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Internet of Medical �ing (IoMT) is the most emerging era of the Internet of �ing (IoT), which is exponentially gaining
researchers’ attention with every passing day because of its wide applicability in Smart Healthcare systems (SHS). Because of
the current pandemic situation, it is highly risky for an individual to visit the doctor for every small problem. Hence, using
IoMTdevices, we can easily monitor our day-to-day health records, and thereby initial precautions can be taken on our own.
IoMT is playing a crucial role within the healthcare industry to increase the accuracy, reliability, and productivity of electronic
devices. �is research work provides an overview of IoMT with emphasis on various enabling techniques used in smart
healthcare systems (SHS), such as radio frequency identi�cation (RFID), arti�cial intelligence (AI), and blockchain. We are
providing a comparative analysis of various IoMTarchitectures proposed by several researchers. Also, we have de�ned various
health domains of IoMT, including the analysis of di�erent sensors with their application environment, merits, and demerits.
In addition, we have �gured out key protocol design challenges, which are to be considered during the implementation of an
IoMT network-based smart healthcare system. Considering these challenges, we prepared a comparative study for di�erent
data collection techniques that can be used to maintain the accuracy of collected data. In addition, this research work also
provides a comprehensive study for maintaining the energy e�ciency of an AI-based IoMT framework based on various
parameters, such as the amount of energy consumed, packet delivery ratio, battery lifetime, quality of service, power drain,
network throughput, delay, and transmission rate. Finally, we have provided di�erent correlation equations for �nding the
accuracy and e�ciency within the IoMT-based healthcare system using arti�cial intelligence. We have compared di�erent
data collection algorithms graphically based on their accuracy and error rate. Similarly, di�erent energy e�ciency algorithms
are also graphically compared based on their energy consumption and packet loss percentage. We have analyzed our ref-
erences used in this study, which are graphically represented based on their distribution of publication year and
publication avenue.

1. Introduction

�e Internet of �ings (IoT) deals with various inter-
connected computing devices, machines, objects, humans,
or animals with unique IDs and is capable of transferring
data within the network without human intervention [1]. It
includes monitoring and controlling systems that enable
smart homes, for example, thermostats, heating, ventilation,

and air conditioning devices, including IoT. IoT can also be
used in other domains like transportation, healthcare, in-
dustrial automation, and energy response to natural and
man-made disasters. Various IoT applications in di�erent
domains are illustrated in Figure 1. Verma et al. [2] proposed
a data congestion monitoring system having a sharp area
structure, where IoT helps in convincing the control of the
leading body in tra�c area via advanced systems. Fuqaha

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 7218113, 17 pages
https://doi.org/10.1155/2022/7218113

mailto:mohammad.waris@astu.edu.et
https://orcid.org/0000-0002-3658-3514
https://orcid.org/0000-0002-3198-7974
https://orcid.org/0000-0003-0471-4177
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7218113


et al. [3] presented the use of IoTfor checking environmental
conditions with the help of disappointment figures, sullying
control, and alarm trigger under crisis.

)e applications of IoT in healthcare are the most de-
manding areas of research as per the current scenario. )e
Internet of Medical )ing (IoMT) is playing a crucial role
within the healthcare industry to increase the precision,
consistency, and throughput of the electronic devices as
presented by Joyia et al. [4]. Because of the current pandemic
situation, it is highly risky for an individual to visit the
doctor for every small problem. Hence, using IoMTdevices,
we can easily monitor our day-to-day health records, and
thereby initial precautions can be taken on our own.

An IoMT-based smart healthcare system is a collection
of various smart medical devices connected within the
network through the internet. An IoMT framework-based
smart healthcare is formed of various phases. Firstly, medical
data will be collected from the patient’s body using smart
sensors integrated within smart wearable or implanted
devices that are connected together via a body sensor net-
work (BSN) [5] or wireless sensor network (WSN) [6].)en,
this data will be transferred over the internet to the next
component dealing with the prediction and analysis phase.
After receiving themedical data, analysis can be done using a
proper AI-based data transformation and interpretation
technique [7]. In case of serious problems, doctors or other
medical requirements can be approached with the help of
smart AI-based applications in smartphones [8]. In non-
serious cases, self-preventive measures can be taken.

AI provides the capability to a computer or robot, which
is controlled by a computer system for performing tasks that
are usually done by humans via their intelligence. Within a
smart healthcare system with proper data interpretation
techniques, a machine can also monitor health parameters

using the implanted/wearable sensors on the body of the
person under observation. Real-time disease management
and prevention with improved user-end experience can be
achieved using AI. SHS deals with very sensitive medical
data of the person under observation. Hence, providing
essential security measures in IoMT-based SHS is a very
crucial task. AI can also be used for providing security in
IoMT by detecting network intrusion [9] and intermediate
security attacks within the IoMT systems [10], performing
web-based security assessment using an IoMT-SAF device
[11], etc. In an emergency situation, an automatic alert can
be given to different parties using AI, which will help in
saving a life by taking immediate actions [12]. Hence,
doctors can easily manage patients’ records and can also
provide off-time medical services using AI. Blockchain can
also be used for providing security in an IoMTnetwork. It is
a distributed database that maintains secure and decen-
tralized information electronically in a digital format, which
will guarantee the security and fidelity of data. Hence, it
generates trust without the involvement of a third party.
Blockchain can be used in IoMT for providing security in
medical servers with electronic health records like MedRec
that can be used for permission and access control man-
agement of medical data [13].

Various advancements in the smart home technology
provide a healthy life and enhanced healthcare quality, es-
pecially for the handicapped and elderly personalities, and
these advancements provide a comfortable lifestyle for pa-
tients in homecare, thus avoiding their admittance to hos-
pitals, nursing facilities, or other confinement facilities
[14, 15]. SHS will improve healthcare facilities for humans
from various locations outside the hospital [16], thereby
reducing depression, stress, and loneliness inside hospital
wards. Doctors can also monitor and diagnose patients’
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Figure 1: Overall view emphasizing the role of IoT in different domains.
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health parameters and provide medicine prescriptions ac-
cordingly from any location [17]. Also, the exponential
improvement of various new software and hardware tech-
nologies in SHS helps people, especially the disabled ones, to
easily access certain home appliances using various smart
devices, such as smartphones, laptops, tablets, etc. SHS is
made of various computing devices that act proactively on
behalf of persistent users [18]. Hence, for making good
decisions in SHS, we require essential features, for example,
users’ preferences need to be considered for �nding their
choice of interest in certain scenarios [19–24]. Here, user
preferences deal with the information used for describing
the situation of a person considering the physical medical
status or requirements. In modern SHS, we measure and
record speci�c health parameters, such as blood pressure
(BP), body temperature, pulse, glucose level, etc. We can also
send a reminder in SHS to patients for medications based on
some prior input provided by the user.

