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ABSTRACT Applications and technologies of the Internet of Things are in high demand with the increase
of network devices. With the development of technologies such as 5G, machine learning, edge computing,
and Industry 4.0, the Internet of Things has evolved. This survey article discusses the evolution of the
Internet of Things and presents the vision for Internet of Things 2.0. The Internet of Things 2.0 development
is discussed across seven major fields. These fields are machine learning intelligence, mission critical
communication, scalability, energy harvesting-based energy sustainability, interoperability, user friendly
IoT, and security. Other than these major fields, the architectural development of the Internet of Things and
major types of applications are also reviewed. Finally, this article ends with the vision and current limitations
of the Internet of Things in future network environments.

INDEX TERMS IoT, IoT2.0, Machine Learning, Mission Critical Communication, Scalability, Energy
Harvesting, Interoperability, Usability, Security, 5G, 6G.

I. INTRODUCTION

The term “Internet of Things” (IoT) was first coined by Kevin
Ashton in 1999 [1]. The International Telecommunication
Union (ITU) has formally defined IoT as, “A global infras-
tructure for the information society, enabling advanced ser-
vices by interconnecting (physical and virtual) things based
on existing and evolving interoperable information and com-
munication technologies [2].” This definition can be viewed
as the basis of IoT technologies. There is an increasing
demand for the IoT applications and technologies worldwide.
It is predicted that networked devices will increase from 18
billion in 2017 to 28.5 billion in 2022, and Machine to ma-
chine (M2M) connections will reach 15 billion in 2022 [3].
With recent advancements in the fifth-generation of mobile
telecommunications technology (5G), high speed and low la-
tency networks will further facilitate the development of IoT
technologies and applications [4]. However, with the recent
advancement of other technologies and application such as,
machine learning, edge computing, and Industry 4.0, there is
a need to update and redefine the concept of IoT towards IoT
2.0 [4, 5, 6]. There are many industry and public mentions

of IoT 2.0 visions. Many of them focus on improving IoT
application productivity and service quality with the vision
of users [7, 8, 9]. AI-driven service development is viewed as
a way to enhance service quality [10]. IoT interoperability is
another field that attracted attention for IoT 2.0 [11]. Other
than these fields, security and privacy vulnerabilities are also
mentioned as issues to be solved in the next generation IoT
systems [12]. A potential solution to reinforce IoT security
and privacy could be blockchain [13].

At the Samsung Developer Conference 2019, interoper-
ability, security, connectivity, and automation of IoT ap-
plications are major fields of further development in the
IoT 2.0 vision [14]. Other than this conference, a report
[15] from the Joint Research Centre (JRC) of the European
Commission concluded that IoT 2.0 should utilize machine
learning technologies to enhance the generated intelligence
and knowledge available to users. In this process, interpo-
lation is an issue that limits the advancement of specialized
edge services. Therefore, approaches toward integration and
standardization are inevitable for the evolution of IoT and
further development of IoT applications. Compared to the
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FIGURE 1. IoT 2.0 Concepts.

enthusiasm in the industry, academic works on the concept
of IoT 2.0 are limited. In [16], an IoT 2.0 platform is
proposed. This platform integrates application development,
deployment, and sharing. Interoperability is featured as a
key function of the IoT 2.0 platform [16, 17]. The authors
of [18] demonstrated the “Identity of Things” as an IoT
2.0 component. IoT applications should also be identified
by their manufacturers to avoid security issues generated by
any criminal parties [18]. In [19], an IoT 2.0 conceptual
framework is developed to emphasize the usability of IoT and
systems for end-users. Distributed intelligence powered by
artificial intelligence (AI) is discussed in [20] and recognized
as an aspect of IoT 2.0. The above works only describe one or
a few aspects of advancement in IoT. Also, the authors of [21]
concluded that very few existing survey papers had connected
different aspects of IoT. Therefore, the primary objective of
this article is to provide an in-depth analysis of recent IoT
advancement and define the concept of IoT 2.0. This article
surveys the recent development of IoT technology over the
period 2015–2020 in seven dimensions as IoT 2.0. These di-
mensions include machine learning intelligence, mission crit-
ical communication, IoT scalability, IoT sustainability, IoT

interoperability, user friendly IoT, and IoT security shielding
the previous six aspects from external attacks (Figure 1). The
contributions of this article are:

1) Discussion of recent IoT architectures.
2) Identifying challenges and limitations on practical IoT

applications.
3) Conclude and analyze recent research trend.
4) Establishing visions of IoT in future sixth-generation of

mobile telecommunications technology (6G) environ-
ment.

The rest of this article is structured as follows. Section II
provides an overview of related technologies and concepts.
Section III examines the IoT architectures. Sections IV and
V elaborate on the usage of machine learning techniques
and the requirements of mission critical applications. Then,
Section VI describes different types of scalability and scala-
bility enabled by software defined networks (SDN). Sections
VII and VIII establish the security and performance require-
ments of IoT 2.0. After that, Section IX focuses on energy
harvasting-based IoT sustainability. Section X reports IoT
interoperability with existing standards. Section XI illustrates
user friendly IoT as the final dimension of IoT 2.0. Section
XII addresses the recent development of IoT applications.
Finally, Section XIII defines current challenges and future
research directions, followed by Section XIV the conclusion.

II. TECHNOLOGIES AND CONCEPTS UNDERLYING IOT

2.0

A. 5G

The authors of [22] revealed the requirements of 5G-based
IoT as high data rate, highly scalable and fine-grained net-
works, very low latency, reliability, resilience, security, long
battery lifetime, connection density and mobility. Therefore,
5G grants IoT applications the capability to provide bet-
ter services by gathering more data in a faster and more
secure channel. Furthermore, 5G networks could support
the development of next-generation IoT applications. In this
subsection, the 5G enabling technologies are reviewed.

Wireless Network Function virtualization (WNFV) is a
major part of 5G networks. It not only enables network
services to be run through software, but also enables wireless
networks to be managed more efficiency and provide better
Quality of Service (QoS). Network slicing is key technology
within 5G which is built on top of the WNFV to create
logically separate networks and provide end-to-end QoS
guarantees [23].

5G Heterogeneous networks have evolved to improve the
speed of data transmission. To reduce latency, multi-tier cell
architectures are deployed to offload data from higher tier
centralized cells to lower-tier distributed cells. Lower tier
cells are closer to the end users. Hence, latency is reduced
[24].

Advanced spectrum sharing and interference management
enable wider coverage area and higher traffic load balance
[24]. To further improve spectral efficiency, device to device
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(D2D) communication technology is also included in 5G
networks. This technology allows users in close distance to
communicate without a base station. Therefore, D2D com-
munication improves not only spectral efficiency but also
provides high throughput and energy efficiency [22].

One key enabler of real-time applications is edge comput-
ing. As edge computing enables low latency data transmis-
sion, real-time smart applications can be developed to pro-
vide high quality services [25]. Therefore, in a 5G network
age, integration of AI and edge computing enhanced IoT will
significantly enhance the quality of user experience [22].

B. TACTILE INTERNET

The authors from [26] highlighted that Tactile Internet in-
cludes human to machine interactions through haptic devices.
They view Tactile Internet on the same level as IoT and
5G. Therefore, revealing the common properties of Tactile
Internet, IoT and 5G as low latency, ultra-high availability,
Human to Human (H2H)/M2M co-existence, data-centric
technologies and security. However, the authors from [27]
interprets Tactile Internet as another domain addressed by the
low latency requirement of 5G and actuated by the wireless
communications of IoT.

Based on the properties of Tactile Internet from [27],
the authors of [28] further categorized the challenges of
Tactile Internet into communications, haptics, artificial in-
telligence, and computation. Communication challenges are
higher data rates, ultra-low latency, high reliability, and sup-
port of cloud/fog network overheads. These requirements are
almost identical to the properties of 5G networks. Therefore,
communication requirements can be resolved under the envi-
ronment of 5G. Low latency services also require artificial
intelligence and computation power. Artificial intelligence
can be leveraged to predict future actions to compensate
for latency. Furthermore, artificial intelligence is also the
basis of intelligent services. Similar to artificial intelligence,
faster computation also reduces the impact of latency. It also
supports computation for artificial intelligence and real-time
haptic services. The authors of [29] provided six use cases
of Tactile Internet applications. The first use case is health
care. An example of a health care application is exoskeletons
for disabled people. The exoskeleton can detect changes
in human muscle to perform certain movements. However,
tactile latency is required to ensure safety. Exoskeletons
can also be used for education and sports. It can be used
in virtual training centers so that students can train in any
location. Another use case is traffic. Tactile Internet enables
fully autonomous traffic, where vehicles can react instantly to
incoming humans on the street. Therefore, this system aims
to prevent any injury or death from traffic accidents. This also
enhances the performance of monitoring. The usage of free-
viewpoint video provides multi-perspective monitoring for
users [29]. In the industrial sector, Tactile Internet enables
mobile robots for production, reducing any human injuries
during production. The last use case is the smart grid. Using
Tactile Internet, low latency networks can synchronize the

usage of power to the suppliers. This allows the suppliers
to precisely adjust the reactive power, preventing wastage of
power.

C. EDGE COMPUTING

The aim of edge computing is to reduce bandwidth usage and
latency for an IoT network. From Figure 2, as a major task
of edge computing, machine learning is highly deployable
on edge devices [30]. Edge computing is an enabler of low
latency and real-time AI applications. In this subsection, the
major architectures of edge computing are discussed.

There are three significant architectures of edge comput-
ing: fog computing, mobile edge computing (MEC) and
cloudlet computing [30]. Fog computing is an extension of
traditional cloud computing with fog computing nodes [30].
These fog computing nodes are placed between the end
devices and a centralized cloud. The function of these fog
computing nodes is to aggregate heterogeneous data from
different sources. Furthermore, the fog computing nodes act
as an interface to access these heterogeneous data, protecting
any user from the heterogeneity of data. In the second archi-
tecture, MEC, is designed for cellular networks [30]. Unlike
fog computing nodes, MEC nodes utilize both computational
and storage capabilities. The functionality of these nodes can
be modified through virtualization interfaces. Hence, MEC
nodes can provide flexible, low latency, and real-time ser-
vices to mobile end users. Finally, cloudlet computing is im-
plemented with a cloudlet, which is a virtualized server that
is one hop away from the end user [30]. Cloudlets are able to
store provisional resources. Therefore, this architecture also
can provide end users with flexible, low latency, and real-time
services [31]. Based on these major architectures, there are
also further enhancements in IoT networks improving energy
efficiency [32, 33] and data reliability [34].

In conclusion, the major edge computing architectures are
implemented with extended servers or nodes near the end
users. The common purposes of these nodes are reducing
latency, providing computation or storage capabilities, and
delivering real-time services to end users. In a 5G envi-
ronment, these node properties are the basis of intelligent
services pushed by big data transmission and processing.
Tactile Internet and Industry 4.0 also drive potential appli-
cation requirements for IoT 2.0.

D. INDUSTRY 4.0

The authors of [35, p.835] defined Industry 4.0 as “the fourth
industry revolution.” The Cyber-Physical System (CPS) is
the basis of this revolution. The authors of [5] revealed that
“CPS are industrial automation systems that integrate innova-
tive functionalities through networking to enable connection
of the operations of the physical reality with computing and
communication infrastructure.” This definition shows that
CPSs require heterogeneous data from multiple sources. As
a result, data analytics techniques are suitable for implement-
ing intelligence as part of the CPS service. The authors of [5]
also pointed out that methods for processing data remain a
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FIGURE 2. Major tasks of edge computing. [30]

challenge for these CPS applications. Hence, the implemen-
tation of big data analytics and machine learning are essential
for the development of Industry 4.0. The amount of data
generated by intelligent CPSs is difficult for a centralized
cloud architecture to process. Inevitably, edge computing is
used to distribute the load for data processing. Also, edge
computing devices are closer to the end users. Therefore, it
ensures lower latency of a service [36].

E. MACHINE LEARNING

IoT data processing is a challenge due to the 5V (volume,
velocity, variety, veracity, and value) features of these data
[37]. Data analytics techniques like machine learning can
process data with complex 5V features [38]. Furthermore, ap-
plying machine learning on heterogeneous IoT data ensures
intelligence to IoT applications, providing better and efficient
services.

The major types of machine learning are supervised learn-
ing, unsupervised learning and reinforcement learning [39].
The supervised learning methods use input data with ex-
pected outcomes to lead the learning process of a machine
learning model. On the other hand, the expected outcome is
not provided when training an unsupervised learning model.
An unsupervised learning model is built through clustering
and other statistical methods [40]. Reinforcement learning
models perform actions with input features or state of the cur-
rent environment. This model learns from the return reward
of the action and improves through trial-and-error [41].

III. IOT ARCHITECTURES

In this section, technical improvements of current IoT archi-
tectures are revealed through a detailed analysis of novel IoT
architectures under the environment of 5G, Tactile Internet,
and Industry 4.0. There are many different IoT architectures
[42, 43, 44, 45, 46, 47, 48, 49, 50]. The authors in [42]

aggregated the conventional IoT architectures into a layered
architecture of six layers. From Figure 3, this architecture
consists of the physical layer, the perception layer, the net-
work layer, the middleware/cloud layer, the application layer,
and the business layer. With the assumption that end devices
have limited power, memory and computational resource, the
perception layer or the end devices in the perception layer are
only responsible for data collection and transfer. Therefore,
all data is transmitted to the middleware/cloud layer for
further processing. For applications with extensive data flows
like virtual reality and augmented reality, the throughput and
latency of data transmission cannot meet the requirements of
real-time, perhaps mission critical service. Therefore, novel
IoT architectures are needed in this new era of 5G, Tactile
Internet, and Industry 4.0 [51, 52, 43].

Similar to conventional IoT architecture, the recent IoT
architectures reviewed in this paper also contain end-devices
and cloud layers. On the other hand, the most significant
difference is the utilization of an edge/fog layer in the recent
IoT architecture to provide real-time services, data analytics,
and data processing functionalities near the end devices. The
combination of machine learning models for data analytics
services is one of the drivers for these recent architectures
[43, 44, 45, 46, 47, 48, 49, 50]. Figure 4 shows the layers
with the functions of these recent IoT architectures. As an
architecture providing basic edge computing, the authors
followed a three-layered design. This design consists of the
IoT end device layer, the fog/edge layer, and the cloud layer.
The IoT end device layer is similar to the perception layer
of the conventional IoT architecture. This layer also contains
IoT sensors, actuators, and end devices for data collection
and transmission. Data is passed to the fog/Edge layer to
perform analytical procedures and processed for a higher-
level layer. The final layer of the three-layered architecture
is the cloud layer, providing a platform for centralized data
analytics, storage, and decision making [44, 45, 46]. Com-
paring the above recent architectures with conventional IoT
architectures, the involvement of the edge computing layer is
the root of the changes between architectures.

The authors of [47] separated the cloud layer into a cloud
layer and a new network core layer. This layer connects
the cloud layer with the fog/edge layer. Also, it provides a
flexible and scalable interface for controlling the fog/edge
layers [47, 50]. This interface is also developed between
the data edge/fog layer and the IoT end device layer. More
specifically, the network domain and the communication
layer have similar functions to the network layer of the
conventional IoT architecture. These layers create a link
between the end devices and the fog/edge level devices.
Also, as a 5G process, the communication layer facilitates
advanced spectrum sharing and interference management for
D2D communication [43, 49].

The application layer is above the cloud layer. For dif-
ferent IoT applications, the application layer is different.
However, in the recent IoT architectures, the application
layer commonly acts as a software interface to control lower
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FIGURE 3. Layered Conventional IoT Architecture. [42]

layers. Services could be deployed on the cloud level and the
edge/fog level to provide centralized high-level services and
distributed, real-time services, respectively [43, 48, 49, 50].

The authors of [43] proposed an eight-layer IoT archi-
tecture. Different from the previous architectures, the data
storage layer, the collaboration/process layer, and security
aspects are added to consider the security and performance
requirements under the 5G environment. The data storage
layer stores raw data from the edge/fog layers. This ex-
pands the limited memory of edge devices and prepared
for services with high volume traffic. The second layer,
collaboration/process layer, is designed for modern business
settings. It allows collaboration from different personnel.
Finally, security is recognized as a concept applied to all
layers to protect them against possible external attacks.

IV. MACHINE LEARNING INTELLIGENCE

This section presents the machine learning intelligence appli-
cations. As a start, the relevant supervised, unsupervised, re-
inforcement, and other relevant machine learning algorithms

are introduced. Then, the usage of machine learning on the
physical layer, the network layer, the edge computing layer,
and the cloud layer are introduced. On the physical layer,
machine learning helps end devices perform energy preser-
vation scheduling and physical layer communication. Then,
this section demonstrates the usage of machine learning to
improve network layer performance and reduce management
overhead. After that, edge layer devices and motivations of
applying machine learning on edge are described. Finally,
this section focuses on the collaboration between the cloud
layer and the edge layer.

A. MACHINE LEARNING ALGORITHMS

1) Supervised Learning Algorithms

In supervised learning, the model learns through reducing
the output of the cost function, which usually represents the
model prediction and the true value. The major supervised
learning methods are linear regression, logistic regression,
support vector machines (SVM), Naïve Bayes classifiers, and
k-nearest neighbors. Some deep learning algorithms, includ-
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FIGURE 4. Recent IoT Layered Architectures.

ing artificial neural networks (ANN), convolutional neural
networks (CNN), and recurrent neural networks (RNN) are
suitable for supervised learning [53]. There is a wide range of
applications of supervised learning. For example, in the field
of computer vision, many CNN-based applications are estab-
lished in smart healthcare [54], smart home, smart city, smart
energy, agriculture, education, industry, government, sports,
retail, and IoT infrastructure [55]. The rest of this subsection
explains some of the supervised learning algorithms.

a: Support Vector Machine (SVM)

SVM is created to solve binary classification problems [56].
The aim of SVM is to create a hyperplane over a multidimen-
sional space to separate the data points of this space into two
classes. The SVM model can be represented by Equation (1)
[56]. In this equation y is the output class as a sign of positive
and negative, ω is the weight vector, x is the input vector and
b is the scalar bias factor.

y = sign(ω · x+ b) (1)

From Figure 5, the distance between the two classes can be
represented by Equation (2) [56], where ||ω|| is the Euclidean
distance.

D =
2

||ω||
(2)

The parameter ω is obtained through maximizing the dis-
tance D with minimum classification error. Therefore, the
optimization problem can be defined as Equation (3) [56].

Φ(ω) =
1

2
||ω||2 (3)

As indicated by [56], optimization of Equation (3) is
a quadratic optimization problem, which could be solved
through constructing a Lagrangian function as Equation (4),
where αi are the Lagrange multipliers.

L(ω, b, α) =
1

2
||ω||2 −

l
∑

i=1

αi{yi(ω · xi + b)− 1} (4)

The SVM described above are only suitable for linearly
separable datasets. However, extensions as soft margin SVM

6 VOLUME 4, 2016
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FIGURE 5. Support vector machine.

and kernel SVM are all capable of handling non-linear
datasets. Another form of SVM is the multiclass SVM, which
is capable of classifying between more than two classes [56].

b: Support Vector Regression (SVR)

SVM can also be extended to solve regression problems [56].
The generic SVR function is defined by Equation (5) [56],
where Φ transforms non-linear inputs of x into a higher
dimension, the vector w and scalar b should be optimized to
minimize the regression risk function defined by Equation (6)
[56]. In Equation (6), C is a constant that represents penalty
to errors and Γ represents the cost function. Equation (7) [56]
defines this cost function with ǫ as the least-modulus loss.

f(x) = w · Φ(x) + b (5)

Rreg(f) = C
l

∑

i=0

Γ(f(xi)− yi) +
1

2
||w||2 (6)

Γ(f(x)− y) =

{

|f(x)− y| − ǫ, if |f(x)− y| ≥ ǫ

0, otherwise
(7)

Finally, similar to the SVM, the optimal parameters can
also be found by constructing the Lagrangian function as
Equation (8) [56]. In this equation, function k is the kernel
function to transform inputs into high-dimensional vectors.
The variables αi and α∗

i are the solutions for this optimiza-
tion problem.

