

Vrije Universiteit Brussel

Internet of smart-cameras for traffic lights optimization in smart cities
Tchuitcheu, Willy Carlos; Christophe Bobda; Md Jubaer Hossain Pantho

Published in:
Internet of Things

DOI:
10.1016/j.iot.2020.100207

Publication date:
2020

Document Version:
Accepted author manuscript

Link to publication

Citation for published version (APA):
Tchuitcheu, W. C., Christophe Bobda, & Md Jubaer Hossain Pantho (2020). Internet of smart-cameras for traffic
lights optimization in smart cities. Internet of Things, 11, [100207]. https://doi.org/10.1016/j.iot.2020.100207

Copyright
No part of this publication may be reproduced or transmitted in any form, without the prior written permission of the author(s) or other rights
holders to whom publication rights have been transferred, unless permitted by a license attached to the publication (a Creative Commons
license or other), or unless exceptions to copyright law apply.

Take down policy
If you believe that this document infringes your copyright or other rights, please contact openaccess@vub.be, with details of the nature of the
infringement. We will investigate the claim and if justified, we will take the appropriate steps.

Download date: 27. Aug. 2022

https://doi.org/10.1016/j.iot.2020.100207
https://researchportal.vub.be/en/publications/6b657dab-cbf8-4113-be2f-d7bc8b4ae649
https://doi.org/10.1016/j.iot.2020.100207

Internet of Smart-Cameras for Traffic Lights Optimization in Smart Cities

Willy Carlos Tchuitcheu a,∗, Christophe Bobdab, Md Jubaer Hossain Panthob

aCamertronix, Yaounde, Cameroon
bDepartment of Electrical and Computer Engineering,University of Florida, USA

Abstract

Smart and decentralized control systems have recently been proposed to handle the growing traffic congestion in urban
cities. Proposed smart traffic light solutions based on Wireless Sensor Network and Vehicular Ad-hoc NETwork are
either unreliable and inflexible or complex and costly. Furthermore, the handling of special vehicles such as emergency
is still not viable, especially during busy hours. Inspired by the emergence of distributed smart cameras, we present a
novel fuzzy logic approach to traffic control at intersections . Our approach uses smart cameras at intersections along
with image understanding for real-time traffic monitoring and assessment. Besides understanding the traffic flow, the
cameras can detect and track special vehicles and help prioritize emergency cases. Traffic violations can be identified
as well and traffic statistics collected. In this paper, we introduce a flexible, adaptive and phase-free distributed traffic-
control algorithm that uses the information provided by distributed smart cameras to efficiently control traffic signals.
Experimental results show that our collision-free approach outperforms the state-of-the-art of the average user’s waiting
time in the queue and improves the routing of emergency vehicles in a cross congestion area.

Keywords:
distributed smart-cameras, smart city, image processing, traffic signal, intelligent traffic management system,
emergency vehicles, fuzzy logic

1. Introduction

The rapid growth in urbanization is leading to a tremen-
dous increase in automobiles in cities [1]. Unfortunately,
infrastructure development has not kept up with the growth
in transportation. With lack and limited availability of
public transportation, traffic congestion on public roads
during rush hours has become a critical problem in many
countries. This problem will be unmanageable if no ef-
fort is undertaken [2][3]. Congestion results from traffic
demand that approaches or exceeds the capacity of the
available infrastructure. There are essentially two cate-
gories of traffic congestion: 1) recurring traffic congestion
that appears at the same place and the same time every
day and 2) non-recurring traffic congestion caused by a
random unplanned event or temporary disruptions that
take away part of the roadway. The US Federal High-
way Administration defines six sources of congestion[4] as
shown in Table 1. Figure 1 shows the sources of congestion
and their contribution to congestion in percent on y-axes.

Recurring and non-recurring traffic congestion contribute
to urban traffic congestion at almost the same rate. Heavy
traffic congestion leads to waste of time, increase pollution,

∗Corresponding author
Email addresses: twilly@aims.ac.rw (Willy Carlos Tchuitcheu

), cbobda@ece.ufl.edu (Christophe Bobda), mpantho@ufl.edu (Md
Jubaer Hossain Pantho)

Table 1: Congestion sources and terms.

Termed Source

Bottlenecks
Road with inadequate physical capacity
(roadway narrows, enclave).

Traffic incidents Vehicles crashes and stalls.

Work area
Road repairs, building of new roads and
maintenance activities.

Bad weather Flood, snowfall and fog.

Rare Events Strikes and marathons.

Poor signal timings
Empty lane with green light [5] and time allocated
with respect to the volume of the traffic on the lane.

waste of fuel, increased cost of transportation and driving-
related stress, inefficient supply chains [6], with an adverse
effect on the economy [4][7][8]. Intelligent Traffic Manage-
ment System can alleviate traffic congestion by 1) collect-
ing traffic data in real-time at intersection, for instance
through the use of Wireless Sensor Networks (WSNs) [9],
RFIDs, ZigBee [10], Vehicular ad-hoc NETwork(VANETs)
[11], Bluetooth devices and cameras and infrared signals,
whereas WSNs have gained increasing attention in traf-
fic detection and avoiding road congestion [12]; 2) using
adaptive algorithm to control traffic with the goal of min-
imizing the average waiting time in queues of users; 3)
incorporating a mechanism to allow emergency vehicles to
easily cross congestion areas. As perspective work to alle-

Preprint submitted to Internet of Things February 16, 2021

viate traffic congestion, Paolo Santi [13] relies on VANET
and proposes a promising concept LightTraffic which aims
to reinvent the traffic light by challenging today’s model of
grinding to a halt every time. LightTraffic allows vehicles
to safely cross an intersection in coordination with oth-
ers approaching and could double the capacity of the cur-
rent system, minimize travel delays, reduce emissions, and
eliminate queues without lowering current car volumes.

Figure 1: Traffic congestion contribution as a percentage of
congestion source.