�erefore, we are motivated to do a comparative analysis
of various research challenges faced by di�erent researchers
while developing an IoMT-based SHS. Considering the
sensitivity of the real-time medical environment, we are
encouraged to work in the direction of an arti�cial intelli-
gence-based smart healthcare system using the IoMT
framework.

�e major contributions of the research work are as
follows:

(1) To analyze various IoMT architectures used in AI-
based smart healthcare system

(2) To present a comparative analysis of various data
collection techniques to improve the accuracy of
collected medical data

(3) To present a comprehensive analysis of various
energy-e�cient techniques to optimize energy
consumption by IoMT devices in SHS

(4) To explore various health domains of the IoMT
framework along with their application in the smart
healthcare system, including the types of sensors
used for each domain

(5) To propose various research challenges that need to
be considered while creating an IoMT-based smart
healthcare system

�e rest of the paper is organized as follows: Section 2
represents the distribution of referenced papers based on
the publication year and avenue, graphically. Section 3
discusses various existing IoMT architectures used by
various authors for SHS, gives a comparative analysis of
various data collection techniques used in smart healthcare
systems, and provides a comparison of di�erent energy-
e�cient algorithms using various parameters. Section 4
de�nes the health domain with its application in SHS.
Section 5 describes the �ndings of literature survey in terms
of the concerned challenges during the design of an IoMT
network. Section 6 is the conclusion of the research work
done through this paper.

2. Statistical Distribution of
Publications Referred

Figure 2 compares the referenced papers according to the
publication venue. Figure 2 highlights the distribution of
referenced papers based on the type of journal. 67 papers
from the total referenced papers are primary research papers
from reputed journals, whereas 31 papers originate from
conferences.

Figure 3 represents the frequency of papers concerning
the smart healthcare system. We have reviewed only 7
papers that are published on or before the year 2014 be-
cause of our interest in recent technologies in this era. We
have referenced 4 papers from the year 2015, whereas the
year 2016 contains 10 research papers on energy e�ciency,
security, and accuracy of healthcare data. We expect
modern technology-based quality paper growth in the
IoMT system from 2017, with the papers becoming freely
available from various reputed journals for reference. As it
can be seen, we have referred to most of the recent papers to
get updated regarding the current tools and technologies in
this era.
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3. Related Work

�is section gives the comparative and comprehensive
analysis of work done by various authors in IoMT-based
Smart Healthcare systems regarding di�erent IoMT archi-
tectures, data collection techniques, their comparative
analysis, and a comparison of various energy-e�cient
algorithms.

3.1. IoMT Architectures. An IoMT-based smart healthcare
system is a collection of various smart medical devices
connected within the network through the internet [25]. An
IoMT framework-based smart healthcare is formed of
various phases. Firstly, medical data will be collected from
the patient’s body using smart sensors integrated within the
smart wearable or implanted devices that are connected
together via BSN or WSN [26]. �en, this data will be
transferred over the internet to the next component dealing
with the prediction and analysis phase. After receiving the
medical data, analysis can be done using a proper AI-based
data transformation and interpretation technique [27]. In
case of serious problems, doctors or other medical re-
quirements can be approached with the help of smart AI-
based applications in smartphones [28]. In nonserious cases,
self-preventive measures can be taken.

Sun et al. [29] explained that IoMT architecture mainly
consists of 3 layers, which are as follows: the application
layer, perceptual layer, and network layer. �ey are dem-
onstrated in Figure 4. �e bottom layer, i.e., the perceptual

layer, deals with the collection of data from the source and
making important viewpoints from the collected data. Now,
the perception layer consists of 2 sublayers, i.e., the data
access sublayer and data acquisition sublayer. Perception
from the collected data is the main task done by the data
acquisition sublayer, for which it utilizes various medical
perception equipment and signals acquisition equipment.
Graphic code, RFID, GPRS, etc., can be considered themajor
signal acquisition methods. �e data access sublayer con-
nects the collected data from the data acquisition layer to the
network layer through short-range data transfer techniques,
such as Bluetooth, Wireless Fidelity (Wi-Fi), ZigBee, etc.

�e middle layer, i.e., the network layer, deals with
providing various platform and interface-related services
and provides various data transmission techniques. �is
layer is formed of 2 subsequent layers, namely, the service
layer and the network transmission layer. �e network
transmission sublayer uses mobile communication net-
works, wireless sensor networks, internet, etc., for trans-
mitting the data received from the perception layer in a
precise, consistent, real-time, and barrier-free way. How-
ever, the service layer realizes the integration of various
networks, information description formats, data ware-
houses, etc. For such integrations, it provides open interface
services and various other platform-related services.

�e application layer utilizes the information gathered
from the network layer to manage the medical record by
means of various applications. �is layer again consists of 2
sublayers, namely, the medical information decision-making
application layer and the medical information application
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Figure 4: IoMT architecture overview.
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layer. )e medical information application layer contains
various health care equipment and other materials related to
information for maintaining patient information, such as
inpatient, outpatient, medical treatment, etc., records,
whereas the medical information decision-making appli-
cation layer deals with the analysis of various pieces of
information, such as patients, disease, medication, diagnosis,
treatment, etc.

Sun et al. [1] explained another three-tier architecture
with medical server level, sensor level, and personal server
level. Sensor level contains various sensors and medical
devices in the form of a local network like a body sensor
network (BSN) using low power wireless technology (such as
BLE, NFC, or RFID) to transfer data.

)e personal server level has few personal servers that
can internally process and store from smart wearable devices
(like a smartwatch) or off-body devices (like routers). It is
required in situations where either a network connection is
lost or the user needs the patient’s data remotely. )e last
layer is the medical server layer, which consists of an al-
gorithm or program for early diagnosis, rehabilitation
progress assessment, or continuous patient monitoring (for
example, MobiCare and BSN-Care [30]).)e problem stated
here is security negligence.