L =
1

2

l
∑

i,j=1

(α∗
i − αi)(α

∗
j − αj)k(xi, xj)

−
l

∑

i=1

α∗
i (yi − ǫ)− αi(yi + ǫ);

Where,
l

∑

i=1

αi − α∗
i = 0,AND

l
∑

i=1

αi, α
∗
i ∈ [0, C]

(8)
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FIGURE 6. One-dimensional input linear regression.

c: Linear Regression

Linear regression provides an approximation of the relation-
ship between different data domains. In an example of one-
dimensional input, the linear regression model is created in
the form of the line of best fit (Figure 6). The authors in
[57] gave a generic model of linear regression with multiple
outputs. However, to simplify the process of demonstration,
a single-output model is given by Equation (9). x and β of
Equation (9) represent the input vector and the weight vector
respectively.

f(x) = β · x (9)

The mean squared error (MSE) is computed to be utilized
as the loss function (Equation (10)). The variable n is the
number of data in the training set, xi represents the ith input
vector and yi represents the ith real output.

MSE =
1

n

n
∑

i=1

(f(xi)− yi)
2 (10)

d: Logistic Regression

The logistic regression solves the binary classification prob-
lem. The output of logistic regression is a value between 0
and 1. Thus, providing the confidence level of the prediction.
Equation (11) demonstrates the logistic regression model,
which is based on the Sigmoid function [58]. Similar to the
linear regression, β and x are the input vector and the weight
vector, respectively.

f(x) =
1

1 + e−β·x
(11)

In order to find the optimal β, the method of maximizing
likelihood is leveraged [58]. Equation (12) is the loss func-
tion. Similar to the linear regression, xi is the ith input vector
and yi is the ith real output.

g =
n
∏

i=1

f(xi)
yi(1− f(xi)

yi)(1−yi) (12)

However, to ensure this loss function can be processed
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New Input

Class 1

Class 2

FIGURE 7. KNN inference with three neighbors.

with an optimization algorithm such as gradient descent, the
problem is converted to maximizing the logarithm of the
likelihood. This function is presented by Equation (13) [58].

log(g) =
n
∑

i=1

yilog(f(xi)) + (1− yi)log(1− f(xi)) (13)

The authors of [58] also provide the general form of the logis-
tic regression using the Softmax function, which incorporates
the ability to solve multi-class classification problems.

e: K-Nearest Neighbor (KNN)

KNN is mainly used for classification tasks. The model is
built by plotting all training dataset in the feature space.
When a new data point is inputted for inference, the model
finds K nearest data points in the training set and provides an
output based on the majority label of these nearest data points
[38]. In order to calculate the distances, distance metrics
such as the Euclidean distance, L-infinity norm, angle, Maha-
lanobis distance, and Hamming distance can be adopted [38].
Figure 7 demonstrates KNN with three nearest neighbors.
The major label of the neighbors is class 1. Therefore, the
new input data point is also labeled as class 1.

f: Decision Tree (DT)

The authors of [59] emphasized that the main objectives
of DT classifiers are to limit the classification error to an
insignificant level, to classify with high accuracy beyond the
training dataset, to achieve incremental updates with new
training data, and to structure in a simple form. To achieve
the above objectives, algorithms are required to build a DT.
Here the ID3 algorithm is used as an example to illustrate DT.

ID3 uses the concept of entropy to construct the DT.
Equation (14) describes the calculation of entropy, where A is
a vector of input features, x1 and x2 represent the two classes
[60]. Entropy is calculated with all vector A in a tree node.

H(a) =
∑

A

[−P (x1|A)log2P (x1|A)−P (x2|A)log2P (x2|A)]

(14)

New tree nodes should be created with minimal entropy
[59]. Therefore, the first step of ID3 is to find an attribute
within the input vectors to produce child nodes with the
minimal entropy. Then, the input vectors in the root are split
according to the attribute to produce the child nodes. Next, if
a child node contains input vectors with only one class, the
splitting process is terminated for this node and continued
with the next child node. On the other hand, if the child
node contains input vectors with more than one class, the
algorithm repeats the first step with the child node recursively
[60].

g: Ensemble Learning

The authors of [61, p.1] defined ensemble learning as “meth-
ods that combine multiple inducers to make a decision...”
Therefore, as an advantage, models compensate errors of
other models. The authors of [61] also divided ensemble
methods into the dependent framework and the independent
framework. In the dependent framework, the construction
of the current model depends on the output of the previous
model. An example is the AdaBoost algorithm, where the
current model considers the error in the previous model.
Gradient boosting machines also adopts a similar concept
[61].

The independent framework includes multiple models,
which are built independently from each other. Some exam-
ples of these methods are bagging, random forest, random
subspace methods, error-correcting output codes, rotation
forest, and extremely randomized trees [61]. Random forest
is described in the next part of this subsection.

h: Random Forest

The random forest is an ensemble learning method based on
DT [61]. It consists of multiple DTs. Each DT is trained by
a random subset of the training data. Also, another random
subset of the attributes is produced for the creation of new
child nodes. Therefore, the algorithm only examines part of
the attributes for an attribute of the best split. Furthermore,
this randomness provides a low correlation between trees,
avoiding the domination of a few strong attributes [62].

i: Naïve Bayes Classifier (NB)

NB is a supervised learning algorithm based on the Bayes
rule (Equation (15)). The Bayes rule provides a model of
the conditional probability of a result Y with the given input
or the condition X . This algorithm is generally applied to
classification problems. In classification problems, Y is from
a discrete set of classes. Moreover, an input X belongs to the
Y giving the greatest P (Y |X) [63].

P (Y |X) =
P (Y )P (X|Y )

P (X)
(15)

The NB model consists of the probability of a class Y and
the joint probability of attributes (Equation (16)). Therefore,
the model is constructed by estimating P (Y ) for every class
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Y in the training set and the conditional probabilities of each
attribute P (Xi = ai|Y ) for every class.

P (Y = yi|X = a0, a1, ..., ai) =

P (Y = yi)P (X = a0, a1, ..., ai|Y = yi)

P (X = a0, a1, ..., ai)

(16)

j: Bayesian Network (BN)

NB models assume that all attributes are independent of
applying the Bayes rule. However, in the real world, the
correlation between attributes is inevitable [63, 64]. BN is
a classifier that is not limited by the assumption of attribute
independence. A BN can be represented by Equation (17),
where G is a directed acyclic graph, where nodes represent
the different events and the edges represent the dependency.
The symbol Θ contains the Conditional Probability Table
(CPT) for all possible values of the attributes and their
conditions [64].

B =< G,Θ > (17)

The learning process is divided into two phases. During
the first phase, the graph structure is determined and then in
the second phase, the CPT is constructed [65]. The structure
can be determined by an expert or learned by data with score-
based structure learning methods and constraint-based struc-
ture learning methods [66]. The goal of score-based methods
is to find a structure that provides the maximum score of a
score function. For example, the Bayes Dirichlet equivalent
uniform and the Bayesian Information Criterion. In the first
step of score-based methods, the algorithm provides a score
of suitable parents for every node. Then, parents are assigned
to nodes to maximize the scores and to avoid cycles. On the
other hand, constraint-based methods use conditional con-
straints to update the model. An example is the PC algorithm.
When using the PC algorithm, the graph starts as a fully
connected undirected graph. Edges are removed according to
the result of CI tests. This method is repeated until no edges
can be removed [67]. After obtaining a graph structure, CPT
can be constructed to obtain a full model.

k: Kernel Bayes Rule (KBR)

The KBR extends the Bayes rule by applying kernels to
represent probabilities in reproducing kernel Hilbert spaces.
Moreover, the prior and likelihood can be expressed by data,
which does not require a distribution model [68].

l: Gaussian Process Regression (GPR)

GPR is a non-parametric regression method as the complex-
ity is determined by the data [69]. GPR utilizes the Gaussian
Process (GP) to model the function between the input X
and output Y . GP is an infinite dimension version of the
multivariate Gaussian distributions [69]. GP can be defined
by a mean and covariance function. The mean value is usually
set as zero and the covariance function can be modeled
by a kernel function representing the dependence between
different function outputs for different input X [69]. The
GPR learning process adjusts hyperparameters of the kernel,

X0

X1

Y0

Hidden Layer Hidden Layer Output LayerInput Layer Output

FIGURE 8. Sample Feedforward Neural Network Architecture.

such as the length-scale, signal variance, and noise variance
[69].

m: Collaborative Filtering (CF)

CF algorithms provide recommendations to a user from ex-
periences of other users [70]. CF operates under two assump-
tions: Opinions of users do not change over time; Users with
similar characteristics provide similar opinions. With these
assumptions, CF can be implemented to provide a decision
basis for product promotion, social media recommendations,
e-commerce reputations, and even strategy [70].

n: Feedforward Neural Network (FFNN)

A sample model of the FFNN is demonstrated by Figure 8.
An FFNN contains an input layer, an output layer and one or
multiple hidden layers [71].

f(X) = foutput(fhidden2(fhidden1(X))) (18)

Equation (18) [71] provides the general form of the sample
model. In these layers, the input layer consists of the input
vector, and the hidden layers can be represented in the form
of (19) [71], where W is a matrix of coefficients, X is the
input vector, B is the bias vector, and g is the activation
function. W and B can be learned through the backpropa-
gation algorithm. Whereas, g is chosen by the data analyst
to provide nonlinearity [71]. Some candidates of g are the
ReLU function, the Sigmoid function, and the Tanh function.
Finally, the output layer defines the output type of the model.
If the output layer is a Softmax function similar to logistic
regression, the FFNN provides the output of discrete values,
which solves classification problems. On the other hand,
if the output layer provides continuous values like linear
regression, the FFNN solves regression problems.

f(X) = g(WX +B) (19)
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FIGURE 9. General Convolutional Neural Network Architecture.

FIGURE 10. 2D Convolution Filtering.

o: Convolutional Neural Network (CNN)

CNN is a special type of FFNN. CNNs also process input
data in a layer-by-layer style. The major motivation of CNN
is to reduce the number of parameters to be trained [72].
Figure 9 demonstrates the general architecture of CNNs. A
full convolutional layer group consists of the convolutional
layer, the detector layer, and the pooling layer. In the convo-
lutional layer, the input data is processed by a convolutional
filter. This filter is in the form of a vector for one-dimensional
data and matrix for two-dimensional data. The filter sweeps
through the input data as a moving window, and during each
iteration, the dot product of the filter matrix and the current
region is calculated. Figure 10 provides an example of the
first iteration and the final iteration of convolutional layer
calculation with 4× 4 input and a 2× 2 filter.

After the convolutional layer, the detector layer processes
the data as a hidden layer with the ReLU activation function.
The ReLU function provides nonlinearity to the network
[71]. Finally, a filter is also used in the pooling layer. Similar
to the convolutional layer, the filter in the pooling layer also
sweeps through the input. However, the filter only represents
the area for the current iteration. Pooling calculation could
be simply obtaining the average or the maximum of the filter
area [72]. CNN is widely used for image processing.

p: Recurrent Neural Network (RNN)

Unlike the basic FFNN, which only accepts one input a time,
RNNs accept several inputs [73]. In terms of time-series data,
individual data points are processed at once in the sequence
of time [73]. As shown in Figure 11, the output of the current
hidden state Ht is generated from the input Xt of the current

Xt

RNN LayerHt-1 Ht

Y

Input

Output

From 
Previous State

To 
Next State

FIGURE 11. RNN Layer at time t.

time state and the output Xt−1 of the previous time state,
recursively [73]. Finally, if only one output is required (for
classification or regression), the output Y is calculated from
the final hidden state [73].

q: Long Short-term Memory (LSTM)

Since gradient propagates through multiple stages in RNNs,
issues such as gradient explosion and gradient vanishing
arise [73]. To address these issues, Long Short-Term Memory
(LSTM) is proposed as variants of the RNN [73]. The LSTM
incorporated an additional cell state to enhance long term
memory [74]. Also, the additional forget and input gates are
utilized to forget and insert information into the cell state
[74].

r: Random Neural Network (RandNN)

The RandNN is a type of RNN. Excitatory impulse signals of
“+1” and inhibitory impulse signals of “-1” are transmitted
between the neurons of RandNN [75]. The neuron state or
potential at a certain time is represented by a non-negative
integer. This potential increases when the neuron receives
an excitatory impulse and decreases when the neuron emits
a signal. The neuron emits signals when its potential is
positive. Also, the acceptance of an inhibitory signal outside
of the network decrements the neuron potential [75]. The
RandNN can be applied in multiple fields such as asso-
ciative memory, optimization, texture generation, magnetic
resonance imaging, function approximation, mine detection,
and automatic target recognition [75].

2) Unsupervised Learning Algorithms

The two major types of unsupervised learning models are
principal component analysis (PCA) and K-means cluster-
ing. PCA is used as a technique to compress data. This
is important for IoT applications, such as wireless sensor
networks (WSN), with limited throughput and energy [76].
The K-means algorithm is used for the clustering of multiple
sensors. By dividing the monitored field into areas using
the unsupervised K-means clustering, the complexity of data
gathering and processing are reduced [76]. Some other unsu-
pervised learning algorithms are also explained further in this
subsection.
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a: K-means

The K-means algorithm produces a classification model
through clustering [77]. It aims to generate multiple K cen-
troids from the dataset. Data points close to a centroid forms a
cluster [77]. The centroids are initialized by choosing random
data points from the dataset. Then, data points are assigned to
the cluster of the nearest centroid. Next, the new K centroids
are calculated by averaging the assigned data points within
their clusters. The above steps are iterated until the centroids
are stable, or the algorithm reached a preset number of
iterations [77]. With the centroids calculated, a data point can
be classified by computing the distance towards the centroids.
The new data point belongs to the cluster of the closest
centroid [77].

b: Density-Based Spatial Clustering of Applications with

Noise (DBSCAN)

DBSCAN is another clustering method similar to K-means.
However, compared to K-means, DBSCAN does not require
a predefined number of K centroids. Also, DBSCAN can
identify noises. Moreover, the shape of the cluster can be
arbitrary [78]. DBSCAN has two hyperparameters the min-
imum number of neighbor points minPoints within the
distance R [78]. To construct the clusters, DBSCAN iterates
through all points in the dataset [78]. If an unvisited data
point has more than minPoints neighbors within R, the data
point is marked as a core point, and a new cluster is created.
After that, recursively, all previously unvisited neighbors of
the core point are visited and added into the cluster. Also,
if the neighbor point is another core point, the two clusters
would merge [78]. If a data point has less than minPoints
of neighbors within the range R, the data point is classified
as noise [78].

c: Hierarchical Clustering Analysis (HCA)

HCA is a clustering method, where the data sample is re-
cursively merged or split to form a tree diagram [79]. HCA
methods can be divided into agglomerative hierarchical clus-
tering and divisive hierarchical clustering. Agglomerative
hierarchical clustering is the bottom-up approach, where each
data point forms its own cluster, and similar clusters merge
until the desired architecture is obtained. On the other hand,
divisive hierarchical clustering is the top-down technique as
it starts with a huge cluster containing the whole data sample.
Then, the cluster is divided to form the tree [79]. Merging and
division decisions are made with similarity criteria. The three
different sets of criteria are single-link clustering, complete-
link clustering, and average-link clustering. For the three
clustering methods, the distance between two clusters is
calculated as the shortest distance between any two members
from different clusters, the longest distance between any two
members from different clusters, and the average distance be-
tween any two members from different clusters, respectively
[79].

d: Expectation Maximization (EM)

The EM algorithm computes maximum likelihood estima-
tions for latent variables [80]. The algorithm consists of the
Expectation (E) and Maximization (M) steps. The E step
computes the missing data from current function parameters.
During the M step, the function parameters are updated to
maximize the log-likelihood of the estimated latent variables
[80]. The E and M steps are repeated until the model con-
verges slowly to a local maximum [80].

e: Gaussian Mixture Modelling (GMM)

The superposition of multiple Gaussian distributions can
approximate any continuous density through the adjustment
of their means, covariances, and coefficients [81]. Unlike the
parameters of a single Gaussian model that can be determined
directly by the maximum likelihood method, GMM is trained
using EM in an iterative way [81]. GMM can be applied to
solve clustering problems [81].

f: Principal Component Analysis (PCA)

PCA reduces the number of attributes in a dataset by
transforming the original inputs into another set of vectors
with low information loss [82]. Dimensionality reduction is
achieved by eliminating components with a lower variance.
These components are detected through the computation
of the eigenvectors and eigenvalues of a covariance matrix
from the original dataset [82]. A component with a higher
eigenvalue indicates more information contained. Therefore,
features can be extracted by choosing the corresponding
components or eigenvectors with higher eigenvalues [83].

g: MultiDimensional Scaling (MDS)

MDS is another dimensionality reduction technique. How-
ever, unlike PCA, MDS preserves the distance or difference
between sample cases instead of the variance [84]. Stress,
the loss function of MDS is defined as Equation (20), where
dij is the difference between sample cases i and j in the
original data space, and Dij is the distance between i and
j in the lower dimension or projected data space [85]. MDS
consists of four steps [86]. In the first step, a squared distance
matrix is computed from the data points in the original data
space. Then, the matrix B is computed by applying double-
centering to the squared distance matrix. After that, the eigen-
values V and eigenvectors Q of matrix B can be obtained.
Vm is a matrix of the first m eigenvalues greater than zero,
and Qm is a matrix of corresponding eigenvectors. Finally,
the coordinate matrix can be calculated by multiplying Qm

and V
1

2

m [86].

Stress =

∑

i=1,j=1(dij −Dij)
2

∑

i=1,j=1 D
2
ij

(20)

h: Diffusion Maps (DM)

DM is also an algorithm for dimensionality reduction [87].
In contrast to PCA and MDS, DM unravels the potential
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manifold structures in the dataset [87]. The DM algorithms
initiate by defining a kernel and a kernel matrix. Through
normalization of the kernel matrix, the diffusion matrix can
be acquired. Finally, DM utilizes n numbers of the most
dominant eigenvectors from the diffusion matrix to project
the dataset from the original data space to n-dimensional
diffusion space [88].

i: Window Sliding with De-Duplication (WSDD)

WSDD is used to mine patterns from system events sorted in
chronological order [89]. WSDD utilizes a sliding window
over the training dataset to learn patterns in a brute force
approach. The algorithm is capable of detecting both frequent
sequential patterns and periodic sequential patterns [89]. To
increase efficiency, the algorithm stores mined patterns in a
hashmap and avoided mining duplicate patterns. The pattern
itself is stored as the key in the hashmap, and the count of the
pattern is stored as the value. Finally, only patterns detected
over a minimum count are returned as the output of WSDD
[89].

j: Autoencoders (AE)

The AE is a neural network consisting of the encoder, code,
and decoder components [90]. The encoder maps the raw
input to the output of the code component, and the decoder
reconstructs the raw input from the output of the code com-
ponent. AEs can be used for feature reduction as the output
of the code component from a trained AE holds near lossless
information of the raw input [90].

k: Hopfield Neural Network (HNN)

The HNN is a type of RNN for solving optimization prob-
lems [91]. Each neuron provides non-linear outputs through
a sigmoid function. All neurons are interconnected with each
other to restrict and revise the outputs of each other. Each
connection includes an interconnection weight. Each neuron
contains a user adjustable input bias [91]. The neurons update
according to the energy function (Equation (21)), where Tij
is the weight of the connection between neurons i and j, V is
the output of a neuron [92]. The HNN neurons evolve until a
local minimum of the energy function is reached [92].