Despite various techniques and research for alleviat-
ing traffic congestion including ”anywhere working” [1],
”Markov chain traffic assignment” [14], and government’s
policies such as congestion pricing, driving restrictions, ve-
hicle purchase restrictions, and public transit investment,
the Intelligent Traffic Management System (ITMS) [15]
continues to face significant challenges namely:

• Congestion : can ITMS react quickly to non-recurring
congestion problem.

• Traffic incident notification (Traffic violations, traf-
fic rules) : can ITMS send real-time information to
police to act upon the situation.

• How to maintain coordination between intersections
for a safety smart city.

Table 2 presents several technologies used for traffic
control. Most of those systems rely on Wireless Sensor
Network (WSN) for traffic control coupled with cameras
for video surveillance [16]. These methods are tedious and
involve a large amount of hardware.

In this paper, we propose a new and versatile method
that infers with relevant critical scenarios at the road-
intersection. Our contribution relies on fuzzy logic to pro-
pose: 1) a model of the state queue taking into account
the priority of emergency vehicles and traffic load behav-
ior; 2) a phase-free distributed algorithm for traffic signals
control at the road-intersection. Our work addresses the
system-level architecture and methods. The cameras are
used to provide real-time and contextual data needed for

system management. Figure 2 illustrates how our method
uses distributed smart cameras along with advanced im-
age understanding to supply the waiting queue in real-time
with traffic data (vehicles count, types, density, etc). This
information can then be used by a central authority to
control the whole traffic infrastructure.

Figure 2: Communication flow.

The target of this initial paper is a smart city with
multiple connected infrastructure, including traffic light
and networking aspect as figure 3 illustrates.

Figure 3: Smart city configuration with smart infrastructure,
cloud-based data collection and decision making.

Data collected from those infrastructures are sent to
the could for analysis and decision making. In the spe-
cific case of traffic, data collected from all traffic light can
be used for inter-intersection control, tracking of special
vehicles, traffic offenders and address the non-recurring
congestion area by changing traffic rules of the adjacent
intersections. The current paper focuses on smart control
at road-intersections. The global management of the in-
frastructure and decision making in the whole context of
a smart city is not in the scope of this work and will be
addressed in future research.

The rest of the paper is organized as follows. Section
2 discusses the related work. In section 3, we describe our
modeling system. In sections 4, 5, and 6, we explain our
implemented algorithm, and the simulation and results in
section 7.

2. Related Works

In this section, we discuss related work on smart traf-
fic control. We divide the work in two categories: data

2

Table 2: Technology along with traffic data collected [17].

Technology
Vehicle
Count

Presence Speed
Output

Data
Classification

Multiple Lane,
Multiple Detection

Zone Data

Communication
Bandwidth

Inductive loop
√ √ √

*
√ √

& Low to modest
Magnetometer

√ √ √
*

√
Low

Magnetic induction coil
√ √

$
√

*
√

Low
Microwave radar

√ √
#

√ √
#

√
#

√
Moderate

Active infrared
√ √ √

@
√ √ √

Low to modest
Passive infrared

√ √ √
@

√
Low to modest

Ultrasonic
√ √ √

Low
Acoustic array

√ √ √ √ √
ˆ Low to modest

Video image processor
√ √ √ √ √ √

Low to high

* Two sensors can be used to measure speed; & With specific electronics device that categorizes vehicles;
$ By using distinct sensor layouts and data processing software; # By using a microwave radar sensor and suitable signal processing unit;

@ With multi detection region; ˆBy suitable beam forming models and data processing unit
.

collection and traffic control solutions.

2.1. Traffic Data Collection Technologies

In [17], a review of technologies for traffic data at the
intersections is performed. For each technology, the au-
thors consider the ability to count vehicles, detect vehicles,
detect the speed of vehicles and the ability to distinguish
different vehicle types. The authors also consider whether
the technology could be used in a multi-lane scenario, and
the bandwidth required to communicate the information
to a central control. The summary of the survey is shown
in table 2.

Anilloy Frank and, al,. [18] proposed a system based
on IoT to control the traffic density control using image
processing techniques. The system uses Raspberry-Pi for
communication between the server and traffic lights. It
first captures the image using USB cameras and sends it
to the server where an algorithm is developed to determine
the traffic density on each side of the road. Nevertheless,
the authors did not address the multi-lane traffic density.

The presented technologies are not suitable to detect
special vehicles such as emergency and police cars. Fur-
thermore, to detect the entire intersection, multiple sensor
nodes must be deployed to increase coverage. As a result,
efficient coordination with the central system becomes very
challenging. Our approach in this work is based on video,
which is free of the previous-mentioned challenges.

2.2. Traffic Control Algorithm

There is a large amount of literature on the subject of
traffic control algorithms. We provide an overview of the
representative examples.

In [19], the authors propose WSN architecture and an
algorithm for controlling green lights on a single intersec-
tion. Their solution is designed for an isolated intersection
and reduces waiting times without introducing congestion.

The approach has been extended in [20] to an algo-
rithm called TAPIOCA (distribuTed and Adaptative Inter-
sectiOns Control Algorithm) that considers multiple adja-
cent intersections that communicate with adjacent inter-
sections using WSN.

In [21], an improvement of TAPIOCA was proposed
for the multi-intersection case by defining mechanisms to
ease offloading between close intersections and to create
green waves. In [22], a novel approach to traffic control
at the intersection was proposed. Rather than solving the
optimization problem of green light scheduling, vehicles
compete for the privilege of passing by exchanging mes-
sages. In this case, the vehicles must have an extra device
that allows them to communicate.

In [23], an adaptive algorithm was proposed from the
back-pressure routing, which has been mainly applied to
communication and power networks. In [24], an adaptive
traffic control for both single and multiples intersections
was proposed.

In [12] a survey has been made on adaptive algorithms
for traffic control. However, these approaches haven’t con-
sidered the priority for emergency vehicles, and in case of
changing traffic rules or maintenance at the intersection,
the algorithm fails to adapt.

