 

B ( G ) beyond B ( G ) > 0 as earlier in Section 5.1 (e.g., it need be nei- 

ther differentiable nor continuous nor convex), then this construct 

of locating the point G ∗ for which the slope of a line out of the ori- 

gin to point G ∗ is a minimum, will still identify the point of maxi- 

mum Power. 

One could suggest that another generalized Power might be 

s P (G ) = 
G 

[ B (G )] s 
but this will lead to no more generality than given 

in Eq. (A.1) since we could set s = 1 /r, raise the full expression 

to the r th power (and not affect where the maximum Power is 

obtained since, as above, s P ( G ) ≥0) and obtain the same expres- 

sion as in Eq. (A.1) . Similarly, were one to suggest s P q (G ) = 
G q 

[ B (G )] s 

we find by substituting s = q/r and raising the full expression to 

the ( r / q )th power, that once again we have Eq. (A.1) which shows 

that we have no more generality. Thus, the generalized Power in 

Eq. (A.1) is quite general. 21 

Generalized Power P r ( G ) given in Eq. (A.1) was first introduced 

years ago in [3] and it was applied to M / M /1 and M / G /1 queueing 

systems. For M / M /1, the following intriguing Theorem was proven: 

Theorem 9.1. For the M/M/1 queueing system, generalized Power (as 

defined in Eq. (A.1) ) is maximized when 

N ∗ = r (A.3) 

ρ∗ = 
r 

r + 1 
(A.4) 

As compared to the case r = 1 , when r > 1 the increase in N ∗

and ρ∗ as r increases is consistent with our valuing efficiency more 

than deploring delay in that we are now willing to load the system 

more heavily (higher efficiency) at the expense of more delay; that 

is, we are willing to “Keep the pipe fuller” as r increases. The con- 

verse statements apply for r < 1. For M / G /1, we do not enjoy the 

same simple results as we do for M / M /1 in Eqs. (A.3) and (A.4) , 

but in [3] explicit expressions for N ∗ and ρ∗ were given in his The- 

orems 6.2 and 6.4 respectively. 

Generalized Power P r ( G ) for a series chain of K M / M /1 queueing 

nodes was examined in [20] and again in [16] . It was shown that 

N ∗ = Kr f or identical nodes (A.5) 

N ∗ ≤ Kr f or heterogeneous nodes (A.6) 

once again showing the “Keep the pipe fuller” intuition as r in- 

creases. 

21 Certainly one could introduce a yet more general Power function such as 

f (G ) P h (B (G ) (G ) = f (G ) 
h (B (G )) to gain more flexibility, but we choose not to address that 

in this paper. 

Just as was found in [16] for the general network of K het- 

erogeneous M / M /1 queueing systems discussed in Section 7.3 for 

r = 1 that N ∗ ≤ K, it was also found there that when using gener- 

alized Power (arbitrary r > 0) that the result is N ∗ ≤ Kr . Further, for 

the case of identical network nodes, each of the K nodes behaves 

individually as in Eqs., (A.3) and (A.4) , i.e., we have N ∗
k 

= r and 

ρ∗
k 

= 
r 

r+1 ; in this case, once again we have N ∗ = Kr. Gail [16] also 

considers a number of other network configurations for general- 

ized Power. 

One additional generalization of Power was introduced in [3] in 

which we included the negative effect of blocking in queueing and 

network systems that endure loss of arrivals when there is limited 

storage space in the queue. Let us define p B as the blocking prob- 

ability that an arriving message is rejected by the system due to 

buffer overflow. In this case we define Power, P [ p B ] (G ) , as 

P [ p B ] (G ) = 
G (1 − p B ) 

B ( G ) 
(A.7) 

This metric, P [ p B ] (G ), was applied in [3] to a number of combined 

loss and delay systems. In addition, in that paper, cases of pure 

loss were also considered; for these, the metric was defined as 

in Eq. (A.7) but without the denominator B ( G ). Of course, one 

could add the effect of loss to the generalized power given in 

Eq. (A.1) and define a mixed generalized power function, which we 

denote as P [ p B ] ,r (G ) , to be 

P [ p B ] ,r (G ) = 
G r (1 − p B ) 

B ( G ) 
(A.8) 