E = −
1

2

∑

i 6=j

TijViVj (21)

l: Self-Organizing Map (SOM)

The SOM is a type of neural network that can perform
clustering similar to the K-means [77]. In each iteration,
the neuron closest to a randomly selected data point moves
towards the data point by a preset learning rate [93]. Neurons
within the preset neighbor range of the first neuron also move
towards the data point. The learning rate and the neighboring
radius delays over the number of iterations [93].

FIGURE 12. Agent-Environment Relationship. [41]

3) Reinforcement Learning Algorithms

The goal of reinforcement learning is to solve the problem
of Markov decision processes (MDP). MDP is a sequential
decision problem. As demonstrated in Figure 12, any ac-
tion made by the agent will influence the environment and
generate a reward. The goal of reinforcement learning is
to maximize long-term rewards [41]. Q-learning, a type of
reinforcement learning, is used to solve routing problems
in IoT networks. Unfortunately, most of these algorithms
are based on wired networks [94]. In WSNs, energy, pro-
cessing power, and storage might become a bottleneck for
distributed reinforcement learning routing algorithms [37].
Reinforcement learning algorithms aim to provide high-level
intelligence to IoT applications.

a: Temporal-Difference (TD)

TD learning includes various model-free reinforcement
learning algorithms, which require no model of the environ-
ment [95]. TD algorithms bootstrap or update the estimates
based on current estimations. The value function is updated
at every step of TD [95]. There are three fundamental types
of TD-based learning algorithms mentioned in the sections
after. The on-policy TD algorithm SARSA learns the action
values from the current policy, while the off-policy algorithm
Q-learning learns from the optimal policy [95]. Finally, a
third type of TD learning, the Actor-critic learning learns
both a policy (Actor) and value function (critic) [96]. Actor-
critic learning is always on-policy as the “critic” needs to
learn from and correct the TD errors from the “actor” or the
policy.

b: Least-Squares Policy Iteration (LSPI)

LSPI is a model-free off-policy reinforcement algorithm
[97]. LSPI is also an approximate policy-iteration algorithm,
where the value function and policy representation are ap-
proximated. Therefore, compared to tabular methods, the
policy search process is more efficient for LSPI [97]. Also,
LSPI is based on least squares temporal difference learning
[97]. Thus, as TD learning methods update incrementally,
data efficiency of LSPI can be preserved [95].
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4) Other Relevant Machine Learning Techniques

a: Transfer Learning

By adopting transfer learning techniques, a model trained
to solve one problem can be transferred and adapted to
solve a different problem [98]. This prevents time-consuming
labeling processes. Transfer learning can be categorized into
inductive transfer learning, transductive transfer learning,
and unsupervised transfer learning [98]. In the inductive
transfer learning setting, the domains can be the same or
different, but the tasks are different for the two problems.
Whereas in transductive transfer learning, the tasks are the
same, and the domains are different. Finally, in unsupervised
transfer learning, similar to inductive transfer learning, the
tasks are different. However, unsupervised transfer learning
performs unsupervised learning tasks in the target problem
[98].

b: Federated Learning

Federated learning is a technique of multiple users training a
common machine learning model without leaking their local
dataset to other users [99]. There is the horizontal federated
learning technique, where different datasets share the same
features, but different sample cases [99]. On the other hand,
vertical federated learning can be applied to datasets with
more overlapping sample cases and different features [99].
Finally, federated transfer learning is suitable for datasets
with different sample cases and features [99].

B. PHYSICAL LAYER APPLICATIONS

One major application of machine learning influencing IoT
end devices is communication control. The authors in [100]
used Q-learning for transmission power control to reduce the
unnecessary waste of power due to interference. This model
is only tested under the scenario of one-to-one transmission.
A scenario of multiple sources toward multiple receivers
should be tested.

The authors of [101] explored the usages of deep learning
in end-to-end communication systems. The authors adopted
the AE to replace different compensation techniques during
the transmission of data. Data is encoded between transmis-
sion and decoded after transmission to protect the payload
during transmission. Another application is the implementa-
tion of CNN for modulation classification. This is a prereq-
uisite for developing an intelligent receiver.

Machine learning algorithms increase the energy con-
sumption of IoT devices. Therefore, it is important to apply
energy preservation techniques. The authors of [102] con-
cluded that the two major energy preservation methods are
energy saving and energy harvesting. Most of the energy
saving techniques are implemented through the estimate and
control of the uptime of end devices [100, 103, 104, 105, 106,
107, 108]. The rest of this subsection focuses on machine
learning-based energy saving techniques. The authors of
[103] established ARIIMA or A Real IoT Implementation
of a Machine-Learning Architecture for reducing energy
consumption. This is an IoT architecture that uses machine

learning to forecast end device usage to control the up and
downtime of IoT end devices. The aim is to reduce energy
consumption. The authors compared different methods of
calculating the loss of the predicted outcome. However, the
authors did not link energy efficiency improvement to any
specific machine learning algorithms.

The authors of [105] utilized the Naïve Bayes Classifier
for calculating the optimized uplink period for IoT data
collectors. The goal of this work is to optimize the uplink
time for power efficiency and preserve the accuracy of data.

The authors from [107] used a single hidden layer feed-
forward neural network to predict the power usage based
on smart meters. With these predictions, the power suppli-
ers can balance the power production with consumption to
avoid power wastages. Also, individual home devices can be
controlled to relieve the grid pressure at power peaks.

The authors of [106] used logistic regression, KNN, and
Naïve Bayes algorithm to increase the power efficiency of
smart buildings. Light, temperature, and motion data of a
room are fed into the models to determine whether if people
are present in a room. In conclusion, this work only deter-
mines the existence of people. Nevertheless, further work
needs to be done on the development of an energy efficient
device control scheme based on the predictions of these
machine learning models.

The authors of [108] extended the model for predicting
human presence in smart buildings. A random neural network
model is applied with inputs of carbon dioxide level and
temperature readings to predict the number of occupants in a
room. This model is used to control the heating, ventilation,
and air conditioning (HVAC) systems. HVAC devices will be
turned off to save power if no occupants are detected in the
room.

The authors from [104] pointed out that the manual label-
ing of training data is time consuming in supervised learn-
ing algorithms. Therefore, the authors proposed an energy
saving scheme based on unsupervised learning. The WSDD
algorithm is used to extract patterns of device behavior from
historical data.

C. NETWORK LAYER APPLICATIONS

The authors of [109, 110] summarized existing network layer
applications using machine learning algorithms. These appli-
cations are IoT device identification, network routing, traffic
profiling, traffic prediction, traffic classification, congestion
control, resource management, fault management, QoS and
Quality of Experience (QoE) management, and network se-
curity. Table 1 links these applications to implemented ma-
chine learning algorithms. However, these applications alone
might not be feasible to deal with the complexity of networks
such as 5G, Tactile Internet, and Industry 4.0 requirements.
Furthermore, an autonomous network structure is required.

1) Self-organizing networks

The increasing network complexity and device numbers for
5G and beyond networks are inducing conflicting demand
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TABLE 1. Network applications and related machine learning algorithms.

[109, 110]

Applications Machine Learning Algorithms

IoT Device Iden-
tification

KNN, SVM, GMM, decision tree,
ensemble learning, random forest

Network Routing LSPI, Q-Learning, n-step TD,
SARSA

Traffic Profiling K-means, Clustering

Traffic Prediction FFNN, SVR, KBR, LSTM, GPR

Traffic Classifica-
tion

SVM, NB, HCA, KNN, DT, K-
means, Random Forest, FFNN, DB-
SCAN

Congestion Con-
trol

EM, DT, Random forest, KNN,
FFNN

Resource
Management

FFNN, RandNN, SVM, HNN, RNN,
Q-Learning, TD, BN

Fault
Management

BN, FFNN, DT, SVM, Ensemble
Learning, Linear Regression, Au-
toencoders, K-means, EM, RNN,
SOM

QoS and QoE
Management

FFNN, DT, Random Forest, NB,
SVM, KNN, SVR, Q-learning

Network Security FFNN, Ensemble Learning, DT, BN,
NB, SVM, KNN, Linear Regression

over network resources and routing decisions. Therefore,
self-organizing networks (SON) are required to reduce the
complexity of managing these networks [111]. Management
functionality of SONs consists of self-configuration, self-
optimization, and self-healing. Self-configuration processes
automate network design, network planning, and network
deployment. After that, the self-optimization functionalities
maintain the network performance and conduct routine net-
work operations [112]. Finally, self-healing functionalities
focus on fault detection and recovery [113].

The authors of [114] organized machine learning in SONs
into four modules: sensing, mining, prediction, and reason-
ing. Sensing involves the detection of network anomalies
and routine events. Therefore it contains functionalities of
self-optimization and self-healing. Mining aims to classify
services to help the network to optimize its performance.
Moreover, mining belongs to the self-configuration function-
alities. Finally, reasoning could apply to the offline parameter
tuning during self-configuration and the online parameter
tuning for self-optimization during network runtime.

The authors of [115] categorized machine learning ap-
plications on SONs according to the three functionalities.
In Table 2, the self-configuration applications are opera-
tional parameters configuration, neighbor cell list configu-
ration and radio parameters configuration. In Table 3, the
self-optimization applications consist of backhaul, caching,

coverage and capacity, mobility, handover, load balancing,
resource optimization, and coordination. In Table 4, the self-
healing applications include fault detection, fault classifica-
tion and outage management. Table 2, 3 and 4 only include
the algorithms that are relevant to supervised learning, un-
supervised learning and reinforcement learning. Therefore,
controller models, Markov models, and heuristics algorithms
are out of the scope of this article.

The authors from [116] promoted self coordination as a
fourth functionality group of SONs. Their work demonstrates
that the current design of standalone management functional-
ities of SONs could lead to conflicting parameter adjustment
between distinct functions. This work also concludes that DT,
Q-learning, actor-critic learning, and SVM can be solutions
for self-coordination.

The authors from [117] proposed another method to avoid
collision between different functionality results. Their dis-
tributed Q-learning model considers both base station power
allocation and user quality of service. Q-learning consists of
a list of actions, a list of states, and a list of rewards. The
actions are the power allocation for the base stations. The
states are the ring that the agent is covered with current power
allocation. Finally, the rewards are calculated considering the
higher capacity of the base station and better user quality of
service.

The network applications for traditional networks in Ta-
ble 1 could be applied to support the SON functionalities.
The authors of [118] emphasized that the result of traffic
forecasting and prediction can increase the performance and
accuracy of all other SON functionalities. The authors tested
three types of machine learning models for traffic forecasting.
The first type of model is autoregressive algorithms. This
includes linear or polynomial regression. The second type of
model is neural networks and finally, the authors used GPR
for traffic forecasting. The authors also mentioned that this
application can be further extended for QoS management and
congestion control, providing possible use cases for models
in the traditional networks. To improve the current manage-
ment scheme in 5G and beyond networks, the implemen-
tation of SDN and Network Function virtualization (NFV)
architectures in SONs fulfills the intelligence, automation,
management, and optimization requirements [119]. In this
architecture, machine learning works at the core to enable in-
telligent network management. This work also demonstrates
that traffic classification as an essential application provides
results affecting consecutive decision making processes.

D. EDGE COMPUTING APPLICATIONS

1) Edge Computing Hardware

The development of edge computing hardware enables ma-
chine learning on the edge level. Table 5 includes some of the
representative edge computing devices. These devices can be
classified into three device types. The first type is the board
devices. Board devices are standalone embedded computers
that run machine learning algorithms independent of external
devices. The second type is the accelerator devices. These
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TABLE 2. Machine Learning applications in self-configuration. [115]

Applications Description Machine

Learning

Algorithm

Operational
Parameters
Configuration

Configuration
of the base
station for basic
operations.

SOM

Neighbor
Cell List
Configuration

Neighbor
discovery, Self-
advertisement

N/A (Control-
based
algorithms)

Radio Parameters
Configuration

Transmission
power, radio
angle, topology
configuration.

Q-Learning

devices cannot operate alone. Accelerator devices often act
as an add-on to provide extra machine learning capabilities
to embedded boards, personal computers, and other devices.
The final type is smartphone chips. Smartphone chip manu-
facturers like Qualcomm, Hisilicon, Samsung, and MediaTek
are pushing machine learning processing to mobile devices.
Most of these chips rely on an AI accelerator to provide real-
time machine learning processing capabilities.

2) Machine Learning on the edge

Machine learning applications on the edge layer can be
separated into two major types. The first type aims to offload
part or all of the existing functionality to the edge layer. This
type of application is defined in this article as process of-
floading applications [46, 130, 131, 132]. The second type of
application is referred to as sole functionality applications in
this article. Sole functionality machine learning models often
perform subtasks, which assist the main task on the cloud.
The machine learning model of these subtasks is different
from the model of the main tasks [133, 134, 135, 136]. Table
6 summarizes all the works with different motivations for
applying edge computing.

The motivation for process offloading applications is the
limited resources of devices. The authors from [130] pointed
out that low latency is essential for vehicle-to-everything
applications. This work classifies vehicle-related applications
into critical applications, high priority applications, and low
priority applications. Critical applications include vehicle
control systems, system monitoring, and accident prevention.
These applications must be deployed on the very edge to
the vehicle for a near-instant response. High and low prior-
ity applications include navigation and entertainment. These
applications should be deployed on edge servers to enhance
the computational capability of end user devices. This also
ensures a relatively low latency.

The authors of [131] applied a similar offloading scheme to
general machine learning web applications. The aim of this

TABLE 3. Machine Learning applications in self-optimization. [115]

Applications Description Machine

Learning

Algorithm

Backhaul Connection between
user, base station and
the core network.

Q-Learning

Caching Temporarily storing
functions and services
on the base stations

CF, K-
means,
Game
Theory,
Q-learning,
Transfer
Learning

Coverage
and
Capacity

Managing tradeoff be-
tween network coverage
and network capacity

SOM,
Q-learning

Mobility Locate and predict the
location of the user.

Naïve
Bayes
classifier,
FFNN,
SVM, DT,
K-means

Handover Realtime change of
channel parameters
when the user is using
the channel. Often
associated with mobility
management when
users move between
cells.

FFNN,
SOM,
Game
Theory,
Q-learning,

Load
Balancing

Intelligently balancing
network load

Q-learning

Resource
optimiza-
tion

Allocation and predic-
tion of network resource
usage.

FFNN,
K-means,
SOM,
Game
Theory,
Q-learning,
Transfer
Learning

Coordination Minimizing the interfer-
ence between two dif-
ferent functionalities.

DT

work is to offload computation power demanding machine
learning tasks from embedded devices to an edge server.
To achieve this, the edge device transmits a snapshot of the
execution state before processing a machine learning task to
the edge server. This method is independent of the type and
model of the machine learning algorithm. However, the size
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TABLE 4. Machine Learning applications in self-healing. [115]

Applications Description Machine

Learning

Algorithm

Fault Detection Detect and locate
the fault

Naïve Bayes
classifier,
SVM, K-
means, SOM,
PCA

Fault
Classification

Determining
source of the
fault, Classifying
the fault

Naïve Bayes
classifier,
DT, Transfer
Learning

Outage Manage-
ment

Detection of out-
age, Outage com-
pensation

KNN, FFNN,
SVM, DT,
CF, K-means,
SOM, Q-
learning, PCA,
MCA, DM,
MDS

of a snapshot is still enormous for embedded devices.
The authors from [46] further revealed that edge comput-

ing could also be used to protect user privacy. Their applica-
tion uses a neural network to recognize certain objects from
live streaming video. To protect user privacy, the first few
layers of the neural network are offloaded to the edge servers.
This also reduces energy consumption for the whole system,
since processing is distributed among the network. However,
as the users still need to send raw information to edge servers
to be processed, privacy leakage remains an issue. This issue
can be solved by directly deploying these first layers of the
neural network to the end device. As a result, users only send
processed intermediate data to the network. All the works
above only use edge computing primitively to offload com-
putation requirements. However, machine learning by edge
computing should leverage some unique properties of edge
devices. The authors of [132] proposed a collaborative edge-
centric learning method to train machine learning models.
Each sensor contains a model that is trained locally using
only data from that sensor. Training locally allows sensors
to utilize contextual parameters to improve model accuracy.
After training the local models, only the parameters of the
models are sent to the sink from the sensors. This method
reduces network overhead and energy consumption during
training.

Different from the previous process offloading applica-
tions, sole functionality applications improve the perfor-
mance of the system by performing a different subtask of the
major task in the cloud. Earlier motivations are also related to
the limited resources of devices. The authors of [135] utilized
multiple filters, including CNN and SVM, to drop blurry and
unwanted image data at the edge layer. The usage of filters

reduces the processing power required on upper layers to
create a training dataset for other applications.

Similarly, The authors from [133] also applied data cleans-
ing on the edge layer to filter blurry images. Data cleansing
is done by K-means in their food recognition system. Im-
age segmentation is further applied as a data preprocessing
method to reduce the load of the cloud server. However, the
significance of this work is the utilization of locational data
as a unique data type provided by edge devices. Furthermore,
the authors used the locational data as a basis for collabora-
tive recognition on the cloud layer.

To enhance localized service, the authors of [136] imple-
mented network traffic prediction via LSTM on the edge
cloudlets of a healthcare system. The purpose of this machine
learning model is to predict bidirectional traffic between the
cloud and the cloudlet to control data transmission rate and
data caching frequency. These improve the quality of service
and the reliability of data. As the LSTM model is deployed
locally on cloudlets, the control decisions of the model are
different between different cloudlets due to the different local
network traffic.

Similarly, the authors from [134] also used machine learn-
ing to predict future sensor data. This is based on multi-
variable regression and LSTM in their traffic monitoring
system. These models are implemented on the edge servers to
provide parameters for determining the quality of the video
to be sent from the edge servers to the cloud. Therefore, this
application aims to reduce network traffic by control data
transmission from edge servers during non-critical events.
The origin of these advantages is the increase of connectivity
by introducing more edge servers to the system.

As machine learning applications on the edge attract
much attention, the emergence of TinyML provides further
advancement of these applications. TinyML combines em-
bedded IoT technologies with machine learning [137]. It
has the advantage of low bandwidth usage and latency like
other edge computing applications [30]. On the other hand,
TinyML applications aim to minimize energy consumption
(below 1 mW). To deploy a machine learning model on
such a low consumption device, model size also needs to be
minimized. Balancing between model size and accuracy is a
challenge for implementing TinyML applications [137].

E. EDGE-CLOUD COLLABORATION

In the traditional IoT architecture, machine learning algo-
rithms on the cloud layer usually perform analytical tasks.
However, novel applications are proposed utilizing the col-
laboration between edge and cloud layers. Table 7 includes
some edge-cloud collaboration methods.

A most common type of edge-cloud collaboration is the
sole functionality applications from the subsection above.
The healthcare system from [136] is an example. The system
aims to classify and store data at different nodes of the cloud
server. Data is collected from mobile devices and passed
to the cloudlet layer. In the cloudlet layer, LSTM is imple-
mented to predict network traffic. The prediction results are
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TABLE 5. Machine Learning Edge Computing Hardware.