Kumar et al. [31] proposed an end-to-end architecture
named mHealth System that connects the IoT smart sensors
directly with SHS. )is architecture contains three layers,
i.e., the data processing layer, data collection layer, and data
storage layer. )e bottom layer, i.e., the data collection layer,
consists of IoT devices that can sense and collect medical
parameters. )e next layer, i.e., the data storage layer, stores
medical data on wide-scale and high-speed storage racks.
)e topmost layer, i.e., the data processing layer, involves
various techniques to analyze collected sensor data.

Abdulmohsin Hammood et al. [32] proposed the four-tier
architecture of an Internet of Medical )ing health-based
model, where the first tier is the WBSN tier in which sensors
like ECG (Electrocardiography) are directly connected to the
human body. Fetched data from these sensors are transferred
to the coordinator node via wireless 802.15.6 standard, which
is then transmitted to the next tier. Tier 2 is the Smart\-
Wireless technology interface tier, where smart devices are
utilized for data inspection and analysis and then transfer this
data to tier 3 either by smart devices or wireless communi-
cation technologies. Tier 3 is the infrastructure internet tier
that provides various communication technologies. Tier 4 is
the care-services tier, where the received data are forwarded to
the intelligent server (IS), where the data are stored, analyzed,
and forwarded for smart medical services.

Here, we have seen 4 architectures for an IoMT-based
smart healthcare system, where most of them have three
layers. )e last architecture alone, proposed by Abdul-
mohsin Hammood et al. [32], has a four-tier architecture.
Upon comparing all these architectures, we can generalize
that the bottom-most layer will have sensors in direct
contact with the human body. In the middle of the archi-
tecture, we need a few layers for the inception, storage, and
processing of data. )e topmost layer will be used for
providing services to the end-users.

3.2. Technologies Used for the Collection of Sensor-Based
Medical Data. IoMT-based SHS uses various techniques to
collect and transfer sensor data to servers, such as BSN,
WSN, or RFID [33]. BSN is an IOT-based technology in a
healthcare system that deals with monitoring the health of
patients using a collection of various wireless sensor nodes
with low-weight and low-power consumption [34, 35]. BSN-
based social insurance systems can be used for therapeutic
administration systems to accomplish various security es-
sentials [36]. Since BSN nodes collect sensitive information
and may operate in a heterogeneous environment, they
require strict security mechanisms like BSN-Care [30].

RFID is a contactless technique for the automatic
identification of targets using radiofrequency with 2-way
data communication in various zones identified by their
unique names [37, 38]. RFID consists of 3 parts, namely, the
reader, database management system, and radio frequency
electronic tag [39]. It can be used for identifying locations,
the management of medical equipment and assets, waste
tracking, personal identification, and for the collection of
vital sign data of patients, such as ECG and blood pressure
data [40, 41]. )e advantage of using RFID is that without
any human intervention, it can recognize objects at long
distances with strong anti-interference. Flexible RFID tags
can be used to expand their reading range [31]. A low-cost
inkjet-printed RFID tag antenna can be used in remote
healthcare applications [42]. We can also work upon the
middleware providing an interface between the reader-
writer and backend application. It will capture data from the
sensing device and conduct proofreading, filtering, pro-
cessing, and transferring them to RFID [43]. It will make
healthcare more affordable and convenient to use.

Wireless sensor network (WSN) is a network of different
monitoring sensors located in a homogeneous or hetero-
geneous environment. WSN can be used in IoMT for
monitoring the real-time physiological condition of the
person under observation [44]. Also, there are sensors that
can measure the pressure level by examining the body’s
perspiration, speed of movement, and temperature of the
patient’s body [45]. Dhunna et al. [46] proposed a smart grid
monitoring application for providing security in WSN with
very low energy consumption. Yadav et al. [47] proposed a
clustering algorithm for minimizing the energy consump-
tion within the WSN network.

3.3. Comparison of Data Collection Techniques. A smart
healthcare system will work precisely only when it will get
correct and accurate data [48]. Hence, this section elaborates
on a comparative analysis of different smart healthcare data
collection techniques to maintain the accuracy of collected
medical data [49]. In Table 1, we have compared different
research works done on the techniques that can be used for
collecting sensitive medical data using parameters, such as
accuracy, error rate, and correlation prediction. Tekieh et al.
[50] used a survey to demonstrate the uses of data mining in
the healthcare system. )e main problem is to maintain the
quality and security of a large amount of health-related
medical data, which is progressively increasing every day

Computational Intelligence and Neuroscience 5



[55]. To overcome the problem, they have discussed 3 data
mining processes in brief, i.e., association, clustering, and
classi�cation. �ey have discussed 4 applications of these
techniques of data mining in SHS, i.e., the health of a
population, health administration and policies, biomedi-
cines and genetics, and clinical decision-taking [56].

Shahin et al. [51] proposed an advanced reduction
technique named dynamic rough sets attribute reduction
(DRSAR) with multiple classi�ers for a random forest (RF)
in the healthcare information systems (HIS).�is model will
be helpful to overcome the most critical challenges, i.e., for
extracting relevant information from a large amount of
medical data that needs to support the proper working of the
system. �e e�ciency of the model is examined using 4 case
studies (namely, premature birth, coronary heart disease,
osteoporosis, and acute appendicitis). �ey have also pro-
vided web interfaces so that patients can calculate the level of
risk involved with every medical case.

Yang et al. [52] proposed an association rule remining
algorithm, multimode, and high-value association rule
mining (MH-ARM) based on both the characteristics of data
and the user’s intention and knowledge as shown in Figure 5.
�ey have considered more metrics, such as Kulczynski
(KULC) and imbalanced ratio (IR), for the measurement of
the support-con�dence framework. �ey have taken 2
threshold values, i.e., the minimum support and minimum
con�dence, and they can be adapted as per the need of the
user.

3.3.1. Multimode Association Rule Mining. Let A and B be
the attributes that can be shared for every instance belonging
to the same class or unshared speci�c attribute varying with
every instance.�en, multimode association rule mining can
be given by Figure 6.