In general, those algorithms relying on a set of phase(
group of queue without conflict of collision in green-light)
and the WSN are not resilient to certain critical scenar-
ios such as changing the highway code at the intersection,
maintenance work on pavement and less optimize due the
green-light with empty queue observed within a phase.
Furthermore, they do not provide a safety gateway to act
under certain critical cases occurring at the intersection re-
motely. The phase-free algorithm we present in this work
is resilient capable of withstanding several critical cases
that the existing approach cannot handle.

3. Design and Modeling

In this section, we will first describe the component of
traffic light system we intend to optimize. A description
of our overall control architecture will follow.

3.1. Ecosystem

The intersections considered in this way are 4-way right-
side driving intersections. Each way has the three-color
traffic light located at the right top and a smart camera

3

installed in the face of the road. All possible movements
are allowed. An intersection is where multiple roads cross.
A road is a set of lanes. Figure 4 shows an intersection
with four lanes marked N (North), S(South), W (West)
and E (East) that intersect. Each path has three lanes in
the incoming direction, which are turn-left(L), go-forward
(F) and turn-right(R). A passing vehicle can have a path
P of {E, S, N, W} and a direction D of {L, F, R}. Thus,
a lane that has a vehicle can be determined by a pair of
{P, D}. There are twelve lanes with labels pair (P, D) :
{WR, WF, WL, ER, EF, EL, NR, NF, NL, SR, SF, SL}.
Modeling the intersection to comply with road regulations
is provided in the following table.

Table 3: Matrix of conflict.

WR WF WL ER EF EL NR NF NL SR SF SL
WR ⊗ ⊗
WF ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
WL ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
ER ⊗ ⊗
EF ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
EL ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
NR ⊗ ⊗
NF ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
NL ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
SR ⊗ ⊗
SF ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
SL ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

⊗ Not Allowed Illegal Case

Table 3 shows conflict direction matrix [24] . An empty
box {blank} means that both lanes can proceed without
a possibility of collision. A crossed circle {⊗} means that
a collision may occur if both lanes are allowed to proceed.
Because of this possibility of collision, lanes that have a
crossed circle will not be allowed to proceed simultane-
ously.

3.2. Proposed Architecture

Our proposed architecture system is shown on Figure
6. The proposed framework comprises two components:
the intersection unit and the cloud center. Within the
intersection, there are three sub-components namely the
controller, calibrated smart cameras, and the traditional
traffic signal control unit. We designed each smart cam-
era (see figure 5) by connecting a MIPI CSI-2 camera to
a Zynq UltraScale+ MPSoC board (ZU3EG) [25]. The
MPSoC board hosts a 64-bit Arm Cortex-A53 processor
infused within the programmable logic. We designed the
video pipeline on the programmable logic to receive im-
age frames on the processor. Within the programmable
logic, image data is transmitted through an AXI stream
link. The embedded processor performs video traffic an-
alyzer algorithm on image frame for extracting traffic-
related knowledge (number and type of vehicles) within
its calibrated space (waiting queues) in real-time. This
information is sent to the controller unit through the com-
munication medium (i.e. Wi-Fi). The edge module within
the controller unit which is implemented on a similar 64-bit
arm processor receives the information from different cali-
brated smart cameras and relies on traffic rules(matrix of
conflict see table 3) for optimizing the traffic light through

the traffic signal control. The layered architecture of our
controller unit indicating the data flow from the bottom
external modules to the application layer is shown in figure
6. It shows how the intersection can be remotely controlled
by changing traffic rules from the cloud.

4. Image Processing Module

In this section, we discuss the image processing used for
traffic analytic. This module is embedded within the smart
cameras at intersections and perform processing in-situ.
The advantage of this approach is reducing data trans-
port. This section describes algorithms within the camera
needed to extract knowledge such as number, types, and
direction of cars in each lane as well as the density of traf-
fic.

4.1. Detecting Vehicles

The goal is to identify the lanes separated by the white
lines on the road, then detect and count the number of ve-
hicles in each lane. Upon installing cameras at the inter-
section, calibration is first performed to define the regions
of the pictures corresponding to the different lanes. While
this detection could be done automatically, without cali-
bration, the computation overhead is too high for run-time
in-situ computation.

Camera calibration is spatial and consists of determin-
ing what parts of the scene are viewed by each camera at
the intersection [26].
The algorithm works on the set of lines Q = {l0, l1, ..., l2p−1}
used to determine the p Waiting Queues (WQ). Each line
is represented by two random points (x1, y1) and (x2, y2)
on that line: (li) : aix + biy + ci = 0 where ai = y2 − y1,
bi = x1 − x2, and ci = −aix1 − biy1. Each lane Lp =
(l2i, L2i+1) is bounded by two lines left l2i and right L2i+1.
Furthermore, for each lane Lp we assign a unique color Cp.

Algorithm 1 provides details on the vehicle counting in the
lanes for the purpose of building the waiting queue.

Because the focus of the work is on the infrastructure
for efficient control of the traffic, we will not dive into
the details of the machine learning algorithms for car de-
tection. This algorithm is part of the available machine
learning package and can be integrated into any frame-
work.

4.2. Density Measurement

In this section, we propose an approach which extends
Anilloy Frank and, al,. [18] achievement by measuring
in real-time the traffic density of multi-lane(queue) using
background subtraction operation.

Density of a queue: We define the density da of a
queue {a} as the proportions of space occupied by the ve-
hicles in {a}. Background Subtraction(BS) technique [28]
is used to compute the foreground mask and measure the
traffic density from the mask as shown in Figure 7. In the
first step, the background model is computed when the

4

Figure 4: Distributed Smart-Camera based ITMS.

Figure 5: Smart camera setup. The ultra96 MPSoC with the
camera connected to the extension board.