Reference Hardware Series Recent Model AI Proces-

sor/Accelerator

AI Perfor-

mance

Device

Type

[120] Nvidia Jetson Jetson AGX Xavier 512-core NVIDIA
Volta GPU with 512
Tensor Cores

32 TOPs Board

[121, 122] Intel Neural Compute
Stick

Intel Neural Compute
Stick 2

Intel Movidius
Myriad X Vision
Processing Unit

4 TOPs Accelerator

[123, 124] Coral Dev Board Coral Dev Board Google Edge TPU
ML accelerator
coprocessor

4 TOPs Board

[124, 125] Coral USB Accelera-
tor

Coral USB Accelera-
tor

Google Edge TPU
ML accelerator
coprocessor

4 TOPs Accelerator

[126] Qualcomm
Snapdragon

Qualcomm Snap-
dragon 855 Mobile
Platform

Using CPU, GPU and
DSP

Undisclosed Smartphone
Chip

[127] HiSilicon Kirin HiSilicon Kirin 980 Dual Neural Process-
ing Unit

Undisclosed Smartphone
Chip

[128] Samsung Exynos Samsung Exynos
9820

Neural Processing
Unit

Undisclosed Smartphone
Chip

[129] MediaTek Helio P Se-
ries

MediaTek Helio P90 MediaTek APU 2.0 Undisclosed Smartphone
Chip

used for data transmission rate control and caching frequency
control. Then, data is transmitted to an upper network layer.
This layer utilizes a FFNN to classify traffic. Finally, these
data are stored on the cloud according to the classified traffic
types. In this application, the edge layers support upper cloud
layers by completing subtasks. The result of the subtasks
helps the cloud layer to perform the main task.

Edge assisted training is another type of edge-cloud col-
laboration. The authors from [135] used CNN and SVM to
filter out images on the edge layer. This filter is to prevent
corruption of the training on the cloud. Hence, it decreases
the time required for an expert to create a training set.

The authors from [138] used federated learning to create an
AE model for anomaly detection. A local version of the AE
model is trained on every edge device using its local datasets.
Then, the weights of these local models are transmitted to
the cloud server and aggregated to form one AE model. This
cloud level AE model is redistributed to the edge devices
for local anomaly detection. As less data is sent from the
edge to the cloud, this method reduces bandwidth demand
during training and ensures that the training dataset is not
corrupted due to data transmission. However, this method
only considers one model across the system.

The authors of [139] extended training to multiple models.
This is achieved with a machine learning model management
module on the cloud server. This module accepts sensor data

from the edge layer and uses these data to train different
machine learning models. Then, the machine learning model
selector selects and distributes a suitable model for every
edge platform based on device performance and characteris-
tics. This method optimizes network performance as the most
suitable model is deployed for every device.

Another edge-cloud collaboration method is process of-
floading scheduling. The authors from [46] addressed that
edge servers have limited bandwidth. Thus, scheduling of
cloud process offloading should be implemented to avoid
network congestion. The authors of [140] implemented a
similar scheduling method on 5G networks. They use deep
Q-learning to schedule server app migration on mobile edge
servers. This method aims to provide users with an optimal
quality of service. The authors from [141] incorporated cross-
layer communication into process offloading decisions. In
this work, end IoT devices can communicate both with
Unmanned Aerial Vehicle (UAV) edge servers and satellite
cloud servers. If the IoT devices loose connection with UAV
edge servers, the IoT devices could offload their computa-
tion tasks to the satellite cloud. A deep actor-critic learning
method is proposed considering energy consumption and
network delay to solve this scheduling problem.

This section summarizes many machine learning algo-
rithms, hardware and applications. The usage of machine
learning from a network perspective are described. Machine
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TABLE 6. Motivation of Edge Computing.

Reference Application Edge Motivation Application Type

[130] Vehicle-to-Everything Enhance computational capabili-
ties

Process Offloading

Reduce latency

[46] Video Recognition Process offloading Process Offloading

Reduce latency

Reduce energy consumption

Protect privacy

[131] Machine Learning Web App Process offloading Process Offloading

[132] Smart IoT Application Reduce network overhead Process Offloading

Reduce energy consumption

[133] Food Recognition Data preprocessing Sole Functionality

Data cleansing

Reduce latency

Reduce energy consumption

Location awareness

[134] Traffic Control Reduce network Traffic Sole Functionality

Increase scalability

Ensure mobility

Reduce latency

[135] Graphical Expert System Process offloading Sole Functionality

Data preprocessing

Data cleansing

[136] Healthcare System Reduce latency Sole Functionality

Reduce network traffic

Increase reliability

Increase security

learning applications in the physical layer and network layer
are elaborated. Scheduling and management of different
network resources and process are major applications of
machine learning on these two layers. Then, for the cloud
layer, the applications of machine learning that enable edge-
cloud collaboration are illustrated. Edge computing aids
cloud applications through process offloading and edge-only
functions (sole functionality). However, this only shows col-
laboration in the application layer (Edge-Cloud). Collabora-
tion between lower layers or cross-layer machine learning
applications are still limited. The need of cross-layer machine
learning models and other limitations of current applications
are further discussed in Section XIII.

V. MISSION CRITICAL COMMUNICATION

An important dimension of IoT 2.0 is the mission critical
communication based systems, which address the situations

where human life and any form of infrastructure can be
at risk. Mission critical communication currently takes the
form of mission critical machine-to-machine (M2M) com-
munication, or machine type communication (MC-MTC),
where machines need to communicate with each other to
perform various tasks such as coordination, sensing, and
actuation. Mission critical communication systems put strin-
gent requirements of ultra-reliable and low-latency commu-
nications (URLLC) and system availability [142]. The M2M
communication systems which do not involve the mission
critical element are referred to as low-cost M2M or massive
MTC (mMTC) with low-power consumption and massive
connectivity [143]. In this section, we review important use
cases of mission critical communication systems and recently
proposed physical (PHY) and higher-layer mechanisms to
meet the desired requirements of URLLC in these mission
critical communication networks.
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TABLE 7. Applications Involving Edge-Cloud Collaboration.

Reference Application Collaboration

Method

[46] Video Recognition Process offloading
decisions.

[140] 5G Mobile Network Process offloading
decisions.

[141] General IoT Applica-
tion

Process offloading
decisions.

[135] Graphical Expert
System

Data cleansing to aid
training.

[138] Anomaly Detection Training using Fed-
erated Learning.

[139] Indoor Condition
Prediction

Dynamic model se-
lection.

[136] Healthcare System Collaborating the
results of different
subtasks on different
layers.

A. IMPORTANT APPLICATIONS OF MISSION CRITICAL

COMMUNICATION NETWORKS

In order to protect citizens and infrastructure during disasters
and emergencies, different public safety organizations are
put in place [144, 145]. The emergency first responder is
the most important entity in all emergency management
agencies. Public safety communication (PSC) systems used
by these agencies for coordinating teams and providing quick
emergency-response are regarded as mission critical because
they need to be ultra-reliable, resilient, and secure while
meeting other stringent network functionalities [146]. Public
warning systems (PWS) also come under the umbrella of
PSC systems as they share many of the characteristics of
mission critical communications. An important use case of
PWS is the earthquake and tsunami warning system. During
the last few years, there has been a significant increase in
the interest of advancing the PSC systems. The authors of
[144] presented a detailed survey on wireless communication
technology while covering the different aspects related to
regulatory, standardization, and research activities in PSC
systems. The main focus in this work is on Europe and the
USA. In [145] a comparative analysis of legacy and emerging
technologies for PSC is presented. The authors of [146]
discussed the use of broadband technologies for public safety,
considering existing LTE specifications. The authors from
[147] proposed a software architecture design as well as a
set of distributed protocols to meet the strict requirements of
PSC networks. The use of wireless networks in the mining
industry for mobility support, rapid deployment, and scala-
bility within dynamic environments is another use case of
the PSC system. The authors of [148] discussed the mission

critical requirements of PSC systems for open-pit mining,
and a framework is proposed that integrates mine and radio
network planning.

Automated transportation systems are meant to provide
mission critical services to self-driving vehicles, connected
cars, road safety, and traffic management systems. These
intelligent transportation systems can increase the efficiency
of traffic management agencies and provide numerous bene-
fits, including a considerable reduction in the road-accidents
rate. However, to get these systems realizable, the stringent
requirements of MC-MTC networks should be fulfilled.

Vehicular connectivity or Vehicle-to-everything (V2X), is
another important use case of MC-MTC in which time-
critical data exchange takes place under three different sce-
narios: vehicle-to-vehicle (V2V), vehicle-to-infrastructure
(V2I), and vehicle-to-personal device moving at pedestrian
speeds (V2P) [149]. UAVs, also known as drones, have
potential usages in many mission critical communication
systems due to their inherent features of mobility, flexibility,
and adaptive altitude [150]. Such UAVs assisted MC-MTC
networks can be used in the transportation of important
goods in emergency situations being handled by the public
safety and rescue systems. UAVs can be part of existing
cellular networks as new types of user equipment (UE) and
flying base stations. UAVs as flying base stations can help
increase the coverage, spectral efficiency, and QoS in the
MC-MTC supported cellular networks [150]. The authors of
[151] presented a comprehensive survey of different types of
promising solutions for the smooth integration of UAVs into
cellular networks.

Industrial automation involving time-critical processes re-
quires highly reliable data transfer links between sensors, ac-
tuators, and controllers, and thus is an important application
of MC-MTC networks. Detailed performance requirements
of different MC-MTC network applications are listed in
[152]. Health monitoring systems for remote patients and
remote robots for surgeries are potential applications of
MC-MTC networks. Similarly, both augmented reality (AR)
and virtual reality (VR) systems require very low end-to-
end latency. Another important use case of mission critical
communication networks is found in the smart grid, which is
an advanced form of conventional power grid having capabil-
ities of automation, monitoring, and communication. The key
features that distinguish smart grids from the conventional
electrical power grid are two-way communication, demand-
side management, and real-time billing. All these features re-
quire mission critical communication infrastructure for smart
grids [153].

1) PHY Layer Considerations for Mission Critical

Communication Networks

Table 8 summarizes works related to PHY layer considera-
tions for mission critical communication networks. For both
licensed and unlicensed bands employing URLLC, many
promising PHY and medium access control (MAC) layer
techniques are discussed in [154]. The following techniques
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are among the PHY layer mechanisms proposed specifically
for MC-MTC networks to meet the associated URLLC re-
quirements.

a: Short packet transmission

In contrast to the conventional wireless communication sys-
tems, the traffic in MC-MTC networks generated by different
types of devices and sensors contains short packets where
the size of metadata (control information) is comparable with
that of the actual information payload. Thus, new principles
are required to design wireless protocols supporting short
packets. The authors of [155] reviewed information-theoretic
principles developed for communication systems generating
short packets. These principles are applied in different com-
munication scenarios such that the control information is
optimized for short packet transmission.

The probability that a network provides the required level
of QoS is called the network availability, and in the context of
MC-MTC networks, QoS is the set of desired reliability and
latency levels [156]. To meet the stringent requirements of
URLLC in MC-MTC networks, high SNR is required at the
receiver, and SNR of the received signal depends upon the
range between the transmitter and the receiver. The authors of
[156] proposed a framework to optimize the available range
and transmission duration in MC-MTC networks employing
short packet transmission. To enhance network availability,
the base station is equipped with multiple antennas, while
the end nodes have only one antenna. This framework can
be used in different transmission modes, including device-to-
device, amplify and forward, and decode and forward.

b: Physical layer authentication (PLA)

Although, the use of short packets in mission critical commu-
nications systems can lead to the satisfaction of the stringent
requirements of URLLC; the impact of finite block-length
coding can cause serious physical-layer security issues. PLA
is another promising way of meeting the reliability require-
ment in MC-MTC systems employing short packet trans-
mission without using cryptographic methods. A common
model considered in this regard is composed of three nodes.
One node called Bob needs to exchange information with the
other node called Alice in a secure way. There is a third node
called Eve, physically distanced in the network which can
sniff information being exchanged between Bob and Alice,
and thus can send wrong information to the communicating
parties. PLA aims to provide information security at the
physical layer such that the interference from the undesired
nodes can be avoided. A PLA based mechanism is proposed
in [157] as a lightweight authentication in reliable MC-MTC
systems. In this work, the receiver employs a GMM to make
two clusters of the channel estimates, and based upon this
clustering, it predicts the actual transmitter. The authors of
[158] presented a queuing theory based detection and delay
performance analysis of a PLA protocol for single-input mul-
tiple output (SIMO) MC-MTC networks. This protocol is in-
vestigated under different possible attack cases. The authors

of [159] analyzed the secrecy throughput of MC-MTC net-
works while considering single and multiple antenna access
points (AP) in the presence of an eavesdropper equipped with
multiple antennas, and presented the corresponding latency-
reliability tradeoff analysis.

2) Programmable Mission Critical Communication Networks

5G is envisioned to provide many heterogeneous services.
By using network slicing, we divide a single physical net-
work into multiple isolated virtual networks such that each
virtual network takes care of a specific service [160]. Net-
work slicing help manage these diverse network services
efficiently. Thus, the design and implementation of MC-MTC
networks supported by 5G can take advantages offered by
the network slicing techniques. In [160], different aspects of
network slicing are discussed in the context of 5G. A network
slicing based logical network architecture for 5G systems is
presented in [161], which covers all the fundamental aspects
of a cellular communication system. The authors of [162]
presented a mathematical model of network slicing for three
main service groups of 5G, such that each group of services
is provided with a dedicated set of policies. The authors
of [163] proposed a network slicing design customized for
different time mission critical vehicle-to-everything services.
The authors of [164] discussed non-orthogonal slicing of
the radio access network (RAN) resources among enhanced
Mobile Broadband (eMBB), mMTC, and URLLC devices
communicating in the uplink to a common base station.
Because of the heterogeneous services being addressed, this
RAN slicing is termed as non-orthogonal multiple access (H-
NOMA), which is different from the conventional NOMA
techniques which share radio resources among devices of the
same type with homogeneous requirements.

SDN and NFV are promising techniques to implement net-
work slicing. SDN opens new ways to implement MC-MTC
networks, and some recent studies provide insight regarding
the potential usage of SDN in the design of future MC-
MTC networks. In [165] an SDN and NFV based solution is
presented and evaluated for critical infrastructure use cases.
The authors of [166] presented a software-based framework
for 5G systems and its hardware implementation MC-MTC
networks. The authors also presented a practical framework
for an experimental study that uses different types of network
traffic to prioritize mission critical traffic. This framework is
used to evaluate the end-to-end performance of the proposed
systems. The authors of [167] proposed an SDN based ar-
chitecture for 5G to address critical communications. Two
important switching paradigms named Bare-Metal and fully
virtualized switching, are used to evaluate the performance
of the proposed system. The authors of [168] proposed a
multi-controller architecture that provides a dynamic load
balancing scheme for SDN based MC-MTC networks. This
mechanism reduces the communication overheads by allow-
ing the controller to send the load status to the load balancer
only when the load exceeds a prescribed threshold. This helps
reduce the communication overheads in MC-MTC networks
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employing SDN. Communication in smart grid systems is an
important use case of MC-MTC networks. In this regard, the
authors of [169] presented a comprehensive survey on the
utilization of SDN architectures in smart grid systems.

While addressing the mission critical communication de-
sign challenges at the PHY and MAC layers, it can be ob-
served that the current approaches are primarily base station-
centric and lead towards centralized decision-making strate-
gies. Although these works aim to reduce latency and target
to achieve ultra-reliability, the centralized control strategies
may cause additional latency, which might not be avoided
in these methods [170]. This triggers the need to design
new solutions that involve less control signalling and employ
distributed decision-making approaches. Moreover, in the
current literature, mission critical communication network
design considers the heterogeneity caused by three primary
services of 5G, namely: URLLC, eMBB, and mMTC. How-
ever, different mission critical applications may have differ-
ent latency-reliability criteria, and this type of variation in the
QoS requirement creates another level of design complexity
that needs to be addressed accordingly. Hence, these gaps
in the literature can open new avenues for the research
community.

VI. IOT SCALABILITY

Universal scalability is discussed in this section. Universal
scalability is separated into hardware scalability, network
scalability and service scalability. Table 9 defines these dif-
ferent scalability concepts.

Hardware scalability is the ability of a piece of hardware
to be extended to cope with different environmental, network,
and service requirements. A common method for implement-
ing hardware scalability is offloading part of the device func-
tionality to a server [171, 172]. The authors of [171] proposed
an architecture that extends device functionality through
device virtualization. Additionally, this work demonstrates
device virtualization in the case of a multi-protocol scenario.
As a solution, virtual gateways are deployed on fog servers
to process the packets received by the end devices. However,
adding functions of another functionality group (for example,
adding image sensors to a transceiver device) still requires
modification from the hardware level. To avoid modification
from the hardware level, the concept of synthetic sensors is
proposed [172]. Synthetic sensors can be separated into the
device level and the server level. The device level is assem-
bled by sensor tags capable of sensing data from multiple
sensing dimensions. These sensing dimensions are low-level
data types include vibration, audio, camera, temperature,
humidity, air pressure, illumination, color, motion, magnetic
field, and Received Signal Strength Indicator (RSSI). Then,
low-level data is transmitted to the server level. On the
server level, machine learning algorithms process these low-
level data and convert them into valuable results to users. In
conclusion, synthetic sensors create a platform with all the
raw data types required and extend its functionalities through
server-based machine learning analytics.

Network scalability is the ability to dynamically scale
resources up and down to process the incoming IoT traffic.
A common method to ensure network scalability in wireless
sensor networks is clustering. The authors of [173] reviewed
common clustering algorithms. Their work outlines clus-
tering into processes of cluster head election and cluster
formation. Cluster head election is the process of choosing
cluster heads from wireless devices, and these cluster heads
gather data from other members of its cluster and transmit it
towards the base station [173]. After the cluster heads are
elected, other wireless devices advertise themselves to the
cluster heads and form clusters around these cluster heads to
join the network [173]. Therefore, new devices can easily join
the network with the cluster formation process. As a result,
scalability is achieved with clustering.

The clustering techniques assume devices in the network
are homogeneous. However, in an IoT scenario, devices
are heterogeneous [173]. As a solution, intermediate fog
devices are utilized [174]. Similar to the cluster heads, these
fog devices gather information from the end IoT devices
and transmit it towards a centralized server. Different to
the wireless sensor network scenario, fog devices are not
chosen by algorithms. These devices are specialized as an
intermediate server. The authors of [174] pointed out that as
a new IoT device joins the network, the device drivers and
services can be distributed on the fog devices to achieve a
simpler integration process. Therefore, fog servers increase
the scalability of IoT networks.

The extensibility of network coverage affects the availabil-
ity of network services to mobile users. The authors of [175]
explored antenna-based coverage and capacity optimization
in cellular networks. Their work is based on two major
phenomena. The first phenomenon is that the tilting of mobile
network antennas affects network coverage and capacity.
The second phenomenon is that there is a tradeoff between
coverage and capacity. These phenomena are caused by an
increase in the power of the received useful signal in a cell
and the reduction of signal coverage due to antenna tilting.
On the other hand, the authors of [176] addressed energy
efficient parent selection of mobile IoT nodes.

To ensure further coverage, scalability induced by antenna
tilting, online and dynamic antenna configuration using rein-
forcement learning can be applied to cellular networks [177].
This method also belongs to the SON self-optimization func-
tionalities [115]. Finally, to further extend network coverage,
satellites are incorporated to provide network backhaul for
IoT networks. The usage of satellite backhauls provides
advantages of cost efficient, ease of deployment, avoidance
of damage from natural disasters, seamless coverage, and
reliability [178]. This could be part of the universal coverage
solution.

Service scalability emphasizes the ability to incorporate
new services into the existing IoT system. The authors of
[179] defined scalability requirements of IoT applications as
explicit control flow, decentralized interactions, the separa-
tion between control and computation, and service location
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TABLE 8. Summary of Recent Works Addressing Mission Critical Communication.