Here, four parameters are used, namely, support, con-
�dence, correlation, and novelty, to extend the support-
con�dence framework of association rules given in equation
(1). KULC and IR will provide the support and con�dence
for the algorithm, whereas novelty is calculated in equation
(4), and the overall weight for the association rule remining
algorithm, multimode, and highvalue association rule
mining (MH-ARM) is calculated in equation (5).

X⇒Y[sup, conf , corr, novelty], (1)

Table 1: Comparison of di�erent data collection techniques.

Sl.
no.

Authors and
publication years Parameters Data collection

technique Advantages Disadvantages

1 Tekieh et al. [50],
2015 Accuracy Electronic health

record

Di�erent techniques with their merits are
described. Hence, based on the requirement of
research, an optimal approach can be considered

No suggestion about
any new technique

2 Shahin et al. [51],
2014

Error rate,
accuracy

Electronic health
record

Case study provided in this research for practical
application

Applicable for speci�c
environment

3 Yang et al. [52],
2016 Accuracy Rule-based

approach
Data gathering speed is improved through the

proposed mechanism

Further work can be
done to improve

accuracy.

4 Mdaghri et al.
[53], 2016 Accuracy Support system for

clinical decision Accurate data collection Improper handling of
missing values

5 Roy et al. [54],
2016

Correlation,
accuracy

Correlation-based
ratio analysis

Healthcare-related speci�c information is
gathered because of correlation

Have not considered
missing values.

6 Rao et al. [34],
2016

Prediction,
accuracy Open dataset Better visualization because of GUI Missing values not

considered

Association Rule Mining
Algorithm

Association Rule Base

Multi-modes process based
on end user’s needs

Weighted Evaluation Model

Sorts of association rules

Visualization of association rules

Evaluation Metrics

Metrics Weight

Figure 5: MH-ARM framework.

Mode 1: Finds relationship R(A ⇒ B) satisfying minsup and minconf
Mode 2: Find z, the mixed antecedent of attribute class set.
Mode 3: Find the dataset having a fixed value of attributes therby

satisfying the relationship of minsup and minconf, like
R(A ⇒ B), sex = male)

Mode 4: Finds relationship on data set having fixed attribute value which
satisfies minsup = 0.15 and minconf = 0.7, like
R(Z ⇒ B), sex = female)

Mode 5: Designed to find convergence value of subsequent attribute B
with a for different values (like population).

Mode 6: Finds the unique value of subsequent attribute B with A for
different values.

Figure 6: Multimode association rule mining.
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where sup represents the support of the algorithm and is
calculated with the help of IR. Similarly, conf represent the
confidence of the algorithm and is calculated with the help of
KULC.

KULC: given 2 item sets X and Y, and KULC of X and Y

can be calculated as follows:

KULC(X, Y) �
1
2

(P(X|Y) + P(Y|X)). (2)

From (2), we can say that KULC is subjective to the
conditional probability of P(X|Y) and P(Y|X) and is in-
dependent of the number of records.)e value of KULC will
be from 0 to 1. )e higher value of KULC signifies greater
relevance between X and Y.

IR: the imbalanced ratio for X and Y can be calculated
using

IR(X, Y) �
|sup(X) − sup(Y)|

sup(X) + sup(Y) − sup(XUY)
. (3)

If both X and Y are in the same direction, then IR(X, Y)

is 0. Otherwise, the increase in the difference of two di-
rections gives a higher IR value. As it can be seen from
equation (3), IR is independent of zero transaction and
number of records.

Novelty: novelty rules neither inferred by others nor
known to the users. Rule x⇒y will be treated as novel when
P(XY) cannot be inferred by P(X) or P(Y). Novelty can be
refined using

Nov(x⇒y) �
P(XY) − P(X)P(Y)

P(X)P(Y)
. (4)

For the determination of weights, they have used analytic
hierarchy process (AHP) using “sup-
port—confidence—correlation—novelty” as a comparison
parameter, with the weights of C, S, K, and N being 0.482,
0.11, 0.19, and 0.218, respectively. )erefore, the complete
evaluation coefficient obtained is given in

R � 0.482∗C + 0.11∗ S + 0.19∗K + 0.218∗N. (5)

Electronic health record system helps in the storage and
organization of data. Mdaghri et al. [53] used this technique
with data mining approaches to gain accuracy during the
extraction of information from huge raw data. )ey elab-
orate on the application of data mining in healthcare, es-
pecially for the following four categories: the health of a
population, health administration and policies, biomedi-
cines and genetics, and clinical decision making. Roy et al.
[54] proposed a variation of the decision tree model using
the correlation ratio (CR) concept for smart healthcare
datasets with many attributes, and each attribute contains
various values. )ey have applied this model to various
healthcare datasets to prove that the correlation ratio-based
approach is unbiased toward a number of attributes, thereby
giving more accuracy to the result.

Suppose l tuples are available in a dataset and the
number of times y ∈ Y (where Y is set of outcomes) occurs is
ly, then the dataset partitioned by their outcomes is given by

∀y ∈ Y| Sy � x
(1)
jy , . . . , x

(n)
jy  ; j � 1, . . . , ly, (6)

where Sy is the set of tuples with the outcome y, and j is the
value for the i − th attribute of the j − th tuple among all the
ly tuples with the outcome y. Equation (7) shows the average
of the i − th attribute from all the tuples in each outcome
class.

∀y ∈ Y|x
(i)
y �


ly
j�1 x

(i)
jy

ly
. (7)

Equation (8) gives the overall average for the i − th at-
tribute of all tuples.

x
(i)

�
y∈Y 

ly
j�1 x

(i)
jy

l

�
y∈Ylyx

(i)
y

l
.

(8)

)e square of CR between the i − th attribute and
outcome (class attribute) is given by

Cr
2
(i) �

y∈Ylyx
(i)

y − x
(i)2

y∈Y 
ly
j�1 x

(i)
jy − x

(i)
)
2
.

(9)

Now, this CRwill be able to find nonlinear dependencies,
which will reflect the biasness, and thereby improve the
accuracy of the collected data, whereas in paper [34], a
detailed analysis of the physician and hospital rating data
was done using a toolkit based on open-source modules,
which are the publicly available datasets of USA.