Algorithm 1: Algorithm Count Number Vehicle
on each Waiting Queue

// The input of this algorithm in a frame or a picture
Data: Frame F or image
// The output is the number of vehicle on each Waiting

queue
Result: Number of vehicle in each Lane
// For each frame F , use Mask-RCNN [27] to detect objects

and return the set of rectangles where vehicles have
been detected

ObjectDetect←− Net.setInput(F);
// Initialize the Number of vehicles to zero
NumV ehicle[0, ..., p− 1]←− 0;
// Classify Objects with respect to lanes
for rect(x0, y0, width, height) ∈ ObjectDetect do

// find the center of the rectangle

A(xc, yc)←− (x0 + width
2 , y0 − height

2);

// find the nearest line in Q to p by computing the
distance

j ←− arg min
i∈{0,...,p−1}

d(A, li), where d(A, li) =
‖aixc+biyc+ci‖

√

a2
i

+b2
i

, li ∈ Q;

// localize the Lane of the vehicle Lk

k ←− quotion(j/2) ;
assign the color Ck to the vehicle;
// Increase the number of vehicle of the Lane Lk

NumV ehicle[k]←− NumV ehicle[k] + 1 ;

end

road is free. In the second step, we are comparing the cur-
rent frame to the background model in order to detect the
objects(vehicles, truck, etc.) on the scene. Since the fore-
ground mask is a binary image {0 = Black, 1 = White},
we can compute the density by counting the proportion of
white over that area of ROI.

d =
countNonZero()

AreaROI
(1)

4.3. Implementation

We implemented our algorithm based on the Region
based Convolution Neural Network [27] to output an ob-
ject label, bounding box, and the mask. We have used
open-source OpenCV [29] version 4.0.0 in C++ language.
Figure 8 presents the flowchart of our implantation for den-
sity measurement and counting vehicles. We calibrated the
camera in space in order to set the set of foreground mask
and bounded of a lane for a future feature classification
[26]. The results of implementation are shown on Figure
9a and 9b as snapshot from the video processing.

Having completed the first components of our control
infrastructure, namely extracting knowledge from images
to supply waiting queues in real-time, we first perform
some analysis of performance before devoting the rest of
the paper to the remaining modules of our architecture.

4.4. Performance Analysis

We measured the computation time of our model as
illustrated in Table 4. We tested our model as a single-
core implementation on a 64-bit x86 processor with a clock
frequency of 3.60GHz. The total computation time does
not include the calibration time since this will be only
performed once only at the beginning of the computation.
For calibration and testing purposes, We used a 4-minutes

5

Figure 6: Proposed architecture system.

(a) Static Background Model

Threshold

− >

(c) Foreground Mask

(b) Current Frame

Figure 7: Density modeling. Figure (a) shows the static
background model generated during the calibration step. (b) shows

a test frame at any time t. (c) illustrates the foreground mask
extracted from the image.

video clip of a 4 -way transaction as input. The results
suggest that the model can achieve close to 4 frames per
second. This can be improved by trading the detection
model with a lighter one. We were able to achieve 13
frames per second by using the YOLO-V3-tiny model to
detect vehicles. However, this reduces the accuracy of the
model as well.

Figure 8: Design implementation.

Table 4: Performance Analysis

- Computation time (ms)

Detection time 224ms
Calculating traffic density 40ms
Total Computation time 262ms
Frames per second 3.82fps

5. Waiting Queue

Our algorithm operates on waiting queues, which are
updated using knowledge gained from the image process-
ing module. This section provides details of the various
waiting queues (WQ) used in our model.

A waiting queue represents vehicles in a given lane. We
consider two types of waiting queues in the target system:
Entry queues and exit queues:

5.1. Exit Queue

An Exit Queue noted QO or output queue at the in-
tersection can be in one of two states :

6

(a) Frame captured before applying the algorithm.

(b) Output frame after applying the algorithm.

Figure 9: Result produced from recorded traffic data.

• Open Meaning this queue can accommodate vehi-
cles.

• Closed Meaning this queue can not accommodate
new vehicles.

For a queue in open state, we find the free space by using
the density over the lane space.. This information is im-
portant for finding the maximum number of vehicles that
the queue can accommodate.

5.2. Entry Queue

An Entry queue QI or Input queue at the intersection
has three possible states :

• {A}: Active means that the signal light is green (G)
for this queue.

• {WA}: Waiting Active meaning that the signal light
should be green but for some reason(QO is closed
or important vehicle has been detected) it has been
blocked and the light remains red.

• {IA}: Inactive meaning that the signal light is red

(R) for this queue.

IA

A

WA

red wait

important Vehicle

greengreen

Figure 10: Simple state diagram of queue.

Figure 10 shows the states a queue can be in at any
time. The controller algorithm chooses the queue with the
highest number of vehicles to move from state {IA} to {A}
and the state {WA} precedes {IA}. However, the logic to
select the waiting queue with a large number of vehicles has
some problems, namely long waiting time in queue with
low traffic. Figure 11a shows that at time t, {EL} has the
highest number of cars in it’s queue so the algorithm turns
this light green, at the same time {EF, ER, NR, SR} can
be open without conflict. In Figure 11b a time t+x, {SF}
is the queue with most of the cars, so this turns green.
Observe that {EL} is filling up with vehicles and will be
opened next time, while queues such as {NL} and {WL}
with low traffic are still waiting and may wait forever.

(a) Our approach consists of setting the green light to queue with
highest number of car. At time t: {NL, W R, W L} are waiting.

(b) Apply same principle as shown on figure 11a. At time t + x :
{NL, W R} are still waiting and next queue to be opened is {EL}. So,

{NL, W R} might wait forever.

Figure 11: Dead wait of low traffic queue along heavy traffic queue
for simple state diagram queue modeling.

We have introduced the notion of internal state IA ∈
{0, 1, 2, 3, 4} (the light is still red for those states) to take
into account the fact that a queue with low traffic can
at certain time have the highest priority. As describe in
Figure 12 where

• E is a transition caused by the presence of an emer-
gency vehicle.