Reference Communication Scenario Challenges Addressed Reliability and Latency Improvement

Mechanism

[155] Point to point, downlink
multiuser, and uplink mul-
tiuser

Short packet transmis-
sion

Tradeoff between coding rate and packet
length, data concatenation for multiple users,
tradeoff between the probability of collision
and packet error probability

[156] D2D and cellular modes
with single antenna users
and multiple antenna base
stations

Network availability
for short packet
transmission

Available range improvement by optimizing
transmission duration

[157] Point to point Physical layer security Clustering based upon channel estimates

[158] Uplink transmission: single
antenna users and multiple
antennas base stations over a
line of sight path

Physical layer security Feature based physical layer authentication
while considering the associated delays

[159] Downlink transmission: sin-
gle and multiple antenna
base stations, single antenna
actuator and multiple an-
tenna eavesdropper

Physical layer security
for short packet trans-
mission

Blocklength optimization to maximize the se-
crecy throughput for different cases

[163] Vehicle to everything com-
munication

Slicing the RAN and
core network for V2X
communication

End-to-end network slicing for different sce-
narios of V2X communication use cases

[164] Uplink multiuser RAN resource manage-
ment for heterogenous
services for 5G

Non-orthogonal slicing of the RAN resources

[166] Mission critical communica-
tion between a server and a
mobile user

End-to-end reliability
for high data rate

Software-based framework prioritizing mis-
sion critical traffic

transparency. This work also categorized IoT service interac-
tion types into direct interactions, indirect interactions, event-
driven interactions, and exogenous interactions. After the
evaluation of the service interaction types with the scalability
requirements, exogenous interactions are the only service
interaction type, which satisfies all scalability requirements.

Exogenous interactions incorporate a coordinator to man-
age all service interactions with different devices and ser-
vices. Therefore control is always managed by coordinators
and is separated from service computation. From [179], this
type of interaction is controlled with explicit control flow
as the control flow is defined by the coordinators. Also, as
a definition of exogenous interaction, the control is always
separated from service computation. Furthermore, exoge-
nous can be decentralized in a hierarchical manner. Finally,
location transparency is provided by exogenous interaction
because coordinators are controlling the service interactions,
and location data is encapsulated during the process.

TABLE 9. Applications Involving Edge-Cloud Collaboration.

Reference Type of

Scalability

Definition

[171, 172] Hardware
Scalability

The ability of a piece of
hardware to be extended
to cope with different en-
vironmental, network and
service requirements.

[173, 174,
175]

Network
Scalability

The ability to dynamically
scale resources up and
down to process the
incoming IoT traffic.

[179] Service
Scalability

The ability to incorporate
new services into the exist-
ing IoT system.
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FIGURE 13. SDN Architecture. [180]

A. SDN INDUCED SCALABILITY

SDNs bring programmability into traditional networks. For-
warding devices such as switches and routers can be virtu-
alized in SDNs. This is achieved through the separation of
control plane and data plane. As a result, SDNs simplify net-
work management, minimize the limitation from hardware,
and are easier to extend network functionality [180]. The
advantages of SDNs could also be beneficial to manage D2D
communication in 5G networks [181].

From Figure 13, an SDN architecture consists of the ap-
plication layer, the control layer, and the data-plane layer.
The application layer consists of software applications com-
municating with the control layer, the control layer process
requests from the application layer and manage network
devices, and the data-plane layer is network infrastructure
such as switches and routers [180]. NFV is another technique
that leverages service virtualization to increase network
scalability. European Telecommunications Standards Insti-
tute (ETSI) defines a standard for NFV architecture (Figure
14) [182]. This architecture is assembled by the virtualized
network functions (VNFs), the NFV infrastructure (NFVI),
and NFV management and orchestration. NFVI includes the
physical resource, which hosts VNFs as virtualized software
implementations of network functionalities. Both NFVI and
VNF are all managed by the NFV management and orches-
tration module. The advantages of the NFV architecture are
reduction of hardware implementation costs, increasing flex-
ibility and scalability by hosting VNFs on hardware, faster
service modification due to software-based deployment, im-
proved operational efficiency due to possible automation and
operating procedures, improved power efficiency by planning
and offloading workloads. NFV architecture is also able to
create software interfaces to associate elements from differ-
ent vendors.

The authors of [183] pointed out that SDN and NFV can
benefit each other. SDN controllers can be treated as a VNF

NFV Management and Orchestration

Manage

Virtualized
Network

Functions
Host

NFV Infrastructure

Virtual Layer

Virtual Compute, Storage &
Network

Hardware Resources

FIGURE 14. NFV Architecture. [182]
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FIGURE 15. Software defined NFV Architecture. [183]

on the cloud providing flexibility to controller distribution.
On the other hand, SDN provides its programmability to
NFV, allowing communication between different VNFs. The
combination of SDN and NFV further increases scalabil-
ity. The authors of [183] also provided a software-defined
NFC architecture that consists of the forwarding devices,
the controller module, and the NFV Platform. From Figure
15, the forwarding devices are switches and routers from
the data-plane layer of SDNs. These forwarding devices
store forwarding tables to process a particular data packet.
The forwarding tables are defined by the SDN controller.
The SDN controller also controls NFV orchestration on the
control module. Another function of NFV orchestration is to
assign functions to the NFV platform, where servers host
hypervisors supporting virtual machines running with the
network functions [183].

The authors from [184] identified that in the environment
of SDN and NFV, connecting and modification of virtual
functions are complex due to multiple heterogeneous end-
user demands and network parameters. Service function
chaining could be a solution to reduce this complexity and
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optimize the use of resources. The authors from [184] also
categorized existing service function chaining models into
six optimization types as follows: network latency minimiza-
tion, resource utilization optimization, cost minimization,
power/energy minimization, service level agreement based
optimization and quality of service based optimization. Fi-
nally, the authors of [183] provided a vision of implementing
service function chaining on the software-defined NFV Ar-
chitecture. The optimal path of service chains is coordinated
with the SDN controller fulfilling user requirements and
resource constraints. Then, service chains are created from
multiple VNFs, and data packets flow through the path of the
service chains.

In this section, network and service scalability achieved
with SDN and NVF are reviewed. The authors of [185] indi-
cated the emerging network scalability issues trigger by the
network management overhead in current networks with in-
creasing size and dynamism. Autonomic or self-management
of the networks (SONs) [185] could be a solution for these
issues. On the other hand, IoT interoperability could be
another solution to resolve scalability issues [186].

VII. IOT SECURITY

The diversified and ubiquitous use of IoT systems in fore-
seeable future necessitate the need of evaluating security
and privacy requirements for various IoT technologies and
applications. In this context, due to constrained resources of
IoT end-devices, lack of host-based security measures, and
data-enabled services, numerous threats emerge at different
layers of IoT architecture.

A. PHYSICAL LAYER

Some of the noteworthy threats at physical layer include:
1) Eavesdropping: Attackers can introduce devices similar

to the end nodes in an IoT system to sniff wireless traffic
and capture sensitive user data.

2) Hardware Failure: IoT device hardware may fail due
to manufacturing faults or as a result of a cyber-attack.
This failure may lead to substantial damage to the IoT
system as a whole or it may cause physical impairment
to the users [187]. An example of such a successful
cyber-attack is Stuxnet [188], that caused physical dam-
age to a critical equipment installed at Iranian Nuclear
Enrichment Facility.

3) Malicious Data Injection: Any persistent attacker can in-
troduce a forged device to eavesdrop on the radio traffic,
inject fabricated messages or flood the radio channels
with fake messages to render the system unavailable to
the legitimate users [189].

4) Man-in-the-Middle Attack (MITM): There is always a
possibility that an attacker can tap and listen to the un-
protected communications links between the end users
and the network/applications servers. Such an attack
is often called as (MITM) attack. A successful MITM
attack may enable the attacker to eavesdrop the commu-
nication channel or to inject forged malicious data.

5) Sybil Attack: In this attack, a malicious node may
present multiple identities by generating fake new iden-
tities or by impersonating other nodes. In the worst case
scenario, multiple identities may be generated using a
single physical device [190]. The attacker has the option
to present all the Sybil identities simultaneously or one
by one at different instances. A Sybil attack may affect
the outcome of a voting-based fault tolerance system or
a routing protocol.

6) Loss of Power: In order to abnormally drain the battery
of an IoT device an attacker can bombard the node with
a large no of requests (mostly legal) thus preventing it
from going to sleep or energy saving mode.

7) Disclosure of Critical Information: It is not always the
case that a communications channel is unprotected. Cur-
rently, most of the communications protocols especially
the wireless protocols such as 802.15.4, LoRaWAN,
SigFox, ZigBee, and WiFi, encrypt data during trans-
mission. However, still a smart attacker may continu-
ously monitor the wireless sensors traffic, for example,
of a smart home and analyze the pattern of data traffic
to differentiate between an idle mode or when an event
occurs. Hence, even if the data is encrypted, the fre-
quency of data traffic may infer critical information to
the attacker that the house is empty. Therefore, he can
plan a robbery.

8) Side-Channel Attacks: Other than intercepting the plain
text or cipher text messages, attackers may resort to
gather and analyze side-channel information about the
IoT device hardware components. This information may
include, data about processing time or power consump-
tion while encrypting or decrypting data packets of
varying lengths generated from different sensors/end
nodes [191]. Such an analysis may help the attacker to
identify the duty cycle of various IoT devices based on
the frequency of particular messages being transmitted.

9) Device Compromise. Most of the IoT devices designed
for a particular application such as environmental mon-
itoring, temperature, and pressure sensing, etc., are not
security hardened, thus have weak authentication mech-
anisms or open debugging ports. Hence, these devices
can easily be compromised by the malicious attackers.
In an effort to demonstrate such an attack, security
researchers in [192] exploited an open Universal Asyn-
chronous Receiver/Transmitter (UART) interface of a
home automation system controller. The sequence of
actions adopted by the researchers to compromise an
IoT device is shown in Figure 16. Once the attacker
gains access to the device, he is able to view the start-
up sequence. Hence, he can modify the boot parameters
and gain low-level access to the device. Attacker may
also brute force the root password and launch network
layer attacks such as port scanning. In addition, the
attacker may perform network traffic analysis. Attack-
ers also have the option to fetch and analyze device
firmware, find weaknesses and launch further attacks.
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FIGURE 16. Sequence of a device compromise attack.

In another endeavor, security researchers compromised
a smart meter device through an unsecured Joint Test
Action Group (JTAG) interface and modified the iden-
tity of the device. The researchers also modified write
permissions to an Electrically Erasable Programmable
Read-only Memory (EEPROM) that stored the device
ID. As a result of such a successful attack in real-
world malicious users can use the spoofed device iden-
tity to feed altered power consumption data to the
controller/gateway device [193]. Similarly, researchers
also successfully compromised a Google Nest Learning
Thermostat and Nike+ Fuelband SE fitness tracker by
exploiting vulnerabilities in the boot process and some
weaknesses in the physical design. The attack was suc-
cessful despite the availability of secure transmission
protocols such as Wi-Fi Protected Access II (WAP2)
and Transport Layer Security (TLS) 1.2. In addition,
the smart devices also had fairly strong authentication
mechanism in terms of OAuth authentication tokens
and Public Key Cryptography Standards VII (PKCS 7)
certificates.

10) Node Cloning: Due to cost-effective solutions most IoT
devices are developed without any hardware tamper-
proofing. Therefore, it is very easy for a persistent
attacker to forge and replicate these devices for ma-
licious objectives. Such a replication is called “node
cloning” [194]. An attacker can clone the devices either
in manufacturing phase, or during the operational phase.
During device manufacturing, an inside attacker can
target and substitute a particular legitimate device with
a similar, pre-programmed one for unauthorized pur-
poses. Whereas, during the operational phase attacker
has to resort to a carefully planned attack to compromise
and clone an IoT device.

11) Invasive/Semi-invasive Intrusions: Invasive and semi-
invasive intrusions are significant threats to IoT devices.
By using invasive intrusion methods, attackers can steal
the cryptographic primitives stored on the chip and may
compromise any protocol utilizing that secret informa-
tion. In a practical manifestation of such an attack,
security researches in [195], successfully extracted the
Advanced Encryption Standard (AES) Key from the in-
ternal memory of Actel ProASIC3 FPGA, by launching
“Bumping Attacks” [196].

B. NETWORK LAYER

Most of the attacks are anticipated at network layer because it
not only links multiple Local Area Networks (LANs) but also
enables a connection to the Internet. Some of the threats that
affect data security at this layer include unfairness, imperson-
ation, Sybil, and interrogation attacks [197, 198, 199]. Simi-
larly, numerous Denial-of-Service (DoS) attacks that threaten
the availability of network services include; channel conges-
tion, collision and battery exhaustion attacks [200, 201]. The
battery congestion attack may be launched by increasing the
frame counter value and spoofing of acknowledgment frames
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[202, 203]. Correspondingly, hello flood attack, selective
forwarding, wormhole attack, blackhole attack [200] and
storage attacks [187] also threaten availability of network
services. Some other DoS attacks may include exploitation
of Carrier Sense Multiple Access (CSMA) protocol by trans-
mitting on multiple channels [202, 201] and initiation of fake
Previous Access Network Identifier (PANId) conflicts. DoS
Attacks can also be launched by sending fake/false messages
to a node, server [204] or a gateway device [205].

In addition, some of the threats to the security and integrity
of the system include MITM, eavesdropping [189], spoofing
[200], message fabrication/modification/replay attacks [189],
unauthorized access to network, compromise of a device
(done remotely using malware) [187], node replication [197]
and insertion of rogue devices [206].

FIGURE 17. SQL Injection Attack on Belkin WeMo Switch.

C. FOG/EDGE LAYER

The introduction of fog/edge computing with IoT to reduce
latency, decrease bandwidth, enhance computing power, in-
crease storage and augment security is a paradigm shift from
centralized cloud-based infrastructure [207, 208]. However,
as fog/edge is believed to be a nontrivial extension of the
cloud, hence certain new security and privacy issues have
been identified in addition to the existing ones. Some of the
significant security and privacy challenges include:

1) IoT device authentication.
2) Lack of trust measurement mechanism.
3) Absence of IoT device integrity check technique and

detection of rogue devices.

4) IoT device security and user data security and privacy.
5) Non-availability of IoT-centric access control and in-

trusion detection system to avoid insider and external
attacks.

6) Key management at end devices.

D. SECURITY AND PRIVACY ISSUES DURING DATA

STORAGE AND ANALYTICS ON CLOUD

Today, the reliance on Big Data analytics to provide valuable
business intelligence has paved the way for the integration
of IoT and cloud computing. No doubt, cloud infrastructure
has relieved IoT systems from issues involving scalability,
constrained processing power, limited memory and power to
run heavy applications [209]. However, like other IoT layers,
the vulnerabilities in cloud interfaces can also become attack
vectors. Therefore, the cloud gateways should be equipped
with requisite security controls to restrict malicious actors
from compromising security and privacy of user data [210].

Some of the major security issues in cloud-supported IoT
systems include: Cloud services are provided under the cen-
tralized control of one trusted entity. Hence, the cloud is vul-
nerable to the single point of failure concerning security and
privacy issues [189] including data manipulation [211, 212],
and the availability of cloud services. Moreover, cloud also
has trust issues, as the users have to put their trust in the
entity that is providing cloud services and handling their data.
Hence, users have no control over their data assets. Further
concerns for user data include: Users do not know where
their data is stored and what is happening to it. Who has
access to it, and is there any unauthorized disclosure to the
third parties. In regard to data manipulation, the cloud service
provider has to be a trusted party as it has control over the
data stored in the cloud and related services. Therefore, the
cloud provider can manipulate user data [212]. Correspond-
ingly, single point of failure also concerns the availability
of services when the cloud servers are down because of
software bugs, cyber-attacks, power problems, cooling and
other issues, users find it difficult to access the cloud services
[211]. Cloud is also vulnerable to un-authorized data sharing.
For example, in the recent past, private data of 87 million
users was provided by Facebook to a British political con-
sulting firm “Cambridge Analytica” without user permission
[213, 214]. Such a data breach results in irreversible data
security and privacy issues.

E. APPLICATION LAYER

Most application developers focus more on efficiency and
service delivery rather than security. As a result, applications
remain vulnerable to numerous threats. Lack of application
security, and weak authentication and authorization mech-
anisms enable attackers to compromise IoT devices using
various attack vectors such as malicious code, and brute force
attacks to guess the hard coded login credentials. The device
compromise can then result in unwanted disclosure of sensi-
tive information, elevation of privileges and data tampering.
The attacker can also turn the infected devices into bots to
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launch further attacks on other end devices or network appli-
cations [187]. Moreover, once an adversary gains an initial
foothold on the IoT device through an insecure application
he can also do the exploitation via binary patching, code
substitution or code extension [215]. Correspondingly, some
significant security risks to web-based IoT systems have been
ranked by OWASP (Open Web Application Security Project)
[216]. These risks include:

a) Injection flaws in SQL/noSQL Databases, Operating
Systems (OS) and Lightweight Directory Access Pro-
tocol (LDAP). This vulnerability not only affects tra-
ditional Information Technology (IT) systems but also
poses an equal threat to the IoT applications and
database servers. In a practical manifestation of such an
attack, researchers in [217] successfully compromised
a smart home device, i.e., a Belkin WeMo Switch.
As shown in Figure 17 firstly, the attacker discovers
an SQL injection vulnerability in the IoT device. The
adversary also discovers that the data is not encrypted
during transmission between the Belkin WeMo Android
Application and the Belikn device. He also finds that the
authentication mechanism is lacking. The attacker then
sends a malicious SQLite file to the device and resul-
tantly gets root level access. Once inside, the attacker
can alter the functionality of the device or he has the
option of launching a DDoS attack. For example, The
lamp is kept on for a long time irrespective of the rules
defined by the user. It is imperative to mention here that
once an attacker gains root level access to the device;
he can even kill the firmware update process initiated
remotely by the vendor. Hence, the device can be kept
in the compromised state for as long as desired by the
attacker or until the device is updated on site [218].

b) Malicious actors can steal user identities and compro-
mise passwords, cryptographic keys, and session to-
kens due to incorrect session management and incorrect
implementation of authentication in applications. For
example, a user does not change the default username
and password or the wireless router has hardcoded
credentials for the admin account. Hence, researchers
in [219] were able to hijack the session using ARP
poisoning and gain access to the camera feed of the
Withings Smart baby Monitor.

c) Security misconfiguration is one of the most common
weaknesses. It implies insecure default configurations,
open cloud storage, mis-configured Hyper Text Transfer
Protocol (HTTP) headers, and overblown error mes-
sages that may contain sensitive information. An IoT de-
vice is insecure without secure configuration and timely
upgrades of its OS and applications [218].

d) XSS (Cross Site Scripting): By exploiting this vulnera-
bility, attackers can run an arbitrary JavaScript code in
the browser of target systems [217, 220]. Resultantly,
it can lead to the hacking of the smart devices and
ultimately the theft of private data.

e) Security Issues in Application Layer Protocols: Security
researchers have shown concern over the security issues
in various application layer protocols such as HTTP,
Message Queuing Telemetry Transport (MQTT), Ad-
vanced Message Queuing Protocol (AMQP), and Exten-
sible Messaging and Presence Protocol (XMPP) [221].
These protocols rely on TLS and Datagram Transport
Layer Security (DTLS) for the security during com-
munication especially in a client-server environment.
However, these protocols are vulnerable to plain-text
recovery attacks, as demonstrated by the researchers in
[221]. Moreover, another significant issue with these
protocols is that they were not designed to be used for
resource constrained IoT devices. Subsequently, these
protocols add additional traffic overheads with every
connection establishment that ultimately drain the com-
puting and power resources of IoT devices [222].