3.4. Comparison of Energy Efficiency Measurement
Techniques. Energy efficiency determines the size, lifetime,
and usability of IoMT-based medical devices used in SHS
[57, 58]. Implant devices should have a battery life minimum
of 10 years to 15 years to avoid repetitive surgery as it results
in physical and financial loss [59]. As far as wearable devices
are considered, frequent battery changes reduce device
usability [60]. Energy efficiency can be measured through
various parameters, such as the amount of energy consumed,
packet drop ratio, delivery time, data leakage, energy dis-
charge, battery lifetime, packet loss, QoS (Quality of Service),
power drain, network throughput, end-to-end delay,
transmission rate, outage probability, internode distance,
path-loss, and antenna gain. As shown in Table 2, Rehman
et. al. [7] have compared their energy-efficient IoT e-health
model with the attribute-based encryption (ABE) and pri-
vacy-enhanced data fusion system (PDFS) model using
parameters EC (energy consumption), PDR (packet drop
ratio), DT (delivery time), and DL (data leakage). For re-
ducing latency by minimizing the number of hops, they use
the heuristic formula, h(n) � d + td, for each node, where td

is the delivery time and distance d is comprised of distance
from source node i to corresponding neighbor ni, which is
denoted by d′. d edge is the distance of the neighbor to the
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Table 2: Comparison of recent energy efficiency measurement techniques.

Sr.
no.

Authors and
publication

years
Parameters

Efficiency
measurement
technique

Advantages Disadvantages Efficiency
improved

1 Rehman et al.
[7] (2021)

Energy
consumption (EC),
packet drop ratio
(PDR), delivery

time (DT), and data
leakage (DL)

Comparison of
proposed model

(energy-efficient IoT
e-health model using

AI with
homomorphic secret
sharing) [7] with
(attribute-based

encryption) ABE [61]
and (privacy-

enhanced data fusion
system) PDFS [62]
using simulation

1. )e maintainability
of the disease diagnosis
system is increased. 2.
Provides trust for
communication in
integration with
medical cloud.

1. Under high network
load, PDR increased 2.

No fixed energy
consumption for all
IoT nodes. 3. Lack of
intelligence that is

required for avoiding
packet collision during
the increased speed of

edge nodes.

EC� 17%
PDR� 20%
DT� 24.5%
DL� 13%

2 Sodhro et al.
[63] (2021)

Energy dissipation
(ED), charge

dissipation (CD),
energy discharge

and battery lifetime

Comparison of
proposed model
(energy-efficient

algorithm) [63]with
(battery recovery-
based lifetime

enhancement) BRLE
[64] using MATLAB

simulation

1. It consumes low
energy 2. Increased
battery lifetime.

Computational load is
high

ED� 6.67%
CD� 12.52%

3
Lazarevska
et al. [65]
(2018)

Energy
consumption (EC),
network lifetime
(NL), packet
delivery ratio

(PDR), and total
control traffic

overhead (TCTO)

Comparison of
proposed new

objective function
(NEWOF) and

minimum rank with
hysteresis objective
function (MRHOF)
using powertracker
tool in CoojaContiki

OS.

1. Improvement in the
total energy

consumption. 2.
Improvement in
TCTO 3. Less

degradation in PDR. 4.
Energy efficiency

improved

During the
implementation of

mobility plug-in, this
model shows

approximately 20%
loss.

PDR� 3%
EC� 1.45%
NL� 8%

TCTO� 5.8%

4 Tanzila et al.
[66] (2020)

Network
throughput (NT),
packet loss rate

(PLR), end-to-end
delay (E2E), energy
consumption (EC),
and link breakages

(LB)

Comparison of
proposed algorithm
SEF-IoMT [66]
against existing

solutions EERP [67],
CRD [68], and SEAR

[69] using NS3

1. Decrease energy
consumption thereby

providing more
efficiency 2. Data
delivery toward
medical experts is
increased. 3. Highly
secure with validation
and integrity support 4.
Lower network delay

1. Improvement
required in SEF-IoMT
for mobility-based
medical scenarios. 2.

)is framework
requires the

improvement of energy
consumption and

network security when
dealing with inter-

WBAN data
transformation

NT�18%
PLR� 44%
E2E� 26%
EC� 29%
LB� 48%

5
Abdulmohsin
Hammood
et al. [32]

Energy efficiency
(EE), power

consumption (PC),
transmission rate
(TR), outage

probability (OP)

Comparison of the
proposed algorithm

inter-WBAN
cooperation in an
IoMT environment
(IWC-IoMT) with
noninter-WBAN
cooperation (direct
transmission in an
IoMT environment
(DT-IoMT) and two
hops in an IoMT
environment (TH-

IoMT))

1. Greater energy
efficiency of IWC-

IoMT than DT-IoMT
and TH-IoMT. 2. )e
outage probability of
IWC-IoMT is higher
than that of DT-IoMT
and TH-IoMT during

symmetric
transmission.

During asymmetric
transmission, the

outage probability of
IWC-IoMT degraded
compared to DT-IoMT

and TH-IoMT

EE� 10% PC� 2%
(PC increased with
increase in TR)
TR� 3% OP� 5%
(with internode
distance >2.5m)
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corresponding network edges edgei, and thereby, the mo-
bility ratio for the network edge is given in

edgem, d �
1

d′ + dedge + edgem 
. (10)

Now, the calculation of td includes delay time and data
reception fluctuations, denoted by drecp. )is model sets a
threshold value to determine the strong s and weak ω
transmission channel c, which is given as follows:

if drecp > threshold,

thenc � s, elsec � ω.
 (11)

)ey proved through simulation results that the pro-
posed model, when compared with ABE and PDFS, re-
spectively, has improved the efficacy by 13% and 15% for
data latency, 19% and 21% for packet drop ratio, 16% and
18% for energy consumption preround, 21% and 28% for
delivery time, and 12% and 14% for data breaches.

Sodhro et al. [63] proposed an energy-efficient algorithm
(EEA) that mainly focuses on data transmission and con-
nectivity increase with a reduced interruption during in-
formation transfer. )e authors compared the proposed
algorithmwith battery recovery-based lifetime enhancement
(BRLE) using parameters, such as energy dissipation and
charge dissipation. )e discharge curve for the battery is
defined by the voltage function, which includes the state of
charge (SOC) with exponential decay. (12) and (13) show the
discharge curve by SOC, which is equal to st, and S gives the
remaining capacity/total capacity.