7

• Yi(t) is elapsed time for a queue to change his inter-
nal state during the cycle i.

• Xi(t) is the time allocated to empty the queue during
a cycle i.

A cycle is when a queue made a complete turn through
state {A}. An example of a possible cycle can be {0 →
1 → 2 → A → 0}, or{0 → 1 → 2 → 3 → WA → A → 0}.
Hence Yi(t) is computing each cycle and is constant for a
time slot t. The figure 12 shows the difference transitions
and state of a waiting queue QI .

0 1 2 3

4A

WA

Yi(t) Yi(t) Yi(t)

Yi(t)
E E E

E

E

Xt(t)
Xi(t)

Xi(t)

Xi(t)
Xi(t)

Xi(t)

Figure 12: Extend state diagram of a queue.

The set {0, 1, 2, 3, 4} are the states that a waiting queue
QI goes trough cyclically whenever transition conditions
are fulfilled. Only the controller or the master can set the
status of the queue as {A} and afterwards to zero to mark
the end of a cycle.

Let’s consider this cycle as the first running time. {0→
1 → 4 → A → 0}. The queue starts in state {0}, we
assume that, the queue is not empty (id the queue is empty,
the state remains in zero). After Y1(t) time has elapsed
(index 1 means cycle number 1) the queue moves to state
{1}. The presence of an emergency vehicle upgrades it to
state {4}, and after some time it becomes the only queue
in state {4}, and it moves to state {A}. After the time
taken to empty the queue noted X1(t), it returns to state
{0} and Y2(t) is computing to mark the end of the cycle.

Let Ia
i (t) be the internal state of queue {a} during the

cycle i, the equation is given by:

I
a
i

(t) =

{

Ia
i

(t − 1), if Ia
i

(t − 1) < 0 or Ia
i

(t − 1) > Imax

min{Ia
i

(t − 1) + 1[Y a
i

elapsed & da
I

(t),0], Imax}, Otherwise
(2)

Where I ∈ {0, 1, · · · , Imax} , in particular Imax = 4, 1[X]

is the indicator function that takes the value 1 if X is
true and 0 otherwise, and da

I (t) the current density of the
entry queue {a}. There are 12 queues in our target system:
{WR, WF , WL, ER, EF, EL, NR, NF, NL, SR, SF, SL},
each of which has an internal state. This internal state is
relayed back to the main controller, where the algorithm
sets the queue with the highest state to have a green light.
If this is not possible, it selects the next highest state
queue. After the queue has been emptied, the controller
then reassesses which queue should be given priority.

5.3. Calculating Xi(t) : time needed to empty a queue

Xi(t) is the time needed to empty the QI at time slot
t during a cycle i. This time depends on the exit and the
entry queue.

There are situations where the exit queue is not ready
to accommodate vehicles but the light is green for the entry
queue. On the figure 13, The queue {EL} has the highest
number of vehicles and has been selected, then we find the
queue in green can operate without conflict, especially the
arrival queue {EF} but the departure queue is not ready
to accommodate vehicles.

Figure 13: Case of a queue EF with green light but with exit queue
that cannot accommodate new vehicle.

Hence, we take into account all these parameters and
find out that the formula for computing the time Xa

i (t)
needed to empty a queue {a} during a cycle i ∈ N at time
slot t is:

Xa
i (t) =

min{(1− da
O(t))La

O, da
I (t).La

I}

V
. (3)

Where da
I and La

I are the current density of the vehicle on
input traffic queue {a} and the length of the queue {a},
da

O and La
O are the current density on the output traffic

queue(exit queue) and the length of the queue, and V is
the velocity to cross the crossroad.

• (1− da
O(t))La

O is the proportion of space available to
accommodate vehicles on exit (output) queue.

• da
I (t).La

I is the proportion of space occupied by ve-
hicles on the entry (Input) queue.

The function minimum guaranty the time needed to
empty a queue is enough in order to avoid vehicles to re-
main in middle of the intersection after that time elapsed.

Note that, Xa
i (t) = 0 implies either da

I = 0 meaning
there is not vehicles on the input queue, or da

O = 1 mean-
ing the Output queue is full and can not accommodate
vehicles.

8

5.4. Calculating Yi(t)

Let Y a
i be the time needed for a queue {a} to change

internal state. Y a
i can be written as a function of the time

needed to empty the queue:

Y a
i = f(Xa

i−1). (4)

Our goal is to find an appropriate function f that min-
imizes the time needed to empty the queue. If this time is
high, this queue will be assume to have heavy traffic, and
its internal state should change quickly. That is, if Xa

i−1

is large, then Y a
i should be small, and vice versa. Thus

Figure 14: Plot of a possible choice for Y a

i
= f(Xa

i−1
)

equation 4 becomes :

Y a
i = Ymin + (Ymax − Ymin)aXi−1 where 0 < a < 1 (5)

The figure 14 was obtained with a = 4.5
5 , Ymin = 0.5, and

Ymax = 15. Here we will make an assumption that the
model 14 is appropriate. Our goal is to vary the parame-
ters {a, Ymin, Ymax} in order to minimize the average wait-
ing time.

Note that if a queue has only one car, it’s internal
state will still change, but the time taken to change will
be longer than that of a queue with many cars. This way
both the number of cars and the time spent are taken into
account when assigning an internal state.

The complete algorithm is described as flowchart on
the figure 15. Note that, each queue is supposed to run
independently this algorithm.

Table 5: Sub functions used on flowchart Figure 15.

Sub-process

Init() Yi = f(Xi−1);Status=0; Event=F alse; T=Time().

ChangeLevel() Check if Yi time elapsed and d , 0 and status , {A, W A}.
IncreaseStatus() Status = Ii(t + 1), get it from equation 2
VehicleImportant() Event= (emergency vehicle detected) ? True : False
SetPriority() Set Status = (Status <4) ? 4 : WA.
ResetEvent() Event=False

Figure 15: Flowchart queue insight.