F. BUSINESS LAYER

Data received from IoT devices through web/application
servers is stored and processed mostly in the cloud. The
processed data is then used to provide various data-enabled
services to the users, and third parties. This big data ana-
lytics is no doubt beneficial, but at the same time various
security and privacy issues emerge. Users that are basically
the data owners do not know where their data is stored
and who has access to it. Moreover, cloud service providers
may share some private information of the users with third
parties without de-anonymization. Most of the tools currently
being used to store and compute big data, such as Hadoop
Distributed File System (HDFS) and MapReduce framework
lack adequate security to protect sensitive user data [223].
Hence, there is a need to develop a comprehensive defense
strategy to protect IoT systems from various security and
privacy threats.

G. APPLICATION SPECIFIC SECURITY REQUIREMENTS

There are myriad of IoT applications that have significant
impact concerning safety, security and privacy of people, in
case of any security breach. All of these applications cannot
be discussed here; however some of the critical ones are
highlighted in the subsequent paragraphs.

1) IoT in Healthcare

IoT has revolutionized healthcare domain by connecting
wearable healthcare devices, smart homes, hospitals, med-
ical staff, and other processes. Such an integration is no
doubt beneficial. However, being interconnected and re-
motely accessible, these services are vulnerable to major
cyber-physical security risks [224]. Some of the significant
security and privacy issues concerning Healthcare IoT infras-
tructure, and services include:

• Weaknesses in network access control mechanisms and
threats to data authentication, integrity and availability
[225].
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• Due to the interconnections, a failure in one infrastruc-
ture can cause cascading failures among its dependent
systems/processes [226].

• Unauthorized access to user data by third parties.
• Lack of role-based controlled access to patient data.
• Existing single party owned centralized systems to store

and process user data provide single point of failure.
• Vulnerability to ransomware attacks [227].

2) Industrial IoT

The development of first Programmable Logic Controller
(PLC) in 1968 by Modicon laid the foundations of classical
industrial automation. This automation pyramid comprise of
Enterprise Resource Planning (ERP) layer, Manufacturing
Execution System (MES), Supervisory Control and Data
Acquisition (SCADA) layer, PLC layer and sensing layer
comprising sensors and actuators [228]. For a longtime the
security of industrial systems was based on the principle of
obscurity, i.e., by hiding the details about internal network
and related technologies. However, with the increase in the
level of automation, and reliance on remote access for ease
in monitoring and control, the industrial systems have be-
come a lucrative target for the cyber-attackers/hackers. In
this context, Stuxnet was the game changer, that made the
world realized that the security of critical infrastructure is a
necessity [218]. Stuxnet is believed to be a targeted computer
worm that was designed to sabotage CPS installed in Ira-
nian Nuclear Enrichment Facility. It exploited four zero-day
vulnerabilities in Windows-based systems to gain an initial
foothold [229]. Stuxnet specifically targeted personal com-
puters running WinCC/PCS-7 control software used for pro-
gramming the PLCs [230]. It could act as a MITM attacker
and mask the malicious code execution by replaying twenty
one seconds of legitimate process input signals. The malware
payload comprised rootkits which could hide its presence
and was also equipped with stolen digital certificates to
appear legitimate. The payload altered the speed of frequency
converter drives (from specific vendors Fararo Paya from
Iran and Vacon from Finland) to cause physical damage to
over 900 centrifuges [188]. Other than malware attacks, the
industrial systems are also vulnerable to numerous threats
including: DoS, DDoS, ransomware, message spoofing, data
integrity and non-repudiation, information disclosure, and
elevation of privileges.

3) Smart city Security Requirements

The advances in IoT technologies and related smart gadgets
have given birth to a new paradigm called “Smart Cities.”
That aims to dynamically optimize the use and availability
of numerous tangible and intangible resources. However,
due to reliance on IoT devices for sensing and initial pro-
cessing of perceived data, and vulnerability of IoT devices
to numerous cyber attacks, the attack surface for a smart
city also increases. Hence, authors in [231] highlight cer-
tain necessary requirements to design a secure smart city.
These requirements include: secure communication [232],

secure booting of IoT devices [233], security monitoring and
incident response strategy [231], secure software/firmware
update and patching [234], authentication, identification, and
access control [235, 236, 237], and data and application
security.

VIII. SECURITY MEASURES

Figure 18 shows a defense-in-depth approach that acts as
a guideline to protect IoT systems against threats at all the
layers of IoT architecture. Not all the IoT applications may
require all these measures. Depending upon the nature of IoT
application, a combination of these guidelines may suffice.

a) Risk Assessment and Threat Modelling: For the devel-
opment of an effective defense mechanism firstly, there
is a requirement of carrying out the risk assessment for
all processes, equipment (both hardware and software),
stakeholders and information assets at each layer of IoT
architecture. The aim of such an assessment is to iden-
tify the assets that are deemed critical for the business.
Failure of any of which may cause significant security,
privacy, financial and safety issues. It is followed by an
appropriate risk treatment/mitigation process to mini-
mize the damage of such events. Correspondingly, most
of the information security standards such as Interna-
tional Standards Organization (ISO)-27001 [238], and
National Institute of Standards and Technology (NIST)
publication 800-30 [239] enforce risk management as
an integral part of the overall controls. Any such stan-
dard can be followed until there are some IoT specific
standards on board.

b) Preventive Measures: The primary objective of pre-
ventive measures is to mitigate the weaknesses which
attackers can exploit to initiate a security breach. These
measures include:

• Security by design: IoT solution architects should
consider a non-zero likelihood of security breaches
while planning, designing and developing an IoT
system. It is very important that security should
be enabled by design and users should have the
option to change the security settings as per their
personal requirements [240, 241]. Certain practices
that help achieving security by design are: trusted
environment for secure computing, security of all
open/debugging ports, preserving integrity of the
firmware/code, multi-factor authentication, and by
default block all traffic at the ingress.

• Identity Management: An effective identity manage-
ment mechanism not only protects against identity
spoofing, and device replication attacks but also com-
pliments network layer security protocols such as
Transmission Layer Security (TLS), and IPSec [242].

• Tamper-Proofing: IoT device tamper-proofing is con-
sidered to be a potent defense against physical device
compromise, unauthorized access, firmware modifi-
cations and device cloning [243, 244]. Moreover,
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FIGURE 18. Defense-in-Depth Approach

complimented by a secure execution environment, it
can protect against code modification and malicious
payload execution attacks [242].

• Use of Pseudonymous Identities: Use of pseudonyms
protects the users against most of the privacy threats
by de-linking user identities from the Personally
Identifiable Information (PII). It can be achieved by
using Public Key Infrastructure (PKI), i.e., by issu-
ing public keys to the users of an IoT system for
authentication and authorization of various services.
These public keys can be issued in the form of X.509
certificates by a trusted Certificate Authority (CA)
[245].

• Identity-based Authenticated Encryption and Mutual
Authentication Scheme: Such an authentication and
data security technique not only protects against im-
personation, MITM, and eavesdropping threats but
also from data forgery, data modification, and mes-
sage replay attacks [246, 247, 248].

• Homomorphic Encryption: To avoid privacy issues in
a cloud environment where user data is processed,
analyzed and shared with third parties, homomorphic
encryption is considered to be an effective tool [249].

• Blockchain Technology: Since the success of Bitcoin,
a cryptocurrency [250], blockchain has disrupted con-
ventional IT industry. The inherent cryptographic
security of blockchain protects against most of the
data forgery, modification, replay and authentication
threats. It also provides a transparent log of events
that facilitates system audit at any time [251].

• Role-based Access Control: Issues related to the se-
curity and privacy of data and unauthorized access to
the network services can be prevented by deploying
role-based access controls [206].

• Secure Remote Access: Not only in private sector but
in public organizations as well, sometimes the users
are required to work from home. Hence, there should
be a mechanism of remotely connecting users at their
homes with the organization networks and systems.
For example, use of a Virtual Private Network (VPN)
service can protect against attacks on corporate net-
works and threats to sensitive Business Intelligence
(BI) [252].

• Key Management: Secure management of crypto-
graphic keys including generation, distribution, stor-
age, revocation, and update is an essential require-
ment to protect against masquerading attacks and
exposure of critical information.

• Network Segmentation: To curtail the effects of net-
work or a node compromise using network segmen-
tation is recommended to be an effective approach.
Network segmentation can be achieved by defin-
ing de-militarized zones, physical isolation, VLANs,
software-defined perimeter, application firewalls, and
content-based filtering [253].

• Software-defined Networking (SDN) based Virtual
Security: Network Virtualization using SDN can aug-
ment IoT device-level protection by implementing
security at the network level, hence, reducing cost and
add-ons for low-end devices [254].

• Use of self-encrypting drives/devices: Data privacy is
one of the fundamental issues in this age of internet
and smart technologies. Therefore, it is believed that
use of self-encrypting drives and on-chip flash mem-
ories may provide requisite security by design against
unauthorized disclosure of private user data [243].

• Security Awareness: In the tech savvy world, it is
very crucial that organizations should invest in edu-
cating their employees on security concerns. It can
be achieved through various workshops, seminars
and periodic lectures on cyber threats and requisite
precautionary measures.

c) Detective Measures: As the name suggests, even if an
attacker is successful in gaining an initial foothold into
any IoT system, the detective measures will help in iden-
tifying any malicious activity. Some of these measures
may include:

• Secure Log Management: Most of the attack-
ers/hackers try to wipe off their footprints after an
unauthorized intrusion into a critical system. Hence,
keeping a secure log of all activities in the network
helps to expose any unusual activity or a security
breach.

• Network Security Analysis: CISCO [255], and IBM
[256] have developed various network security anal-
ysis tools that are helpful in detecting numerous
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anomalies, malfunctions and security breaches.
• Edge Security Analysis: In addition to the network

security analysis, edge security analytics facilitates
isolation of security events at the source and limit
attack spectrum [242].

• Network-level Security Measures: Network-level se-
curity measures to enforce cross-device security poli-
cies can easily detect manipulation of actuator actions
based on malicious/modified sensors data [257].

• Device Attestation: If possible, there should be some
mechanism of performing runtime IoT device code
attestation to check for the presence of any malicious
payload or modification in the original code. The
successful code verification is expected to shrink the
attack surface [258].

• Penetration Testing and Vulnerability Assessment:
Periodic network penetration testing is always help-
ful in detecting weaknesses in all the layers of IoT
architecture, web UI/APIs, and servers to initiate
respective counter/response measures.

d) Responsive Measures: The best way an organization can
respond to a cyber security incident is by preparing an
effective incident response plan. Mostly, these plans are
rolled out by a team usually called as Computer Emer-
gency Response Team (CERT). These teams comprise
skilled professionals including cyber security experts,
information security auditors, legal experts, IT admin-
istrators and other specialized members. The primary
objective of CERT is to develop and practice a diligent
response plan against any security breach so that all the
team members are clear about their responsibilities. The
response measures are often termed as after-incident
reactive measures, which include:

• Disconnect the affected system from the Internet.
• Isolation of the compromised devices/parts of the

system allowing rest of the system to continue unin-
terrupted operation.

• Revocation and blacklisting of malicious nodes.
• Initiation of anti-tamper mechanism, in which, as

soon as the hardware of the node is interfered with,
the memory of the node that contains firmware
and code should immediately be wiped off, and
the node should only join the network after being
physically activated instead of OTAA (Over-The-Air-
Activation).

• Recover important business and personal data from
the backup.

e) Corrective Measures: Once a security event has oc-
curred and the compromised devices/parts of the system
are identified and isolated, they need to be recovered
to operational condition. There are two known meth-
ods of node restoration, i.e., self-recovery and remote
attestation. In self-recovery, the faulty device performs
integrity check of the code running on it and the last
best configuration stored in read-only memory. If the

validation fails, the device deletes the current code
and re-installs the last best configuration. The device
then restarts and performs validation of all its modules.
Whereas, in the later method, the compromised/faulty
device sends integrity report to the controller/gateway
device for remote validation [243]. If the validation fails,
a secure firmware update process is initiated by the
verifier.

To conclude, Table 10 summarizes threats at different layers
of IoT architecture, including physical, network, fog/edge,
data orchestration/cloud, application, and business layer.
Similarly, Table 11 highlights the essentials of defense-in-
depth approach to secure IoT systems.

IX. IOT SUSTAINABILITY

While IoT technology has gone through a significant level
of advancements in recent years, there are still a number
of constraints associated with battery dependency, limited
lifetime, and environmental pollution of these portable de-
vices. Until now, energy has been one of the barriers to large-
scale adoption and deployments in IoT devices. Integrating
EH systems with IoT devices extend their lifetime, decrease
energy costs, and reduce environmental pollution by using
green energy sources [259]. Hence, self-powered IoT devices
that can operate autonomously are an emerging topic of
interest among researchers [260, 261]. Energy harvesting is a
sustainable, cost-effective, green energy solution to provide
an alternative energy source for remotely deployed IoT de-
vices and sensors. Energy harvesting or scavenging is the
process of collecting energy from freely available ambient
sources, and EH is a device that converts ambient energy
into DC power to supply Wireless Sensor Networks (WSNs),
biosensors and IoT devices [262, 263, 264, 265, 266].

Depending on the type of energy available, there are a
number of techniques for energy scavenging from ambient
sources such as solar, thermal, mechanical sources (for exam-
ple, wind, kinetic, vibration) and radio frequency (RF) waves.
These sustainable sources are all in abundance and are pro-
duced in a pure form on our planet [266]. Harvested energy
is often used for WSN, wearable electronics, and portable
IoT devices [259, 267]. However, not all ambient sources are
appropriate for energy harvesting in IoT applications.

Basically, the energy harvester (EH) integrated with IoT
devices should produce at least milliwatts of power from
the environment. Figure 19 shows generated DC power of
different energy harvesting technologies and the power con-
sumption of different electronic devices to demonstrate the
usefulness of energy harvesting techniques for these devices
[259].

A. ENERGY HARVESTER SYSTEMS IN IOT DEVICES

EH system converts ambient energy, such as solar en-
ergy, thermal, vibrational, or RF energy into usable elec-
trical energy. According to Figure 20, an EH consists of
three main components: power transducer, storage (bat-

30 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3078549, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 10. Threats to IoT

IoT Layer Threats References

Physical layer

Eavesdropping [218]

Hardware failure [187, 188]

Malicious data injection [189]

MITM [218]

Sybil attack [190]

Loss of power [218]

Information disclosure

Side-channel attacks [191]

Device compromise and node cloning [192, 193, 194]

Invasive/semi-invasive intrusions [195]

Network layer

Unfairness and impersonation attacks [197, 198, 199]

Sybil attack

Interrogation attacks

Channel congestion and collision attacks [200, 201, 202, 203]

Battery exhaustion attacks

Hello flood attacks [200, 187]

Selective forwarding attack

Wormhole and blackhole attacks

Storage attacks

CSMA attack [202, 201]

PANId conflicts

MITM, eavesdropping and spoofing attacks [204, 205, 189, 200]

Remote device compromise [187]

Node replication [197]

Insertion of rogue devices [206]

Fog/Edge layer

Issues concerning device authentication [207, 208]

Lack of trust mechanism

Threats to IoT device integrity

Vulnerability to insider and external attacks

Cloud layer

Single point of failure [189]

Data manipulation [211, 212]

Threats to the availability of cloud services

Risk of unauthorized data sharing

Application layer

Information disclosure [187]

Elevation of privileges and data tampering

Threat of botnets

Code substitution or code extension attacks [215]

Injection flaws in SQL/noSQL Databases, OS and LDAP [217]

Session hijacking [219]

Security misconfiguration [218]

XSS [217, 220]

Plain-text recovery attacks [221]

Resource constraints [222]

Business layer

Unauthorized sharing of data/information [223]

Threats to user privacy
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TABLE 11. IoT Defense-in-Depth Approach

Defense Category Security Measures References

Risk assessment

Identify critical assets [238, 239]

Vulnerability assessment

Risk treatment and mitigation strategy

Protective measures

Security by design [240, 241]

Identity management [242]

Tamper-proofing [243, 244]

Use of pseudonymous identities [245]

Identity-based authenticated encryption and mutual authentication [246, 247, 248]

Homomorphic encryption [249]

Blockchain technology [250, 251, 206]

Role-based access control [206]

Secure remote access [252]

Key management [218]

Network segmentation [253]

SDN [254]

Self-encrypting devices [243]

Security training and awareness

Detective measures

Secure log management

Network security analysis [255, 256]

Edge security analysis [242]

Network-level security measures [257]

Device attestation [258]

Penetration testing and vulnerability assessment [218]

Responsive measures
Establishment of CERT [218]

Preparation of incident response plan

Corrective measures

Self recovery of nodes

Remote attestation [243]

Device replacement/reconfiguration

Review and updating security policies

tery/supercapacitor), and power management unit (interface)
[268].

Transducers convert ambient energy into electrical DC
power and commonly referred to an “energy harvester.” In
addition, the battery/supercapacitor collects cumulative DC
power over a period of time, and the power management unit
transfers maximum energy from the battery/supercapacitor to
the IoT device.

Since energy supply and demand may come at different
times, in practice, a temporary energy buffer (for example,
supercapacitor) and power management unit are necessary
to deliver harvested energy to the IoT device effectively.
Therefore, the power interface (power management unit)
makes the produced energy feasible to the load using various
adjustments such as voltage regulation (DC/DC convertor)
and power management functions [269]. Supercapacitors
have been investigated as an alternative green energy stor-
age due to their advantages compared to batteries [270].
They have quicker charge time (∼1000 times over batteries),

larger operating temperature range (-40∼+85◦C), ability to
withstand millions of charge/discharge cycles, nearly infinite
shelf life and lack of toxic heavy metals [271]. Although
nearly perfect for IoT applications, a supercapacitor has its
own disadvantages such as lower energy density (10 times
smaller than batteries) and unstable output voltage over long
time-span. To address the quick charging and long-lasting
requirements of IoT systems, and to overcome the inherent
disadvantages of supercapacitors, an overall power manage-
ment solution is proposed using supercapacitor management
integrated circuits (ICs) [272, 273].

Recently, supercapacitors with very low equivalent series
resistance (ESR) much less than 0.1 ohm have been presented
which are capable to work efficiently over a wide temperature
range of -40◦ to 85◦C [274]. Further, they can be discharged
at high current level up to 10 A which make them a suitable
candidate for IoT applications and large-scale WSNs in pre-
cision agriculture (for example, plant and soil sensors) [275].

In addition, supercapacitor has an excellent reliability in
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FIGURE 19. Generated power using various energy harvesting technologies and typical power consumption of devices.

FIGURE 20. General block diagram of an energy harvesting system.

comparison with battery in the market. High durability guar-
antees less degradation and a longer working time under high
temperature condition [274]. Table 12 exhibits key benefits
of supercapacitor relative to battery. The application of su-
percapacitors in micro-satellites has been also investigated
[276] as supercapacitor cells are capable of surviving in harsh
environments (for example, space applications).

Finally, supercapacitors are ideal storage candidate when a
quick charge is required to address a short-term power need;
whereas batteries are chosen to provide long-term energy
storage. Therefore, combining supercapacitors with batteries
in a hybrid mode provide an optimum solution which satisfies
both requirements. This reduces battery stress, resulting in a
longer service life [277].

EH systems for IoT devices should fulfill certain require-
ments, such as power range, cost, and dimension. A low
profile, compact, maintenance-free, low-cost, and highly ef-
ficient EH is suitable for IoT devices. Recent advancements
in integrated circuit architecture have created the potential to
integrate multiple features into one chip (for example, mono-
lithic microwave integrated circuit technologies). Hence, IoT
size is not a bottleneck anymore. Moreover, employing RF
technologies has allowed for size and cost reductions in
integrated IoT devices with EH [278]. Sustainable IoT de-
vices driven by EH have been attracting significant interest
from different sectors such as smart cities, health care, and
precision agriculture [259]. Table 13 presents an overview

TABLE 12. Comparison table of supercapacitor vs battery.