Appendix B. The ZAP Approximation - Beyond M / G /1 

In [33] , the ZAP approximation was introduced as a family of 

response time functions to represent the performance of various 

systems of flow. Here we follow that approach and consider the 

following three-parameter expression for T ( ρ), 

T (ρ) = A 
Z − ρ

P − ρ
(B-1) 

where Z, A , and P are constants to be selected with the following 

constraints: A > 0, P > 0 and Z > P or Z < 0. Z represents a ”zero” of 

T ( ρ) whereas P represents a ”pole”. Since we have been consider- 

ing normalized response time functions, we note that T (0) = AZ/P 

and then form the following: 

T (ρ) 

T (0) 
= 

P 

Z 

Z − ρ

P − ρ
(B-2) 

Note that A has dropped out of this expression. If we interpret 

T ( ρ)/ T (0) as a normalized response time, then the range of interest 

is for ρ is 0 ≤ρ < P . Looking at the M / G /1 expression for µT ( ρ) at 

the beginning of Section 6.3 , we see that M / G /1 is a special case of 

ZAP with P = 1 and Z = 2 / (1 −C 2 
b 
) . 

Let us optimize Power for the ZAP expression given in 

Eq. (B.2) in the range of interest. This is easily done by show- 

ing that its second derivative with respect to ρ in this range is 

non-negative and is therefore convex. Then we apply the result of 

Theorem 5.1 to find the optimal value of G ∗ which in our case is 

ρ∗ and is given by 

ρ∗ = Z −
√ 
Z 
√ 

Z − P (B-3) 

It is easy to prove that 0 ≤ρ∗ < P . 

To find the Power-optimized number in system, N ∗, as earlier 

we use Little’s Result ( Eq. (2.1) ), namely N = ρT (ρ) /T (0) , and plug 

in ρ∗ from Eq. (B.3) to obtain the interesting result that 

N ∗ = P (B-4) 

Of course, for P = 1 we have our earlier result showing N ∗ = 1 but 

for more general normalized response times. 

lk
Cross-Out



16 L. Kleinrock / Ad Hoc Networks 0 0 0 (2018) 1–16 

References 

[1] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, V. Jacobson, BBR: Congestion- 

Based Congestion Control in ACM Queue 1420–53. Sept-Oct 2016, and in Com- 

munications of the ACM, 60 (2), pp 58–66 (Feb 2017). 
[2] L. Kleinrock , On flow control in computer networks, in conference record, 

in: International Conference on Communications, Toronto, Ontario, June, 1978, 
pp. 27.2.1–27.2.5 . 

[3] L. Kleinrock , Power and deterministic rules of thumb for probabilistic prob- 
lems in computer communications, in: International Conference on Communi- 

cations, Boston, Massachusetts, June, 1979, pp. 43.1.1–43.1.10 . 

[4] https://groups.google.com/forum/#!forum/bbr-dev . 
[5] S. Ma, J. Jiang, W. Wang, B. Li, Fairness of congestion-based congestion control: 

experimental evaluation and analysis in coRR abs/1706.09115, 2017. 
[6] M. Hock , R. Bless , M. Zitterbart , Experimental Evaluation of BBR Congestion 

Control, in IEEE ICNP, October 2017, 2017 . 
[7] M. Hock , F. Neumeister , M. Zitterbart , R. Bless , TCP lola: Congestion Control for 

Low Latencies and High Throughput, in Local Computer Networks (LCN) IEEE 
42nd Conference on Local Computer Networks, October, 2017 . 

[8] IETF100 ICCRG (November) 2017, https://www.youtube.com/watch?v= 

IGw5NVGBsDU&t=43m58s . 
[9] N. Cardwell, Y. Cheng, S.H. Yeganeh, V. Jacobson, BBR congestion control inter- 

net congestion control research group, 2017. Internet Draft at https://tools.ietf. 
org/html/draft- cardwell- iccrg- bbr- congestion- control- 00 . 

[10] N. Cardwell , Y. Cheng , C.S. Gunn , S.H. Yeganeh , I. Swett , J. Iyengar , V. Vasilev , 
V. Jacobson , BBR congestion control: IETF 100 update: BBR in shallow buffers, 

In IETF 100 ICCRG (November), 2017 . 

[11] G. Huston, BBR, the new kid on the TCP block, 2017. https://blog.apnic.net/ 
2017/05/09/bbr- new- kid- tcp- block/ . 