Table 6: Variables used on flowchart figure 15.

Variables

T Record the time when increase Status occurs.
Status Current Internal state of a queue, ∈ {0, ..., Tmax, W A, A}
Y i Time elapsed for changing the internal state during current cycle.
d Current density of the queue.
X Time needed to empty queue during the previous cycle

6. Distributed Control Algorithm

In this section we describe the distributed algorithm
for traffic light, based on the conflict matrix 3.

6.1. Modeling

We have described the different states of a queue in
section 12, taking into account the density of traffic and
the time elapsed. The road code was modeled through the
conflict table 3 where entries in the diagonal were consid-
ered the illegal case. In the rest of this article, this table
will be seen as a square symmetric matrix where indexes
are queuing labels and the diagonal entries will hold the
state of the corresponding queue. This matrix named here
M contains the configuration of the intersection and the
current state of the system.

Thus the square matrix M corresponds to the states
of the queue and being constructed based on the following
formula:

M[a,b](t) =

{

Ia
i (t), if a = b

⊗, if queue {a}is in conflict with queue. {b}
0, Otherwise.

(6)

where Ia
i (t) is the current state of queue {a} from 2. Note

that, from the equation (6) are follow :

M[a,b] = M[b,a] and M[a,a] = Ia
i

To solve this, we introduce a numerical values for the active
state A : −1. and similarly for the waiting active state, we
assign it a value of Imax + 1 which is 5 in particular.

{A} ← −1 and {WA} ← 5

{A} and {WA} are respectively the status Active and
Waiting Active from our state diagram of Figure 10. The

9

matrix M of equation 7 represents the state of the system
at a specific time where the diagonal is the only dynamic
part. The queues {ER, NR} in red are operative, thus
their internal state is set as {A} meaning M[ER,ER] =
−1, and the next queue to open is {SF} because of its
highest internal state obtaining with following formula
arg max{diagonal(M)} = arg{M[i,i] = 3} = {SF}.

M =

W R · · · ER · · · NR · · · SF

2 · · · 0 · · · 0 · · · 0 W R

.

.

.
. . .

.

.

.
. . .

.

.

.
. . .

.

.

.
.
.
.

0 · · · −1 · · · 0 · · · ⊗ ER

.

.

.
. . .

.

.

.
. . .

.

.

.
. . .

.

.

.
.
.
.

0 · · · 0 · · · −1 · · · 0 NR

.

.

.
. . .

.

.

.
. . .

.

.

.
. . .

.

.

.
.
.
.

0 · · · ⊗ · · · 0 · · · 3 SF

(7)

This model with the matrix gives us a flexibility in case
of modification of the road code at the intersection, it will
be enough for us to modify the static part of the matrix
by performing an operation to exchange between {0} and
{⊗}. These operates can be extend in remotely control
the intersection for a smart city.

6.2. Algorithm for updating the matrix M

The matrix M is made up of a diagonal and non-
diagonal entries which hold respectively the current in-
ternal state of queues and the configuration of conflict be-
tween queues. The diagonal entries are dynamic as queues
state change over time(see figure 15). Algorithm 2 de-
scribes how the matrix M is updated during run-time by
computing the internal state of each queue (see equation
2) and assigning it to its corresponding cell of the matrix
M .

Algorithm 2: Update the matrix M

Data: set of the queue
Result: Matrix M
for q ∈ setOfQueue do

// Compute the internal state of the queue from the
flowchart 15

Compute Iq ;
// Update the diagonal of the matrix M
M [q, q]← Iq ;

end

6.3. Notations and Sub-functions

Now that we have digitized any intersection via our
Matrix M , before writing the distributed algorithm, we
are going to show variables and sub-functions used in the
algorithm.

Table 7: Notations used in algorithm 3.

Variables Meaning

Q
Set of all queue
i.e Q = {W R, W F, W L, ER, EF, EL, NR, NF, NL, SR, SF, SL}

M Square Matrix of size ‖Q‖ × ‖Q‖
ListOpen Set of queue to open
RunList Set of queue in process
S Set of forbidden queue
Ua set a queue without conflict with queue {a}

For the Sub functions, we have two. Sort(L) : which
Sorts in ascending order the items in the list L, and Open(a).

Open(a) =

{

True, ifXa(t) , 0 we obtain Xa from equation3

Xa(t): time needed to empty the queue {a}
False, Otherwise.

Basically, the sub-function open(a) is a Boolean function
that returns true if the time needed to empty the queue is
different to zero and false otherwise. Consider a scenario
where an entry queue is full and the exit queue is also full.
Then at a certain time, we realize that the queue has the
highest priority. If we set a queue to green, the vehicles
will stand in the middle of the intersection and that will
cause traffic congestion. In order to avoid that, the time
Xa

i needed to empty a queue is taking into account this
scenario.

The distributed algorithm 3 is based on the matrix M

essentially the diagonal of the matrix. It operates accord-
ing to the principle that the queue having a high priority
level (internal state) will be selected, and this algorithm is
supposed to be executed by an irregular interval of time.

7. Simulation

This section evaluates our algorithm using a combi-
nation of image processing and the SUMO (Simulation
of Urban MObility,[30]) framework. SUMO is an open-
source, discrete-time, continuous space, microscopic simu-
lator entirely coded in C++ to model traffic flow as well
as supporting tools, mainly for network import and de-
mand modeling. In short, it allows placing sensors and
retrieving real-time traffic data using tools TraCI (Traffic
Control Interface) and to act on the behavior of the Traf-
fic Light Control on-line. Our distributed algorithm is
based on an intersection modeled from the city Amiens in
France at rush hour, between 8 AM and 9 AM, which ac-
cording to Sebastien Faye and al. [20] statistically have in
SUMO new vehicles arrival-rate of λ = 0.8 per second on
the intersection. Relying on this statistical assumption,
our simulation was conducted on an intersection with 4
directions and 12 possible movements: from each direc-
tion, a vehicle could go straight, turn left or turn right. In
addition to that, we injected emergency vehicles with an
arrival rate of λ = 0.025 per second in order to evaluate
the impact of such vehicles on our distributed algorithm.
Each simulation ran for 3600 program steps representing
the 3600s. The results presented below are the average
waiting time computed on the 3000 first vehicles that left
the intersection. This allows us to evaluate our algorithm
with a realistic traffic. Note that, the TraCI tool allows
us to gather traffic data but in the real deployment of our
proposed solution, those traffic data are provided by the
distributed smart-cameras installed at the intersection.