Parameter Battery Supercapacitor

Energy Density
(Wh/Kg)

100 10

Power Density
(KW/Kg)

1 10

Efficiency (%) <80 >90

Cyclability 400–2500 1000000

Calendar Life (Years) 4–6 >15

Low Temperature (◦C) -20 -40

High Temperature (◦C) +60 +85 to +100

Death Sudden Predictable

Cost ($/KWh/Cycle) 0.07–0.2 0.006

of different sensor types and their maximum power demand.
Moreover, in each sensor type, a typical sensor and its power
consumption are presented. Table 14 and 15 present some
examples of industrial IoT devices powered by integrated EH
systems.

1) RF Energy Harvesting

RF energy scavenging has experienced rapid development
recently due to the increasing number of RF transmitter
sources, which are producing an abundant ambient electro-
magnetic energy [267]. A prominent advantage of RF har-
vesting is the capability to transform dissipated microwave
energy into usable electrical power during day and night,
both indoor and outdoor. Further, penetrations of RF signals
inside structures (for example, walls, bridges, tunnels) and
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TABLE 13. Overview of Different Sensor Types and their Power Demand.

Sensor Type Max Power Con-

sumption

Typical Sensor

Model

Company Typical Sensor

Power Consumption

Pressure 20 mW BMP280 Bosch 100 µW

Acceleration 35 mW

ADXL345 Analog Devices 100 µW

MPU-6050 InvenSense 1650 µW

LIS2DS12TR STMicroelectronics 270 µW

Temperature 3.5 mW
TMP006 Texas Instruments 792 µW

D6T-44L-06 Omron 25 µW

Humidity 3 mW HDC1000 Texas Instruments 2.46 µW

Gas 800 mW Grove - Gas Sensor
(MQ2)

Seeed Studio 800 mW

Displacement 1 mW SP1-50 TE Connectivity 0.5 mW

underground allow for RF energy harvesting and wireless
power charging where other energy sources (for example,
solar, wind) are not available [268, 278, 301]. RF energy har-
vesting offers a novel approach to develop environmentally
sustainable IoT devices by employing ambient energy and
converting electromagnetic resources to electricity. To this
end, receiving antennas is integrated with rectifying circuits
(rectifying antenna or rectenna) to harvest RF energy from
a focused beam (Wireless Power Transfer/ WPT) and other
freely available sources in the environment (Ambient RF
Energy Scavenging).

RF energy harvesting system eliminates the need for re-
turning IoT devices to base for recharging. These devices
could be powered through ambient energy sources or wireless
power transmission. This is of paramount importance for
autonomous systems in remote or harsh areas where acces-
sibility is a problem [262]. From a practical perspective,
efficiency, sensitivity, and compactness are key factors of
EH, as RF energy harvesting in free space suffers from a
large propagation loss [302]. Enabling simultaneous multi-
band and multi-tone signals in the input of an EH system and
taking advantage of the RF combining method, the rectifier
sensitivity and generated output power can be enhanced [261,
262, 303]. Further, RF technology allows for size reduction
using metamaterials in applications where miniaturization is
required [303, 304, 305].

2) Spaceborne Energy Harvesting

Another method of generating an alternative energy source
for ground-based IoT devices is using Sun-synchronous
satellites. Sun-synchronous orbit (SSO) is a particular kind
of polar orbit. Satellites in SSO, traveling over the Polar
Regions, are synchronous with the Sun. This means they
are synchronized to always be in the same “fixed” position
relative to the Sun. Hence, the satellite will always observe a
point on the Earth at the same time of the day, which creates
a number of applications [306]. One of the key applications

of this system is providing DC power for ground-based IoT
devices, as depicted in Figure 21.

Space satellites collect sunlight using solar cells which
transform the absorbed energy into DC power (Figure 21).
Subsequently, the high voltage DC power is supplied to RF
generators, i.e., magnetron generates RF power which can be
transferred to a ground station or IoT devices, directly [307].
The receiving ground-based antenna integrated with rectifier
(RF to DC convertor) regenerates DC power from RF power.
In this method, energy is directed from space to the Earth to
support large-scale WSNs with sufficient power sources.

B. SIMULTANEOUS WIRELESS INFORMATION AND RF

POWER TRANSFER

High data rate, small dimension, and low-cost are important
metrics in the next generation IoT devices and communica-
tion technologies. Hence, the use of simultaneous wireless
information and power transfer (SWIPT) is investigated to
improve energy efficiency as well as information transfer of
the network [308, 309].

It has been proven that RF power transfer allows wireless
nodes to recharge their batteries from receiving RF signals,
leading to the fifth-generation green communication tech-
nologies [259, 310].

Moreover, conventional forms of SWIPT systems such as
time splitting, power splitting, antenna switching, and partial
switching are suitable for IoT networks [308].

In [311], a new concept and design of a three-dimensional
antenna array is addressed. The purpose of this paper is
to enhance efficiency of SWIPT systems when integrated
into WSN architectures. Using 3D antenna, an omnidirec-
tional radiation pattern can be achieved with considerable
gain and low power losses [312]. Consequently, 3D arrays
prove to be a reliable solution to feed low power WSNs
that are placed over the 360 azimuth angles in a smart grid
farm. Moreover, several pioneers working on SWIPT have
attempted to focus the energy of the electromagnetic wave
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TABLE 14. Overview of Embedded Energy Harvester Used in IoT Applications.

Ref. Product Company Energy Source EH

Technology

Country

[279]
Thermostat Kieback&Peter Thermal TEG Germany

[280]
Wireless Magnet Contact EnOcean Light/Solar Photovoltaic Germany/USA

[281]
Wireless Light Switch EnOcean Kinetic Energy

(pressure)
Electrodynamic/
Piezoelectric

Germany/USA

[282]
Key Card Switch EnOcean Kinetic Energy

(pressure)
Electrodynamic/
Piezoelectric

Germany/USA

[283]
Occupancy Sensor EnOcean Indoor Light Photovoltaic Germany/USA

[284]
Room Thermmostat Peha-

Honeywell
Indoor Light Photovoltaic Germany/USA

[285]
Remote Control Arveni Kinetic Energy

(pressure)
Piezoelectricity France

[286]
Smart Charging at Home Energous Corp. RF Energy RF to DC USA

[287]
Fleet Tracking Perpetuum Kinetic Energy

(Vibration)
Piezoelectricity England

[288]
Roads/Sidewalks Pavegen Kinetic Energy

(Vibration)
Piezoelectricity/
Induction

USA

[289]
Street Lights EnGoPlanet Kinetic Energy

(Pressure)
Solar: Day,
Piezo: Night

USA

[290]
Outdoor Temperature Sensor Thermokon Light/Solar Photovoltaic Germany

[291]
Pipeline/Industry Monitoring Perpetua Thermal

Energy
TEG USA

[292]
Sewer Level Monitoring System NTT Data Thermal

Energy
TEG Japan

[293]
Smart Watch Matrix Ind. Thermal

Energy
TEG USA

[294]
Solar Lamp Ningbo

Yongjiang
Shenzhou
Photovoltaic
Co., Ltd.

Solar Photovoltaic China

as much as possible in order to increase the efficiency of
power and data transfer [313, 314]. Nevertheless, the most
interesting aspect regarding the architecture of SWIPT is how
to concentrate electromagnetic power based on the location
of the sensor. Simple beam scanning approach is suggested
to identify the location of wireless sensors and concentrating
microwave power using beam-steering method according to a
preset look-up table [315]. Recently, a novel analog real-time
spectrum analyzer (RTSA) was suggested and experimen-

tally tested on the basis of the spectral-spatial decomposition
property of the composite right and left handed (CRLH)
leaky wave antenna (LWA) [316, 317, 318] which can be
used as a beam-steering configuration to feed sensors in a
smart grid field (for example, large-scale farms). According
to Figure 22, a leaky wave antenna array is used to feed a
variety of agriculture sensors in each beam direction.

X. IOT INTEROPERABILITY
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TABLE 15. Overview of External Mounted Energy Harvester Used in IoT Applications.

Ref. Product Company Energy

Source

EH

Technology

Country

[295] Solar Harvester KCF
Technologies

Light/Solar
Energy

Photovoltaic USA

[296] Libelium Waspmote Plug and
Sense

Libelium Solar Photovoltaic Spain

[297] Vibration Energy Harvester Perpetuum Vibration Piezoelectric England

[298] Powerharvester Powercast RF RF to DC USA

[299] Ultra low power energy harvester
and battery charger

STMicroelectronics Thermal TEG USA

[300] Marlow EHAL37L37-R01-L1 Marlow Thermal TEG USA

A. INTEROPERABILITY BETWEEN STANDARDS

IoT networks are created with massive heterogeneous de-
vices. The communication of these different devices is a
key problem. To solve this problem, different standards are
created to standardize the information exchanging process
within IoT networks. The authors of [319] summarized all
these standards and categorize them into communication,
RFID, Data content and encoding, electronic product code,
sensor, network management, middle, and quality of service.
Apart from these protocols, there are also standards designed
to fit the IoT use cases, such as, IoT6 [320]. With all
these standards and protocols aiming for different scenarios,
inter-communication between standards is an issue. This
introduces interoperability problems of IoT. In Table 16,
the authors of [186] classified interoperability problem into
device interoperability, network interoperability, syntactical
interoperability, semantic interoperability, and platform inter-
operability. The authors from [186] also aggregated different
works and form seven approaches tackling the problem of
interoperability. As the first approach, adapters and gate-
ways are utilized as an intermediate bridge between different
standards and specifications [186]. The intermediate device
is compatible with multiple standards and specifications.
Therefore, such a device can communicate with different IoT
devices by converting messages between different protocols.
However, this method assumes TCP/IP support on devices
and does not account for the limitation of resources of IoT
devices. Also, scalability is a problem as the message conver-
sion process needs to be defined between all IoT protocols.
The second approach is using a virtualized network overlay
layer above physical networks. This approach supports end-
to-end communication using different protocols. Unfortu-
nately, scalability issues induced by different protocols per-
sist.

The third approach in [186] consists of four different
network technologies. The first technology is TCP/IP. Inter-
operability is implemented by embedding the TCP/IP stack
on smart devices. Therefore, these devices can communicate
with standard network protocols. The second technology

is SDN. This programmable network technology provides
intelligence, efficiency, security, and scalability to IoT net-
works. This can also be achieved with NFV, where vir-
tual networks separate network functions with the physical
equipment. Furthermore, physical equipment can be shared
between different network functions. The final technology
is fog computing. Fog computing relies on fog servers to
preprocess raw data from the end devices and preparing these
data to be interoperable for other applications [186].

The fourth approach is using open APIs [186]. A com-
monly used example is the REST API. Open APIs provide
standard methods to access data or services. This provides
cross-platform and cross-domain interoperability. A future
direction is a generic API for uniform resource access.

A service-oriented architecture is implemented above the
network layer as the fifth approach to achieve interoperabil-
ity. The aim of this architecture is to package the IoT device
resource as standard services. Therefore, device data can
be standardized into services, providing syntactic interoper-
ability [186]. The IoT6 standard is an example of this ap-
proach. IoT6 is an IPv6-based service-oriented architecture
that provides interoperability between heterogeneous system
components [320].

The last two approaches to achieving IoT interoperability
are semantic web technologies and open standards. Both of
these approaches require a recognized organization to pro-
vide common definitions [186]. Semantic web technologies
define a common understanding of the various entities. Once
a common vocabulary of standard, data and format is agreed,
semantic interoperability can be achieved. The final approach
is the establishment of open standards. These standards are
provided by recognized organizations to achieve interop-
erability with IoT networks implementing these standards.
An example is the AllSeen Alliance, defining the AllJoyn
for device interoperability and the oneM2M for platform
interoperability [186]. The ISO also developed a framework
(ISO/IEC NP 21823) for IoT interoperability [321]. They es-
tablished standards on semantic interoperability and network
connectivity.
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FIGURE 21. Block diagram of an energy harvesting system.

XI. USER FRIENDLY IOT

This section provides insights into the usability of IoT 2.0.
The purpose is to create a vision of future IoT that aims to
lower the entry barrier of IoT services for non-expert users.
This vision starts with exploring the previous technologies
of lowering entry barriers for non-expert users. These tech-
nologies are cloud computing-based services, which are in-
frastructure as a service (IaaS), platform as a service (PaaS),
and software as a service (SaaS). The usability of these
technologies is created by increasing accessibility, increasing
scalability and flexibility, the use of virtualization, reducing
cost on maintenance, and standardization [322, 323]. Acces-
sibility is created by the feature of the cloud, where users

FIGURE 22. Beam-steering configuration for feeding sensors (SWIPT

application) in a smart grid field.

TABLE 16. Types of IoT interoperability. [186]

Type of

Interoper-

ability

Definition

Device
Interop-
erability

The exchange of information between
heterogeneous devices and heterogenous
communication protocols;The ability to in-
tegrate new devices into different IoT plat-
forms.

Network
Interoper-
ability

Interact between different system account-
ing routing, resource optimization, secu-
rity, quality of service and mobility.

Syntactical
Interoper-
ability

Interoperation of data structure in ex-
changed information.

Semantic
Interoper-
ability

Descriptions or understandings of re-
source, operational procedures, data mod-
els and information models between differ-
ent entities.

Platform
Interoper-
ability

Interoperability required for barriers cre-
ated by different IoT stacks consist of
different operating systems, programming
languages, data structures, architectures
and access mechanisms for things and
data.

can easily access the services through the Internet. Scalability
and flexibility are induced by the virtualization of hardware
and software resources [323]. Therefore, users do not need
to directly configure these resources, as a standardized in-
terface can reduce the complexity of resource configuration
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[322]. Finally, as maintenance is mostly done by the service
providers, the cost of maintenance is reduced on the user side
[322].

The authors of [324] offered the five features to ensure the
usability of IoT systems. These features are Plug & Play, in-
teroperability, the ability for remote control and monitor, cost
effectiveness, and open source, open architecture. Also, by
deduction from the cloud computing services, a standardized
interface can increase the usability of systems and fulfill the
features of remote control and interoperability. However, due
to the heterogeneity of IoT devices, a solution is to adopt
modularization. The authors from [325] proposed Internet of
Things as a service (iTaaS). iTaaS utilizes service oriented
architecture, which is built with modular and reusable service
modules. Thus, this architecture reduces the time of service
development, service deployment, and service configuration.

iTaaS only reduces complexity and interoperability issues
for software deployment. Different from cloud computing
services, IoT devices are heterogeneous and deployed in
complex environments. Therefore, the customization of IoT
devices is important to support different use cases [326]. The
authors from [326] also emphasized that the modularization
of IoT devices can reduce cost and complexity for non-
technical personnel. Therefore, modularization increases the
cost effectiveness and usability of IoT systems.

To reduce the cost of maintenance, IoT devices must
operate in a self-organized, secure manner and avoid extra
human intervention. The authors of [327] mentioned that
self-organized IoT networks should contain the following
features: cooperative communication model to support com-
munication across different layers with suitable resource con-
trol, situational awareness to monitor neighbor devices and
faults, and automated load-balancing to extend the overall
lifetime of the whole system. A possible solution is the
SONs mentioned in the sections above. SONs provide ma-
chine learning-driven self-configuration, self-optimization,
and self-healing functionalities [111].

Finally, as a vision towards the future, industry level
standardization and efficient device deployment method is
required for IoT systems. The authors from [328] pointed
out that standardization drives standard testing and manufac-
turing procedures. Thus, this provides end users with more
trust and confidence in IoT products. Another problem with
current IoT systems is device deployment. Most work on IoT
deployment focuses on software deployment and topology
[324]. However, most devices are still deployed by humans.
Novel device deployment methods should be invented to
automate this process.

XII. IOT APPLICATIONS

This section starts with presenting some existing applica-
tions of IoT systems. These applications are categorized into
smart home applications, smart city applications, healthcare
applications, and smart farm applications. Then, a vision of
possible applications of Industry 4.0 and Tactile Internet is
revealed.

A. SMART HOME APPLICATIONS

Smart home applications leverage IoT devices and sensors
to provide people convenience. The majority of smart home
applications are home automation systems, which use the
result of analyzing sensor data to automate a certain activity
[329]. In [329] Healthcare system for elders and people
with disabilities is a type of home automation system. These
systems collect data from CCTV, motion sensors, and body
sensor networks to perform analytics and push medical re-
minders. Another application is the pet care system. Tem-
perature sensors are attached to a pet dog to monitor its
body temperature. When the temperature sensor detects any
anomaly, the air conditioner is automatically switched on to
comfort the pet.

The authors of [330] explored the smart grid as another
major field of smart home applications. This field of ap-
plications leverages smart meters, smart appliances, and
smart power outlets. The aim of smart grid applications is
to monitor and control power production and consumption
to achieve a balance between production and consumption.
Furthermore, it reduces the waste of power induced by over-
production. Applications under the smart grid field are real-
time generation monitoring, power plants controlling, alter-
native energy source controlling, and residential production
controlling [330].

B. SMART CITY APPLICATIONS

Smart city applications solve problems and issues in the
public sector. The authors of [331] and [332] both summa-
rized smart city applications in their works (Table 17). In
their work, smart home applications are viewed as a part
of the smart city applications. Other applications include
smart parking, augments maps, logistics, smart water supply,
smart cars, smart grid, weather monitor, pollution monitor,
surveillance systems, traffic monitor, and healthcare.

C. HEALTHCARE APPLICATIONS

=Compared to traditional and manual health monitoring sys-
tems, IoT healthcare systems have a few advantages [333].
First, IoT devices are relatively portable. These devices can
be worn by the patients to provide constant monitoring [333].
Also, with IoT devices, voluminous data can be accessed
remotely in a quicker pack compared to the traditional meth-
ods [333]. These advantages attracted the development of
different IoT healthcare applications. The authors of [334]
classified IoT healthcare applications into home healthcare,
mobile health and electronic health, and hospital manage-
ment. Home healthcare IoT applications move the setting
from a hospital to the homes of people. It is achieved through
remote monitoring through IoT devices [334]. Similarly,
mobile health and electronic health also rely on remote
monitoring of patients. However, it focuses more on wearable
sensors [334]. The above two types of applications involve
single condition applications such as diabetes glucose level
sensing designed for specific diseases; and cluster condition
applications such as rehabilitation systems that can help treat
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TABLE 17. IoT Smart City Applications. [331, 332]

Application Description

Smart
Home

Using sensors to monitor the environment
and control environmental parameters us-
ing heaters, air conditioners, fans, etc.

Smart park-
ing

Using sensors to monitor arrival and de-
parture of cars providing information of
available spaces.

Augments
maps

Near field communication tags provides
tourists information by connecting phones
to web services.

Logistics Leverage Radio Frequency Integrated Cir-
cuit (RFIC) to monitoring and track every
step of the inventory.

Smart water
supply

Pipe leakage detection and water quality
monitoring.

Smart cars Driverless cars

Smart grid Prediction and scheduling of power sup-
plying and production. Also self-healing
functionality induced by defect detection.

Weather
monitor

Monitoring temperature, rain, wind speed,
and pressure.

Pollution
monitor

Environmental monitoring and report for
human health.

Surveillance
systems

Video camera systems for security and
crime detection.

Traffic
monitor

Congestion monitoring. Providing analyt-
ics for arrival time Prediction.

Healthcare Remote health monitoring.

different diseases together [335]. As the final type of IoT
healthcare applications, hospital management applications
are responsible for the management and improvement of var-
ious hospital services [334]. For example, safety and violence
detection systems using cameras and biometric sensors could
track staff, patients, and visitors, and detect signs of aggres-
sion or stress [336]. Equipment tracking and maintenance
systems can manage scarce shared equipment, and remind
staff for requirements of equipment refill or calibration [336].