[12] L. Kleinrock , Queueing Systems, wiley interscience, 1975 . Vol. I: Theory 
[13] L. Kleinrock, Queueing Systems, wiley interscience, 1976. Vol. II: Computer Ap- 

plications. 
[14] L. Kleinrock , Certain analytic results for time-shared processors, IFIP Congress 

Inf. Process. 68 (1968) 838–845 . August 

[15] A. Giessler , J. Hanle , A. Konig , E. Pade , Free buffer allocation - an investigation 
by simulation, Comput. Netw. 1 (3) (1978) 191–204 . July 

[16] H.R. Gail, On the Optimization of Computer Network Power. UCLA-CSD- 
830922, September 1983 (PhD Dissertation). 

[17] Y. Yemini , A balance of power principle for decentralized resource sharing, 
Comput. Netw. J. 66 (June) (2014) 46–51 . 

[18] L. Kleinrock , R. Gail , An Analysis of Power for Simple Computer Network Con- 

figurations, Computer Science Department, University of California, Los Ange- 
les, 1981 . March 

[19] R. Gail , L. Kleinrock , An invariant property of computer network power, Int. 
Conf. Commun. (1981) 63.1.1–63.1.5 . June 

[20] K. Bharath-Kumar , Optimum end-to-end control in computer networks, Inter- 
nat. Conf. Commun. (1980) 23.3.1–23.3.6 . June 

[21] H.D. Friedman , Reduction methods for tandem queueing systems, Oper. Res. 13 

(1965) 121–131 . Jan-Feb 6 
[22] B. Avi-Itzhak , A sequence of service stations with arbitrary input and regular 

service times, Manage. Sci. 11 (1965) 565–571 . March 
[23] I. Rubin , Communication networks: message path delays, IEEE Trans. Inf. The- 

ory IT-20 (6) (1974) 738–745 . November 
[24] L. Kleinrock , Communication Nets; Stochastic Message Flow and Delay, Mc- 

Graw-Hill Book Company, New York, 1964 . (Out of Print.) Reprinted by Dover 

Publications, 1972 and in 2007 

[25] J.R. Jackson , Networks of waiting lines, Oper. Res. 5 (1957) 518–521 . August 
[26] G. Rubino , On kleinrock’s power metric for queueing systems, in: Proc. of the 

5th International Workshop for Performance Modeling and Evaluation of Com- 
puter and Telecommunication Networks, 2011 . August 

[27] P. Chung , R.V. Slyke , 6, 2012, pp. 443–454 . 
[28] L. Fratta , M. Gerla , L. Kleinrock , The flow deviation method: an approach 

to store-and-forward communication network design, Networks 3 (2) (1973) 
97–133 . And updated in “Flow Deviation: 40 years of incremental flows for 

packets, waves, cars and tunnels,” Computer Networks, vol. 66, pp. 18–31, 

(June 2014) 
[29] V. Jacobson , M. Karels , Congestion avoidance and control in SIGCOMM 1988, 

Comput. Commun. Rev. 18 (4) (1988) 314–329 . 
[30] S. Ha , I. Rhee , L. Xu , CUBIC: A new TCP-friendly high-speed TCP variant, ACM 

SIGOPS Oper. Syst. Rev. 5 (July (5)) (2008) 64–74 . 
[31] J. Jaffe , Flow control power is nondecentralizable, in IEEE Transactions on Com- 

munications 29 (September(9)) (1981) 1301–1306 . 

[32] A. Afanasyev , N. Tilley , P. Reiher , L. Kleinrock , Host-to-host congestion control 
for TCP, IEEE Commun. Surv. Tutorials 12 (3) (2010) 304–342 . 

[33] L. Kleinrock , Performance of distributed multi-access computer-communica- 
tion systems, in: Information Processing 77, Proceedings of IFIP Congress 77, 

Toronto, Canada, August, 1977, pp. 547–552 . 

Leonard Kleinrock is Distinguished Professor of Com- 

puter Science at UCLA. He is considered a father of the 
Internet, having developed the mathematical theory of 

packet networks, the technology underpinning the In- 
ternet as an MIT graduate student in 1962. His UCLA 

Host computer became the first node of the Internet in 

September 1969 from which he directed the transmission 
of the first Internet message. Kleinrock received the 2007 

National Medal of Science, the highest honor for achieve- 
ment in science bestowed by the President of the United 

States. Leonard Kleinrock received his Ph.D. from MIT in 
1963. He has served as Professor of Computer Science at 