1https://www.youtube.com/watch?v=RLTZmprHFnw

10

Algorithm 3: Distributed Algorithm.
Data: Matrix M
Result: Return the set of queue to open ListOpen
// initialization
ListOpen← ⊘ ;
// get set a queue in process
RunList← arg{diag(M) < 0} ;
S ← RunList ;
// find set of queue which is in conflict with queues in

Process
for q ∈ RunList do

p← argi∈Q{M [q, i] = ⊗} ;
S ← S ∪ {p} ;

end
listOrder ← argi∈Q\S{Sort(M [i, i])} ;
// find exactly one queue without constraint to open
for q ∈ ListOrder do

S ← S ∪ {q} ;
if Open(q) then

M [q, q]← W A = 5 ;
// Take the next queue with highest level
continue;

else
ListOpen← {q} ;
break ;

end

end
if ListOpen = ⊘ then

// End the program if there no queue to open
exit() ;

else
// find the list of queue without conflict with

q ∈ ListOpen
Uq ← argi∈Q\S{M [q, i]) , ⊗} ;
// Find the set of queue to open in parallel with q

without conflict
while Uq , ⊘ do

// Among those queues, chose the one with highest
internal state

p← arg max
i∈Uq

{M [i, i]} ;
//
if Open(p) then

// add p in the list of queue to open
ListOpen← ListOpen ∪ {p} ;

end
// remove p from Uq

Uq ← Uq\{p} ;
// find the list of queue without conflict with p
Up ← argi∈Uq

{M [p, i] , ⊗} ;
Uq ← Uq ∩ Up

end

end

Figure 16: Capture of simulation after 150 steps(150 seconds),
Emergency vehicle(EV) in blue and Classic vehicles(CV) in yellow.
The video as support materials of the simulation is available here 1.

7.1. Parameters

The green light limit time Tmax are expected to have
a strong influence on the performance result. In case
Tmax < Xi (define time needed to empty queue i see equa-
tion 3), the green light queue will be Tmax. Afterwards,

the internal state of the queue will not be set to zero but
proportionally to the ratio between Tmax and Xi. We
chose to evaluate the algorithm with two scenarios :(1) S1

when taking into account the priority of the emergency
vehicles; (2) S2 without considering priority on any ve-
hicles. For both scenarios, we output the average wait-
ing time of emergency vehicles(EV), classic vehicles (CV)
and both vehicles (AV). These simulation is conducted for
Tmax ∈ [15, 90] in steps of 5 seconds.

(a) Multiple average waiting time for scenarios S1

and S2 with collision forbidden.

(b) (Vehicle type, scenario), Tmax influence on average waiting time with
collision forbidden.

Figure 17: Performance results.

Figures 17a and 17b present the average waiting time
at an intersection for different class of vehicles with and
without emergency vehicles. We can first notice that, the
scenario S1 allows reaching the better average waiting time
especially the emergency vehicles (EV), which is the target
class of vehicle for this scenario. We can also notice the
fact the average waiting time is proportional to Tmax.

7.2. Performance

We compare the results of the distributed algorithm
presented above to other achieved works [24],[19],[20] on
the same isolated-intersection data set of Amiens city in
France. Provided the correct value of Tmax, our distributed
algorithm achieves the best average waiting time with a
record of an average vehicle of 2651 instead of 2138 for
3600 steps (3600 s). Moreover, our algorithm is more ef-
ficient as it can fast evacuate the emergency vehicles at

11

the intersection while fulfilling the constraints of zero col-
lisions and no green light with an empty queue. In addi-
tion to that, this faster evacuation will be done without
significantly increasing the average waiting time of non-
emergency vehicles.

Figure 18: Performance analysis of our result to other result on
Amiens isolated dataset 2.

8. Conclusion and Future Works

In this work, we presented a vision-based infrastructure
of a decentralized approach for the Intelligent Transporta-
tion System(ITS). The main challenges associated with
traffic congestion and emergency vehicles were discussed
and an adaptive algorithm was presented.

We have modeled an intersection through the conflict
matrix, thus giving flexibility in case of a modification of
the code of the road, it will be enough to perform an ex-
change operation on the matrix. The proposed optimized
phase-free distributed algorithm for traffic signal control
is based on this matrix and it will provide a set of queues
without conflict of collisions and the time needed to empty
each queue. We also took into account the balance be-
tween the queue with heavy traffic and low traffic in order
to avoid the problem of an empty queue with a green light.

We also implemented an algorithm to monitor real-
time traffic information using cameras. This low cost and
smart vision-based infrastructure approach for gathering
traffic data replaces the use of WSN coupled with cameras
for video-surveillance which are complex to establish.

Our future works will attempt to first extend the simu-
lation to multiple intersections data-set while introducing
new elements like pedestrian crossing, and secondly port
this work on edge devices to perform computation on the
edge.

References

[1] J. L. Hopkins, J. McKay, Investigating ‘anywhere working’as
a mechanism for alleviating traffic congestion in smart cities,

2http://tapioca.sfaye.com/

Technological Forecasting and Social Change 142 (2019) 258–
272.

[2] J. Wan, Y. Yuan, Q. Wang, Traffic congestion analysis: A new
perspective, in: 2017 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 2017, pp. 1398–
1402.

[3] V. Pattanaik, M. Singh, P. K. Gupta, S. K. Singh, Smart real-
time traffic congestion estimation and clustering technique for
urban vehicular roads, in: 2016 IEEE Region 10 Conference
(TENCON), 2016, pp. 3420–3423.