D. SMART FARM APPLICATIONS

The two major types of smart farm applications are crop
monitoring and animal monitoring. The authors of [337]
reviewed several different crop monitoring systems. These
monitoring systems usually trigger actuator actions. In [337],
one example is the irrigation system. Humidity, temperature,
and weather data are collected to make the decision of irriga-
tion. Another example is weed detection. In the application
of weed detection, images are passed through a CNN model
to detect weed. If weed is detected, a smart herbicide sprayer

robot is activated to spray herbicide.
Animal monitoring applications aim to use sensors data to

monitor and predict animal behavior. The authors from [337]
described a smart beehive application. The smart beehive
monitors oxygen, carbon dioxide, pollutant levels, temper-
ature, and humidity to determine the health status of the
bee colony. The authors of [338] reviewed machine learning-
based animal monitoring applications. This work focuses on
animal welfare. The first application of this work detects
dietary changes and mating periods of cattle using ensemble
learning based on data from magnetometers and three-axis
accelerometers. The second application identifies and classi-
fies chewing patterns in calves with DT leveraging optical
sensor data. The authors from [339] created a full system
of smart animal farm. This smart animal farm consists of
four major applications. The first application detects biogases
with a gas sensor. When the gas reaches a certain level, it
emits the gas to prevent harm to the animals. The second
application is auto-feeding. This application uses ultrasonic
sensors to detect the level of food in storage and automati-
cally add food using a valve. The third application is water
level detection. Similar to auto-feeding, a water level sensor
is used to open the water pump if the water is below a
certain level. Finally, the incubator control system reads data
from the humidity sensor and temperature sensor to control
environmental parameters using a heater and a fan [339].

E. INDUSTRY 4.0 APPLICATIONS

Industry 4.0 applications focus on CPSs in production and
manufacture. The authors of [340] determined three im-
portant characteristics of industrial applications. The first
characteristic is cycle time determined by the round-trip time
between the control center and end device. The second char-
acteristic is the number of nodes determined by the size of
the system. The final characteristic is reliability determined
by the quality of information transmission. The authors of
[340] also separated Industry 4.0 applications into process
automation and factory automation. Process automation is
characterized by an industrial process operated by sensors
for data collection, controllers for controlling, and actuators
for actuating the controller decision. The cycle time of pro-
cess automation should be 100 ms with medium quality of
information transmission. A more critical scenario is factory
automation, which is the automation of the manufacturing
process [340]. Therefore, it requires frequent collaboration
between multiple robotics and assembly line machinery.
Hence, a short latency of 1 ms with high reliability is required
[340].

F. TACTILE INTERNET APPLICATIONS

The feature of low latency and ultra-high reliability of Tactile
Internet attract applications like self-driving vehicles and
industrial automation. For example, V2X communication
requires real-time communication with latency less than 10
ms, and CPSs with mobile robot collaboration requires high
reliability and real-time communication in manufacturing
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applications [341]. However, the core of Tactile Internet
application should be based on haptic communications.

The authors from [342] defined haptic architecture into the
master domain, the network domain, and the slave domain.
The master domain is usually a haptic device controlled by
a human. The haptic device can control the slave domain
through the network domain. Then, the slave domain returns
environmental data and responds through the network do-
main back to the haptic device. Finally, the haptic device
receives the data and simulate a virtual environment of the
slave domain for the human to touch and feel.

The authors of [341] explored four domains of haptic com-
munication applications. The first domain is Tele-medicine.
Robust and reliable networks allow physicians to perform
telesurgery and tele-diagnostic using a remote slave robot.
The second domain is AR and VR. Haptic communications
could provide extra reality with the sense of touch. The
third domain is serious gaming. This requires real-world
simulations to solve a certain problem. Haptic communica-
tions could induce real-world experiences for problem solv-
ing within serious gaming. Finally, unmanned autonomous
and remotely controlled systems provide safety for opera-
tions in dangerous and difficult-to-reach environments. These
operations usually involve high precision. Utilizing Haptic
communications could perform these operations remotely
without any delays.

XIII. RESEARCH CHALLENGES OF IOT 2.0

This section summarizes the possible future development of
IoT 2.0. Some of these development are IoT global con-
nectivity, IoT security architecture, ubiquitous IoT devices,
energy harvesting-based energy efficiency, IoT reliability,
and considerations in usability.

A. IOT GLOBAL CONNECTIVITY

As current IoT architectures evolved with edge computing
layers, future IoT architectures focus with IoT global con-
nectivity. We believe that the development of 6G networks
provides a platform for IoT global connectivity. In [343],
the 6G networks evolve in the space, time, and frequency
dimensions. In the space dimension, more transceivers will
be deployed to increase multipath communication [343]. In
the time dimension, there will be more fine-grained time slot
units to satisfy latency-sensitive applications [343]. Finally,
in the frequency dimension, 6G will operate in a higher
frequency spectrum to fulfill higher data rate requirements
[343]. Also, the increase of frequency range is a basis of
integrating the satellite system into mobile networks to create
a space-air-ground integrated architecture [343]. As com-
pletion of a network providing full coverage, the authors
of [344] extended the space-air-ground architecture with
the vision of underwater networks and specified four tiers
within the space-air-ground-underwater networks (Table 18).
On the commercial side, ground to satellite communications
widening the system coverage have already emerged. IoT de-
vices can communicate with Low Earth orbit (LEO) satellites

through VHF and UHF transmissions [345]. However, there
are latencies up to three hours due to coverage gaps between
LEO movements [345, 346]. Compared to LEO satellites,
IoT data transmissions to Geosynchronous Earth orbit (GEO)
satellites have a lower latency around two minutes [346].
These satellite systems initiate the exploration of the future
space tier IoT network. Previous network coverage, network
types, wireless spectrums, communication mediums, interac-
tive functions, core services, and layers will be integrated to
support the 6G architecture [347]. The 6G networks will be
providing services to new mobile terminals such as smart cars
and robots with disruptive communication technologies and
distributed, intelligent base stations [348].

TABLE 18. Space-air-ground-underwater networks tiers [344]

Tier Base Sta-

tion/Devices

Communication

Method

Space Low-Earth orbit,
medium-Earth-orbit,
and geostationary
satellites

mm-wave and laser
communication be-
tween satellites.

Air Flying base stations
(UAV), floating base
stations

Low frequency, mi-
crowave, and mm-
wave bands.

Terrestrial Ultra-dense network
with small base
stations

Low frequency,
microwave, mm-
wave, and THz
bands.

Underwater Underwater military
and commercial
devices

Acoustic and laser
communications.

Table 19 outlines the network performance requirements
as a foundation of the 6G vision and future applications.
Despite the performance requirements, there are also vari-
ous service requirements. These services requirements are
high security, secrecy and privacy, high affordability and
customization, and finally, high intelligence [349].

To fulfill the 6G requirements, the relevant technologies
will evolve with three different directions: communication
technology, network architecture, and network intelligence
integration [350]. The authors of [348] promoted two can-
didates for 6G communication technology improvement. The
first is photonic-defined radio. As a vision, 6G could leverage
photonic technology to create a multipurpose network, con-
verging different previous network types with full-spectral
support [348]. The second candidate is laser mm wave.
This technology supports 100 Gb/s communication for com-
munication between space and terrestrial networks [348].
The authors of [343] also provided two higher spectrum
technologies as an extension to the current 5G paradigm.
These technologies are terahertz communications and visible
light communications. To support communication in higher
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TABLE 19. 6G network performance requirements [344].

Network Property Requirement

Wireless backhaul fronthaul data
rate

1 - 10 Tb/s

User experienced data rate 1 - 10 Gb/s

Over-the-air latency 10 - 100 µs

Support high mobility >1000 km/h

Connectivity density 107devices/km2

Area traffic capacity 1 Gb/s/m2

Energy efficiency 10 - 100 times
of 5G

Spectrum efficiency 5 - 10 times of
5G

frequency spectrum, full-duplex communication stack en-
abling simultaneous signal transmission and reception, and
novel channel estimation technologies to improve bandwidth
efficiency are required to handle the high usage demands of
6G networks [350].

With the novel communication technologies and limita-
tions of 5G networks, new network architectures need to be
established to support 6G communications and applications.
In [348], there are four 6G network architectures, including
the hyperspectral space-terrestrial integration network dis-
cussed above as part of the 6G vision. Subsequently, an all-
photonic radio access network leveraging photonic engines
with all-photonic arrayed antenna units to break through the
bandwidth and latency limitations of 5G networks [348].
The third architecture, holographic radio, and photodiode-
coupled antenna arrays exploiting interference to improve the
spectrum efficiency and enhance the service quality [348].
Finally, the cognitive radio based on AI and photonics aims
to further strengthen the current network performance with
all-photonic arrayed antenna units, and AI is optimizing the
network layers and services [348]. The evolution of AI in 6G
will be discussed next.

As discussed in section IV above, AI and machine learn-
ing can be embedded in most layers of the communication
network. In [351], applying AI in 6G networks is inevitable
as the vast and complex network topology cannot simply be
managed by humans. Also, AI simplifies the network model
and portraits the unknown non-linearity [351]. Moreover,
in [348], AI and machine learning can be combined with
photonics-based cognitive radio to form a novel 6G network
architecture. In this architecture, AI is used for network
deployment tasks such as precise capacity forecasts, cov-
erage auto-optimization, network resource scheduling, and
network slicing [348]. To optimize the AI models for these
tasks, cross-layer models providing intralayer and interlayer
functions are more suitable than the current layered designs
[344].

B. MACHINE LEARNING MODELS

This article reviewed machine learning implementations
from the physical layer to the cloud layer. On the physi-
cal layer, the development of end-to-end machine learning
models could reduce operation complexity. Thus, improving
the physical layer efficiency [344]. The network layer ap-
plications provide services such as routing, traffic analytics
and control, network management, network security, and
network configuration. These services lead to the achieve-
ment of SONs. However, the generalization of these machine
learning models is questionable, as most of these models
are constructed using data generated from only one or a
few networks. The generalization of network layer machine
learning models on IoT networks could be a future direction.
Furthermore, each implementation of machine learning in
IoT presented in Section IV is only providing services within
a single layer of the IoT network architecture. From [344],
compared to current layered designs, cross-layer models are
necessary to provide optimal performance. Therefore, cross-
layer models should be investigated for future IoT networks.

C. IOT SECURITY ARCHITECTURE

Due to diverse IoT applications supporting heterogeneous
IoT devices, there are numerous security challenges that
require further investigation. Some of these significant issues
are discussed here.

1) Vulnerability of Machine Learning and AI Technologies

Since machine learning and AI are dominant technologies
in future networks [350], it is essential to provide extra
security on the data. Therefore, federated learning should be
promoted to preserve the privacy of multiple edge and end
devices [351, 352]. On the other hand, if cross-layer machine
learning models are the mainstream of future IoT networks,
future IoT security architectures could also evolve towards
cross-layer security and benefit from cross-layer machine
learning models to ensure safer network services. However,
machine learning and deep learning based IoT systems are
susceptible to “Butterfly Effect.” Where a minute change in
the data being input to the learning system adversely affects
the output (learned model). Hence, attackers can maliciously
change the input data to make the system unstable [353].
Such attacks are difficult to protect against since the attackers
do not need access to the system itself. Correspondingly,
there is a need to devise a mechanism to ensure data integrity
for different machine learning-based IoT applications.

2) Post-Quantum IoT Security

As we are near the beginning of the era of quantum com-
puting, research into the application of post-quantum cryp-
tography on IoT is necessary. In this regard, classical cryp-
tography could be vulnerable to quantum computers [354].
Moreover, quantum computing threatens the asymmetric en-
cryption algorithms, including RSA, ECDSA, elliptic Curve
DH (ECDH), and Digital Signature Algorithm (DSA). Most
of which can be solved swiftly with Shor’s algorithm [355,
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356] on a powerful quantum computer. Similarly, quantum
computers can also speed up the brute force attacks on
symmetric encryption ciphers by a quadratic factor using
Grover’s algorithm [357]. However, irrespective of the recent
research efforts in post-quantum cryptography by PQCrypto
and SAFECrypto projects, very little focus has been on
addressing the challenges in implementing the post-quantum
schemes on resource-constrained (especially low power) IoT
devices [356].

3) Real-time Updates

The estimated increase in the use of IoT devices to a Billion
devices in the near future, affirms the need for a secure
software/firmware update mechanism. However, it seems
challenging since not all the devices support OTA (Over The
Air) updates. Consequently, IoT devices are to be manually
updated, which is not feasible for real-time IoT applications
[358]. Therefore, there is a requirement of developing an
intelligent and secure protocol to enable IoT devices to
periodically poll for software/firmware updates so that they
are protected against the latest threats/attacks.

D. UBIQUITOUS IOT DEVICES

Ubiquitous IoT refers to the coverage of different IoT ser-
vices in different scale of management [359]. This includes
local IoT maintained by regional management platforms,
industrial IoT managed by particular industries, national IoT
controlled by national level management unit, and global
application IoT coordinated by a global coordinator. With
this massive number of devices interacting with each others
on these different scales, energy consumption and manage-
ment could be issues [359]. To address the issues of energy
consumption and management, in a future vision, ubiquitous
IoT devices should conduct autonomous operations with no
human intervention or maintenance and able to adapt to
different scales of operations [360]. To achieve such auton-
omy, AI and machine learning models could be a vehicle
automating many management and communication opera-
tions [361]. This automation can also be achieved from the
SON methods mentioned in Section IV. On the other hand,
energy harvesting methods are also an important solution
reducing energy consumption and management costs. Other
than these two important aspects of IoT, the authors of [360]
concluded some major directions of ubiquitous IoT devices.
One direction is multiservice IoT, which extends the idea of
single service on single nodes towards multiple services on
single nodes. This aims to increase the value of single IoT
nodes. Another important direction is the ability of devices
to deal with extreme conditions. This includes the prediction
of energy consumption (and harvesting). Also, low energy
communication methods technologies will support the devel-
opment of battery-less devices with the aid of energy harvest-
ing methods [360]. Finally, as energy harvesting methods are
also an important aspect of ubiquitous IoT, the limitations
and future development of energy harvesting techniques are
presented in the next subsection.

E. ENERGY HARVESTING-BASED ENERGY

EFFICIENCY

Sensors and IoT devices have now become an integral part of
the tool-set used to ensure effective monitoring and to main-
tain safety in societies. However, the dependency of these
portable devices on batteries limits their operation time and
range. Energy harvesting is a promising solution to provide
a sustainable and cost-effective alternative energy source to
extend the lifetime of IoT devices and reduce energy costs
[362, 363]. As the number of IoT devices grows, deploying
environmentally sustainable IoT devices integrated with EHs
will lead to the long-term conservation of the environment
and the global economy. Further, EH techniques can intro-
duce more robust and trusted autonomous monitoring sys-
tems in the future [364].

The main challenge of implementing EHs in IoT networks
is the low produced output power (for example, RF and
piezo), which can be improved through well-designed struc-
tures and also applying hybrid techniques. Further, ambient
sources may always not be available, hence, using Sun-
synchronous satellites is a key solution to develop the next
generation of sustainable IoT.

Moreover, WPT concept is extended to the simultaneous
wireless information and power transfer (SWIPT), which
allows data and RF power to be transmitted via the same
electromagnetic (EM) wave. However, the low efficiency of
a SWIPT system is the main drawback in SWIPT system and
can be improved by using novel solutions, such as 3D printed
antenna array and beam steering based on the LWA. In the
former, the radiation pattern of the antenna array is optimized
on behalf of the efficiency and in the later, the beam direction
of the antenna is managed according to the sensor location.

In addition, many recent dispersion-engineered analog sig-
nal processing (ASP) systems have been introduced based on
CRLH Transmission Line (CRLH TL) metamaterial-inspired
structures [365]. Dispersion engineering involves manipulat-
ing the electromagnetic wave pathway to handle signals in an
analog manner, contributing to applications such as real-time
Fourier transformers, pulse shapers, and etc. Furthermore,
several new dispersion-engineered CRLH TL metamaterial
analog signal processing systems, exploiting the wideband
dispersive features and design flexibility of CRLH TLs, have
been presented [366].

This approach is particularly useful in applications where
low-cost and low profile systems are needed or digital solu-
tions are not available, as for instance in very high frequency
and high speed ultra-wideband microwave systems, such as
6G technology [367]. These new methods will support large-
scale WSNs and IoT devices in next generation smart grid
field applications (for example, smart cities, and precision
agriculture).

F. IOT RELIABILITY

The reliability in mission critical applications are discussed
in Section V of this article. The integration of SDN and
NFV in mission critical communication networks are also
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discussed. Other than these aspects, IoT communication re-
liability can also be enhanced through advance error coding
schemes, and network coding [368]. Advance error coding
schemes such as polar codes can ensure communication reli-
ability due to its ability of error correction [369]. This error
correction functionality can operate with low computational
complexity and decoding latency. Network coding gives
intermediate nodes within a network processing ability to
encode coming traffic [370]. With such ability, there are less
packet re-transmissions and thus improving the reliability of
IoT networks. Finally, IoT fault tolerance methods leveraging
the concept of graceful degradation could also be enhanced
for IoT reliability [368].

Achieving the desired requirements of mission critical
communication in a dynamic environment is very challeng-
ing. In this regard, the knowledge available at the device level
can also be utilized to reduce the computation burden at the
base station, resulting in overall latency reduction [170]. The
intelligence at the edge devices can enable them to adapt to
the network dynamics without relying much upon the base
station. Promising theoretical enablers for intelligence at the
edge devices are presented in [371], which can be used to
design mission critical communication systems.

G. TRADEOFF IN USABILITY

As future IoT networks promote full coverage and integra-
tion [348, 372], IoT scalability and interoperability between
different devices and protocols should also be promoted
to connect IoT as part of the network ecosystem. Using
6G networks as a platform, IoT system performance can
be enhanced by 6G infrastructures, such as the coverage
enhancement from satellites to provide better accessibility
[372]. With the aid of machine learning and AI, managing
these network connections and autonomous devices should
not require much user attention and labor [351]. Therefore,
this increases the usability of the system. On the other hand,
the authors of [349] pointed out that the usage of AI reduces
the magnitude of system customization. Thus, AI could de-
crease the usability for users with special requirements and
preferences. In conclusion, the degree of system intelligence
should be carefully designed in the future to satisfy general
users and users with other system preferences.

XIV. CONCLUSION

The definition of IoT remains unchanged since the birth of
the concept. As we are on the brink of the 5G era, the concept
of IoT should follow this evolution towards IoT 2.0. This
article summarizes the recent advancement of IoT technolo-
gies and defines it as IoT 2.0. First, a general architecture
of IoT 2.0 is compared with previous architectures. From
these architectures, edge computing is the driving force of
architectural evolution. Current IoT technology is then dis-
cussed in seven dimensions as machine learning intelligence,
mission critical communication, IoT scalability, IoT security,
IoT sustainability, IoT interoperability, and user friendly IoT.
The usage of machine learning algorithms is revealed in

different layers of IoT applications. Then, mission critical
communication systems are introduced, focusing on physi-
cal layer considerations and programmable mission critical
communication networks. After that, hardware, network and
service scalability is explored and lead to the discussion of
SDN induced scalability. Security is an important aspect of
IoT systems. In this article, security at different layers is
analyzed. Followed by security, sustainability of IoT systems
is also an essential component. Therefore, energy harvesting
technologies providing longer lifetimes are evaluated. After
that, due to the increase of device types and standards,
interoperability and usability of IoT components are covered.
The discussion of recent advancements ends with the outline
of existing IoT applications. This whole discussion leads to
the future directions of IoT, portrayed by the vision of future
6G networks.
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