UCLA since then, serving as department Chairman from 
1991 to 1995. He received a BEE degree from CCNY in 1957 and an MS degree 

from MIT in 1959. He has published over 250 papers and authored six books in 

areas including packet switching networks, packet radio networks, local area net- 
works, broadband networks, nomadic computing, performance evaluation, intelli- 

gent agents, peer-to-peer networks and advanced network design. He has super- 
vised the research for 48 Ph.D. students. Dr. Kleinrock is a member of the National 

Academy of Engineering, the American Academy of Arts and Sciences, is an IEEE 
fellow, an ACM fellow, an INFORMS fellow, an IEC fellow, an inaugural member of 

the Internet Hall of Fame, a Guggenheim fellow, and a founding member of the 

Computer Science and Telecommunications Board of the National Research Council. 
Among his many honors, he is the recipient of the National Medal of Science, the 

Ericsson Prize, the NAE Draper Prize, the Marconi Prize, the Dan David Prize, the 
Okawa Prize, the BBVA Foundation Frontiers of Knowledge Award, the IEEE Inter- 

net Millennium Award, the ORSA Lanchester Prize, the ACM SIGCOMM Award, the 
NEC Computer and Communications Award, the Sigma Xi Monie A. Ferst Award, the 

CCNY Townsend Harris Medal, the CCNY Electrical Engineering Award, the UCLA 

Outstanding Faculty Member Award, the UCLA Distinguished Teaching Award, the 
INFORMS President’s Award, the ICC Prize Paper Award, the IEEE Leonard G. Abra- 

ham Prize Paper Award, the IEEE Alexander Graham Bell Medal, the SIGMOBILE 
2014 Outstanding Contributions Award, and the IEEE Harry M. Goode Award. 

http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0001
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0001
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0002
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0002
https://groups.google.com/forum/#!forum/bbr-dev
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0003
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0003
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0003
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0003
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0004
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0004
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0004
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0004
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0004
https://www.youtube.com/watch?v=IGw5NVGBsDUt=43m58s
https://tools.ietf.org/html/draft-cardwell-iccrg-bbr-congestion-control-00
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0005
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0005
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0005
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0005
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0005
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0005
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0005
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0005
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0005
https://blog.apnic.net/2017/05/09/bbr-new-kid-tcp-block/
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0006
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0006
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0006
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0007
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0007
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0007
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0008
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0008
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0008
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0008
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0008
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0008
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0009
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0009
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0010
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0010
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0010
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0010
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0011
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0011
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0011
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0011
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0012
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0012
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0012
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0013
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0013
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0013
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0014
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0014
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0014
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0015
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0015
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0015
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0016
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0016
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0016
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0017
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0017
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0017
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0018
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0018
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0018
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0019
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0019
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0019
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0020
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0020
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0020
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0020
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0020
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0021
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0021
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0021
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0022
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0022
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0022
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0022
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0023
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0023
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0024
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0024
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0024
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0024
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0024
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0025
http://refhub.elsevier.com/S1570-8705(18)30247-6/sbref0025

	Internet congestion control using the power metric: Keep the pipe just full, but no fuller
	1 Introduction
	2 Systems of flow
	3 Deterministic systems of flow & deterministic reasoning
	3.1 The D/D/1 system
	3.2 The D/D/K system
	3.3 K D/D/1 systems in series
	3.3.1 K D/D/1 systems of equal capacity in series
	3.3.2 K D/D/1 systems of dissimilar capacity in series
	3.3.3 The deterministic single resource finite population model


	4 Stochastic systems of flow
	5 Power functions
	5.1 The basic form for Power

	6 Using the power metric for queueing systems
	6.1 The universal power profile
	6.2 The M/M/1 queueing system
	6.3 The M/G/1 queueing system
	6.4 The G/M/1 queueing system
	6.5 The M/M/K queueing system
	6.6 Summary for the power metric for queueing systems

	7 Applications to optimization of networks
	7.1 The stochastic finite population model
	7.2 Series networks
	7.2.1 The series network of K identical M/M/1 queueing systems
	7.2.2 The series network of K heterogeneous M/M/1 queueing systems
	7.2.3 The series network of K identical “M/D/1” queueing systems
	7.2.4 The series network of K heterogeneous M/D/1 queueing systems

	7.3 The general network of K heterogeneous M/M/1 queueing systems
	7.4 Internet congestion control

	8 Conclusion
	Appendix A Generalizations of the Power function
	Appendix B The ZAP Approximation - Beyond M/G/1
	 References