[4] F. F. H. Administration, 2013 status of the nation’s highways,
bridges, and transit: Conditions & performance, in: Rep. to
Congress, 2013.

[5] J. R. Srivastava, T. Sudarshan, Intelligent traffic management
with wireless sensor networks, in: 2013 ACS International Con-
ference on Computer Systems and Applications (AICCSA),
IEEE, 2013, pp. 1–4.

[6] J. L. Hopkins, J. McKay, Alleviating traffic congestion around
our cities; how can supply chains address the issue?, in: Paper
Presented at the 6th International Conference on Operations
and Supply Chain Management, Bali, Indonesia, 2014.

[7] A. K. Emo, G. Matthews, G. J. Funke, The slow and the fu-
rious: Anger, stress and risky passing in simulated traffic con-
gestion, Transportation research part F: traffic psychology and
behaviour 42 (2016) 1–14.

[8] C. Loong, D. van Lierop, A. El-Geneidy, On time and ready
to go: An analysis of commuters’ punctuality and energy lev-
els at work or school, Transportation research part F: traffic
psychology and behaviour 45 (2017) 1–13.

[9] H. M. Sherif, M. A. Shedid, S. A. Senbel, Real time traffic ac-
cident detection system using wireless sensor network, in: 2014
6th International Conference of Soft Computing and Pattern
Recognition (SoCPaR), 2014, pp. 59–64.

[10] Aisha Al-Abdallah, Asma Al-Emadi, Mona Al-Ansari, Nassma
Mohandes, Qutaibah Malluhi, Real-time traffic surveillance us-
ing zigbee, in: 2010 International Conference On Computer De-
sign and Applications, Vol. 1, 2010, pp. V1–550–V1–554.

[11] Z. Lu, G. Qu, Z. Liu, A survey on recent advances in vehicu-
lar network security, trust, and privacy, IEEE Transactions on
Intelligent Transportation Systems 20 (2) (2019) 760–776.

[12] K. Nellore, G. P. Hancke, A survey on urban traffic management
system using wireless sensor networks, Sensors 16 (2) (2016)
157.

[13] P. Santi, Reinvent the traffic light, in: Onward: mobility in
the next New York, Urban Design Forum editions, 2018, pp.
135–137.

[14] S. Salman, S. Alaswad, Alleviating road network congestion:
Traffic pattern optimization using markov chain traffic assign-
ment, Computers & Operations Research 99 (2018) 191–205.

[15] D. Singh, A. M. Alberti, Developing novagenesis architecture
for internet of things services: Observation, challenges and itms
application, in: 2014 International Conference on Information
and Communication Technology Convergence (ICTC), 2014,
pp. 1009–1014.

[16] M. Franceschinis, L. Gioanola, M. Messere, R. Tomasi, M. A.
Spirito, P. Civera, Wireless sensor networks for intelligent trans-
portation systems, in: VTC Spring 2009 - IEEE 69th Vehicular
Technology Conference, 2009, pp. 1–5.

[17] G. Padmavathi, D. Shanmugapriya, M. Kalaivani, A study on
vehicle detection and tracking using wireless sensor networks,
Wireless Sensor Network 2 (02) (2010) 173.

[18] A. Frank, Y. S. K. Al Aamri, A. Zayegh, Iot based smart traffic
density control using image processing, in: 2019 4th MEC In-
ternational Conference on Big Data and Smart City (ICBDSC),
IEEE, 2019, pp. 1–4.

[19] S. Faye, C. Chaudet, I. Demeure, A distributed algorithm for
adaptive traffic lights control, in: Intelligent Transportation
Systems (ITSC), 2012 15th International IEEE Conference on,
IEEE, 2012, pp. 1572–1577.

[20] S. Faye, C. Chaudet, I. Demeure, A distributed algorithm for
multiple intersections adaptive traffic lights control using a wire-

12

less sensor networks, in: Proceedings of the first workshop on
Urban networking, ACM, 2012, pp. 13–18.

[21] S. Faye, C. Chaudet, I. Demeure, Multiple intersections adap-
tive traffic lights control using a wireless sensor networks (2014).

[22] W. Wu, J. Zhang, A. Luo, J. Cao, Distributed mutual exclusion
algorithms for intersection traffic control, IEEE Transactions on
Parallel and Distributed Systems 26 (1) (2015) 65–74.

[23] T. Wongpiromsarn, T. Uthaicharoenpong, Y. Wang, E. Fraz-
zoli, D. Wang, Distributed traffic signal control for maximum
network throughput, in: Intelligent Transportation Systems
(ITSC), 2012 15th International IEEE Conference on, IEEE,
2012, pp. 588–595.

[24] K. M. Yousef, M. N. Al-Karaki, A. M. Shatnawi, Intelligent
traffic light flow control system using wireless sensors networks.,
J. Inf. Sci. Eng. 26 (3) (2010) 753–768.

[25] Xilinx, Zynq ultrascale+ devices, in: Reference Manual, 2019.
[26] C. Bobda, S. Velipasalar, et al., Distributed Embedded Smart

Cameras, Springer, 2014.
[27] K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask r-cnn, in: 2017

IEEE International Conference on Computer Vision (ICCV),
2017, pp. 2980–2988. doi:10.1109/ICCV.2017.322.

[28] G. Bradski, A. Kaehler, Learning OpenCV: Computer vision
with the OpenCV library, ” O’Reilly Media, Inc.”, 2008.

[29] G. Bradski, The OpenCV Library, Dr. Dobb’s Journal of Soft-
ware Tools (2000).

[30] D. Krajzewicz, J. Erdmann, M. Behrisch, L. Bieker, Recent
development and applications of SUMO - Simulation of Urban
MObility, International Journal On Advances in Systems and
Measurements 5 (3&4) (2012) 128–138.
URL http://elib.dlr.de/80483/

13