F(V) � st∗
e

−β2 tk− tf( 
− e

−β2 tk− ti( )

β2
, (12)

F(V) � S∗
e

−β2 tk− tf( 
− e

−β2 tk− ti( )

β2
, (13)

where F(V) denotes the voltage function of battery, S is the
state of charge, t denotes the time duration for battery dis-
charge, β is the parameter used for battery diffusion, tk is the
time duration of task k, tf is the time for turning ON the load,
and ti is the time for turning OFF the load. )ey have shown
through MATLAB simulation that EEA dissipates 89.7 J of
energy, while BRLE dissipates more energy up to 95.68 J, and
the charge dissipation of EEA is only 16,657.1409mC·mint,
while that of BRLE is 18,742.6591mC·mint.

Lazarevska et al. [65] proposed a routing protocol for low
power and lossy networks (RPL) to provide energy efficiency
while accounting for the mobility of sensor nodes in WSNs
with both static and mobile nodes. )e proposed model
objective function considers 5 parameters: EC (energy
consumption), PDR (packet delivery ratio), duty cycle, total
control overhead, and network lifetime. For calculating
network lifetime, they used the power tracker tool for online
monitoring of real-time duty cycle providing average sim-
ulated radio duty cycles of the transmission (Tx) and re-
ception (Rx) of data for each node in (%) using

Time Rx �
Rx%
100

.Simulation Time, (14)

Time Tx �
Tx%
100

.Simulation Time. (15)

Using (16), the energy consumption of every single node
and of whole network can be estimated.

E � P.t

� V.I.T,
(16)

where E is energy, P is power, V is voltage, I is current, and t

is the total time spent in a state. From equations (14), (15),
and (16), we can reach

E rx � P rx · Time rx � V · I rx · Time rx,

E tx � P tx · Time tx � V · I tx · Time tx,

E total � E tx + E rx + E cpu + E lpm.

(17)

Here, the predefined values for voltage, transmission,
and reception current are 3Volts, 8.5mA, and 19.7mA,
respectively. )e total energy consumption is given by the
sum of the independent energy consumption of
Tx, Rx,CPU (central processing unit) and LPM (low power
CPU model). Now, E cpu and E lpm are relatively very
small, and hence, they can be neglected easily for the final
formula of the total average energy consumption as

E total � E tx + E rx, (18)

Tanzila et al. [66] proposed a secure and energy-effi-
cient e-healthcare (SEF-IoMT) framework using the In-
ternet of Medical )ings (IoMT) and compared it with a
simplified energy-balanced alternative-aware routing al-
gorithm (SEAR), energy-efficient routing protocol (EERP),
and critical routing data (CRD) using network simulator
NS3. For measuring energy efficiency, they used five pa-
rameters, namely, packet loss rate, network throughput,
energy consumption (EC), E2E (end-to-end) delay, and
link breakages. )e formula for calculating energy con-
sumption is given in

Etx(k, d) � Eelect ∗ k + k∗Efs ∗ d
2
,

Etx(k) � Eelect ∗ k,
(19)

where Etx shows transmitting energy, Eelect gives energy
consumption per data bit, Efs is energy for transmitted
amplifier, k denotes data bits, and d shows the distance
between the sensor nodes. In this algorithm, biosensors are
interconnected through a undirected graph by the cost
function f(c), which includes the weighted residual energy
(WRE), number of sink hops hc, distance to neighborhoods
Ni, and queuing delay Qd factors. )e network throughput
can be measured using

f(c) � w1∗WRE + w2∗
1
hc

  + w3∗
1

Ni

  + w4∗
1

Qd

 ,

(20)
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where w1, w2, w3, w4 are weighted coe�cients, and their
summation is 1. Link breakage and packet loss can be
calculated using

WRE � Ce1 + Ce2 + · · · + Cen, (21)

Ce �
einit − etx(k)( )

enet
, (22)

where Ce1, Ce2, . . . , Cen is the estimated energy consumed
with neighboring nodes, einit is the initial energy, enet shows
network energy, and etx(k) denotes the energy required for
transmitting k data bits over a periodic time interval Δt. �e
delay can be calculate using

Qd �
ar + tc( )
Di

, (23)

where Qd is the queuing delay, ar denotes arrival data
packets Di to sensor node i, and tc shows the transmission
capacity of the link.

Abdulmohsin Hammood et al. [32] proposed inter-WBAN
cooperation in the IoMT environment (IWC-IoMT) for pro-
viding communication between wireless body sensor networks
(WBSN) and those that are beyond their communication
range. E�ciency comparison between the proposed algorithm
and noninter-WBAN cooperation, namely, two hops in IoMT
environment (TH -IoMT) and direct transmission in IoMT
environment (DT-IoMT), is done. �e formula for calculating
the e�ciency of DT-IoMT is as shown in

Ei,j � 1 − Pout
i,j( )

βi,j
Ptoti,j

bit
joule
[ ], (24)

where βi,j is the rate of data transmission from node i to j,
Ptoti,j is the total power consumption, and the calculating
formula is given in

Ptoti,j � Pamp + Ptx + Prx, (25)

where Pamp shows power consumption by ampli�er for
transmission, and Ptx and Prx show power consumption by an
internal circuit for transmission and reception, respectively.

�e formula for calculating the e�ciency of DT-IoMT is
as shown in

ETH �
1 − Pout

s1,cn1( ) 1 − Pout
cn1,T2( )βTH

PtotTH
. (26)

Here, βTH is the rate of data transmission in DT-IoMT, PtotTH
is the total power consumption, and the calculating formula
is given in

PtotTH � 2 Pamp + Ptx + Prx( ). (27)

Finally, the energy e�ciency for IWC-IoMT of the 1st
sensor in the network is given by

Es �
1 − Pout

s1,cn1( ) 1 − Pout
S1,cn2( )βFH

Pamp + Ptx + 2Prx
−

1 − Pout
cn1,T2( ) 1 − Pout

cn2,T2( )βSH
2Pamp + Ptx + Prx

.

(28)

Here, (1 − Pout
s1,cn1)(1 − Pout

S1,cn2) represents the probability of
successful transmission from s1 to cn1, and from s1 to cn2,
respectively, and (1 − Pout

cn1,T2)(1 − Pout
cn2,T2) represents the

successful transmission probability from cn1 toT2, and from
cn2 to T2, respectively.

�e �rst term total power, Pamp + Ptx + 2Prx, contains
two nodes for receiving data and one single node for
transmitting data, however, in the second term total power,
2Pamp + Ptx + Prx contains two data transmission nodes and
a single data reception node. Now, βFH shows the rate of data
transmission from sensors to coordinators (�rst phase), and
βSH shows the data transmission rate from coordinators to
T2 (second hop).

3.5. Performance Comparison. Figure 7 shows the com-
parison of the percentage of accuracy achieved by 6 decision
tree classi�cation models, namely, J48, iterative dichoto-
miser 3 (ID3), random forest (RF), correlation ratio (CR),
information gain (IG), and gain ratio (GR). Here, the ac-
curacy of RF is 97.71%, ID3 is 71.8%, J48 is 88.95%, IG is
70.83%, GR is 72.26%, and CR is 71.09%. It is clear from the
graph that the multiclassi�er random forest is giving the
highest accuracy among all six algorithms.

Figure 8 shows the comparison of error rates for 3
machine learning decision tree classi�cation algorithms,
namely, J48, iterative dichotomiser 3 (ID3), and random

0 20 40 60 80 100 120

RF

ID3

J48

IG

GR

CR

Comparison for Accuracy

% of Improvement in Accuracy

Figure 7: Comparison for accuracy.

0 5 10 15 20 25 30

J48

ID3

RF

Comparison for Error Rate (%)

Comparison of Error Rate (%)

Figure 8: Comparison of error rates.
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forest (RF). Here, the error rate for ID3 is 28.19%, J48 is
11.04%, and RF is 2.28%. �e graph clearly shows that the
multiclassi�er random forest gives a minimum error rate in
comparison to other two algorithms.

Figure 9 shows a comparison of improvement in the
percentage of energy consumed by 3 methodologies (secure
and energy-e�cient framework using Internet of Medical
�ings (IoMT) for e-healthcare (SEF-IoMT), routing pro-
tocol for low power and lossy networks (RPL) with a new
objective function (NEWOF), and an energy e�cient IoT
e-health model using AI with homomorphic secret sharing).
As the graph shows, we have maximum improvement in
SEF-IoMT, i.e., 29%, followed by the energy e�cient IoT
e-health model using AI with homomorphic secret sharing
with 17% of improvement in energy consumption, and the
last one is the routing protocol for low power and lossy
networks (RPL) with a new objective function (NEWOF),
which gives 1.45% of energy consumption improvement.

Figure 10 shows the comparison of the improvement in
the percentage of packet loss during transmission by 2
methodologies, namely, SEF-IoMT and energy e�cient IoT
e-health model using AI, with homomorphic secret sharing.
As the graph shows, we have a maximum improvement in
SEF-IoMT, i.e., 42%, followed by the second methodology,
with a 17% improvement in packet loss during transmission
within the network.

4. Health Domain and Its Application

As shown in Figures 11 and 12, there are mainly three
modules that need to be monitored in a smart healthcare

system, namely, homecare [15], selfcare, and acute care [31].
In a selfcare system, a person can monitor and access his
own �tness through di�erent wearable devices and take
necessary actions to prevent diseases in the future [8, 71]. In
the homecare system, the healthcare providers measure
patients’ health remotely, and if any problem arises, an alarm
will be triggered to alert the doctor and the patient, and both
of them collaboratively decide the action that needs to be
performed [27, 72]. Acute care deals with critical situations,
where urgent responses are required. It is usually used for
elderly care wearable/implanted devices [30, 73].

Each domain uses di�erent types of sensors or a com-
bination of one or more sensors. Table 3 shows various
sensors that can be used in a smart healthcare system to
detect vital parameters of the client. �e �rst sensor is the
accelerometer, which belongs to the selfcare domain. It is
used to measure the change in the linear velocity, and it is
helpful to detect the blood glucose level of the patient or the
person under observation [8]and the change in the position
of the patient [70] or any other body part of the patient [74].
A gyroscope detects the angular velocity, which will help in
detecting human tilt, and it uses an alarm for the profes-
sionals to gain their attention whenever required [75]. �e
magnetometer detects the magnetic �eld and relative ori-
entation. It is mostly used in elderly care devices in con-
junction with gyroscopes and accelerometers [30]. �e
LM35 sensor changes its voltage according to the change in
temperature and generally measures the body temperature
of the individual under observation [30, 77], whereas DHT11
is used to measure the environmental temperature and
humidity [76, 78]. LM35 consumes more energy compared
to DHT11. A small chip named AD8232 analyzes the
pumping stroke of heart muscles, which results in ECG
(Electrocardiogram) [80, 82]. ECG analyzes heart signals,
irrespective of the body state of the person under exami-
nation [71, 79], whereas MAX 30105 is an integrated optical
sensor with 2 LEDs in a single photodetector, processing low
noise analog signals in combination with Ardunio to
monitor the heart rate between 1.8 V and 3.3V [71, 79, 81].
ADXL335 is a body position sensor used to check the proper
shoulder position to prevent various complications, such as
pain, swelling, respiratory problems, etc.

As we have discussed in this section, various types of
sensors can be used in the IoMT network based on the
requirement of the system. Besides the selection of accurate
application-speci�c sensor, there are various other aspects
that are to be considered while developing an IoMTnetwork,
which we are going to discuss in Section 5.

5. Challenges within a Smart Healthcare
System to be Considered during IoMT
Network Design

AI provides the capability of a computer or robot, which is
controlled by a computer system for performing tasks that
are usually done by humans via their intelligence [28, 83]. In
a smart healthcare system with proper data interpretation
techniques, a machine can also monitor health parameters

0 5 10 15 20 25 30 35
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Comparison based on Energy
Consumption (%)

% of Improvement in
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Figure 9: Comparison graph for energy consumption.
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Figure 10: Comparison for packet loss.
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using the implanted/wearable sensors on the body of the
person under observation [84, 85]. Real-time disease
management and prevention with improved user-end ex-
perience can be achieved using AI [86, 87]. Designing an
IoMT-based smart network is very complex because of the
below-mentioned challenges that in°uence the designing
techniques at every edge [88]. �e routing protocol will
govern the exchange of data between routers and gives
information, enabling route selection between nodes

[89, 90]. In a smart healthcare system, we collect very
sensitive patient data using small and ultralow power IoMT
devices [91, 92]. Hence, the mentioned challenges cannot be
tackled within the implanted/wearable IoMT devices,
however, they can be balanced in the network and protocol
designing techniques with the consideration of e�ective
network topology, power conservation, and channel e�ec-
tiveness. Hence, the few points that are to be considered
especially in IoMT network designs are as follows:

Figure 11: Acute care and selfcare example [31, 70].
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Figure 12: Home care example [8, 31].

12 Computational Intelligence and Neuroscience



(1) Body movements: the real challenge arises when
there are changes in network topology because of the
movement of the user under observation with on-
body sensors or medical devices [93]. Hence, the
routing protocol in IoMTmust be adaptable to deal
with such unpredictable challenges without com-
promising the quality of communication strength.

(2) Temperature change: the main cause of the rise in the
temperature of the IoMT devise is the absorption of
radiations by the antennas and the power consumed
by node circuitry [94].)is rise in the temperature of
the wearable or implant devices can result in damage
to tissues or other body organs of the user under
observation. Hence, the considerations of (trans-
mission and computation) the power consumption
of IoMT devices are essential.

(3) Energy efficiency: energy efficiency determines de-
vice size, lifetime, and usability. Hence, the routing
protocol should optimize the energy consumption by
the IoMT device. Implant devices should have a
battery life minimum of 10 to 15 years to avoid
repetitive surgery as it results in physical and fi-
nancial loss [59]. As far as wearable devices are
concerned, frequent battery changes reduce device
usability.

(4) Range of transmission: when the range of data
transmission is short, having postural body move-
ments leads to disconnection and repartitioning
among sensor nodes in the IoMT system [5].

(5) Heterogeneous environment: the routing protocol
for SHS must be capable of handling challenges

because of the heterogeneous environment of BSN
applications (for example DexterNet) [83, 95].

(6) QoS: when we deal with real-time BSN applications,
such as ECG, it is very sensitive for data loss, and it is
time critical [96]. Hence, accordingly, the quality of
service requirements should be made to deal with
such situations. Now, implanted smart sensors have
fixed memory and computational capabilities.
Hence, the routing protocol should adopt QoS
measures [35].

(7) Security: users’ data is stored in the cloud for more
accurate and faster responses to the patients being
monitored using IoMT devices, however, this ad-
vancement can lead to the risk of user data being
stored or abused [1, 97, 98].

6. Conclusion and Future Scope

)is research paper gives an overview of the Internet of
Medical things (IoMT) with an emphasis on various en-
abling techniques used in smart healthcare systems (SHS).
Here, we have discussed various methodologies used in
smart healthcare systems, such as radio frequency identi-
fication (rfid), artificial intelligence (ai), blockchain, etc. )is
paper provides a detailed description and comparison of
various IoMT architectures being used by multiple authors
for AI-based smart healthcare systems. A smart healthcare
system will work precisely only when it will get correct and
accurate data. Hence, we are presenting a comparative
analysis of different smart healthcare data collection tech-
niques to maintain the accuracy of collected medical data.

Table 3: List of sensors and their application in the smart healthcare system.

Sr.
no.

Name of
sensors Description Applications Belonging

domain

1 Accelerometers Measures acceleration Detects glucose level in blood [8], human motion [70], and body
movement [74]. Home care

2 Gyroscope Detects angular velocity Detects human tilt and provides an alert system for a
problematic scenario [75]. Acute care

3 Magnetometer Detects magnetic field and
relative orientation

When used in combination with a gyroscope and an
accelerometer, it is capable of detecting human fall, and it is

mostly used in elderly devices [30].
Acute care

4 LM35 Senses body temperature )is sensor varies voltage with changes in temperature in
centigrade [76–78]. It is used for measuring body temperature. Selfcare

5 DHT11 Humidity and temperature
sensor

)is sensor can be used to measure temperature between 0°C
and 50°C and humidity between 20% and 90%. It is a low-power
consuming sensor with 5% accuracy [71, 77, 78]. It is used for

measuring environmental conditions.

Selfcare/home
care

6 AD8232 Electrocardiogram sensor It analyzes heart signals, irrespective of the body state of person
under examination [71, 79, 80].

Home care/
acute care

7 ADXL335 Body position sensor
)is sensor helps in proper positioning to prevent various

complications, such as body sore, swelling, pain, or respiratory
problems [71].

Selfcare

8 MAX 30105 Sensor monitors heart rate

)is integrated optical sensor with 2 LEDs in a single photo
detector processes low noise analog signal in combination with
Ardunio to monitor heart rate in between 1.8V and 3.3 V

[71, 79, 81].

Selfcare/home
care

Computational Intelligence and Neuroscience 13



For collecting these medical data, we are using implant/
wearable IoMT devices on the body of the patient. Implant
devices should have a battery life minimum of 10 years to 15
years to avoid repetitive surgery as it results in physical and
financial loss. As far as wearable devices are concerned,
frequent battery changes reduce device usability. Energy
efficiency determines the size, lifetime, and usability of the
IoMTdevices. Hence, we are focusing on techniques used for
energy optimization by the IoMTdevice.)is paper provides
a detailed comparison through both tabular and graphical
methods showing the recent work done by various authors
to maintain the energy efficiency of an IoMT network. For
calculating the efficiency of a system, different parameters
are being used, such as the amount of energy consumed,
packet delivery ratio, battery lifetime, quality of service,
power drain, network throughput, delay, transmission rate,
etc. In this paper, we are providing different correlation-
based equations for finding accuracy and efficiency within
the IoMT-based healthcare system. We are also discussing
various health domains of the IoMT framework, including
the list of sensors with their application in measuring the
health of the person under evaluation.

In this paper, we have presented seven key protocol
design challenges that need to be considered during the
implementation of an IoMTnetwork-based smart healthcare
system, namely, the regular body movement of the patient,
change in the temperature of the health monitoring device,
energy efficiency of the network, transmission range of the
device, performance of the IoMT device in a heterogeneous
environment, quality of service, and security. In this work,
we have compared and elaborated work for the efficient use
of energy, which is only one of the key challenges, and the
other six challenges need to be explored and analyzed in the
future. Considering the sensitivity of medical data, a deep
analysis and future enhancement must be done for pro-
viding security to the system.
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