
Internet of Things: A Process Calculus Approach∗

Ivan Lanese
Focus Team, University of

Bologna/INRIA, Italy
lanese@cs.unibo.it

Luca Bedogni
University of Bologna, Italy
lbedogni@cs.unibo.it

Marco Di Felice
University of Bologna, Italy

difelice@cs.unibo.it

ABSTRACT
This paper presents a process calculus specifically designed
to model systems based on the Internet of Things paradigm.
We define a formal syntax and semantics for the calculus,
and show how it can be used to reason about relevant ex-
amples. We also define two notions of bisimilarity, one cap-
turing the behavior seen by the end user of the system, and
one allowing compositional reasoning.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Distributed Programming ; D.2.4 [Software/Prog-
ram Verification]: Formal Methods; F.3.2 [Theory of
Computation]: Semantics of Programming Languages—
Process models

General Terms
Languages, Theory, Verification

Keywords
Internet of Things, Process calculi, Semantics

1. INTRODUCTION
In the last years, the increasing popularity of portable

devices equipped with heterogeneous wireless access tech-
nologies has constituted one of the key reasons of the suc-
cess of the Mobile Internet worldwide. According to the
recent previsions, the number of mobile Internet accesses is
expected to overcome the fixed counterpart in 2013, and to
increase to 50 billions by the end of 20201. At the same
time, the intrinsic pervasiveness of end-user devices (e.g.
smartphones, tablets, etc.), and their possible integration
with environmental devices (e.g. sensors and RFID tags),

∗Partly funded by the ANR-11-INSE-007 project REVER.
1Source: IDATE, June 2011.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’13 March 18-22, 2013, Coimbra, Portugal.
Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$10.00.

are opening new horizons for mobile computing, shifting the
attention from a network of “end users” to a network of “ob-
jects” that autonomously interact and cooperate to reach
common goals. This emerging paradigm, usually referred
to as the Internet of Things (IoT) [1, 3], is envisioned to
enable a large number of exciting applications in different
domains, including transportation systems, health care and
domotics. In a typical IoT scenario, multiple heterogeneous
devices (e.g. sensors, smartphones, actuators, etc.) can com-
municate through short-range wireless communication tech-
nologies (e.g. Zigbee, Wifi, NFC, etc.), share context-related
data (e.g. the value of a sensor), share resources (e.g. the
Internet access of a smartphone), and enable the implemen-
tation of distributed applications in a seamless way, through
the aggregation of different services offered by the envi-
ronment [10]. What differentiates the IoT paradigm from
other network paradigms is the automatic communication
of the devices, which collect pieces of information from var-
ious sources and merge them to provide new services to the
end users. In fact, in the IoT paradigm, users’ interaction
should be minimal, only asking for specific services that the
devices should understand, build and provide to the end
users [14]. At present, research on IoT is evolving mainly in
two complementary directions. On the one hand, different
IoT architectures and prototype implementations have been
proposed for small-scale scenarios, like smart-home environ-
ments [21], leading to a proliferation of IoT definitions for
different domains. On the other hand, middleware solutions
have been proposed to enable service composition and data
sharing, by abstracting from the heterogeneity of devices
and technologies in use [1, 17]. However, there is still lack
of research on the modeling and validation of IoT systems
through formal methodologies that might allow to model the
interactions among the system components (e.g. sensors, ac-
tuators), and to verify the correctness of the network deploy-
ment before its practical implementation. A straightforward
utilization of these techniques is for model-checking, i.e. to
assess whether the current network deployment can guaran-
tee the expected behavior of an IoT application. However,
they can also be an important aid for network planning, for
instance to decide the equivalence or not of different network
deployments to support a given IoT application.

In this paper, we propose a first contribution in the area
of formal methods for IoT systems, by defining the IoT-
calculus, a process calculus for modeling IoT systems. Pro-
cess calculi have been successfully used to model distributed
and mobile systems (see, e.g., the π-calculus [16]). However,
to better describe systems based on a particular paradigm,

dedicated calculi are needed. This is proved by the differ-
ent approaches in the fields of wireless sensor networks [12,
13] or service oriented computing systems (see, e.g., the sur-
vey in [5]). This paper follows the same approach, targeting
systems based on the IoT paradigm. Devising a calculus
for modeling a new paradigm requires understanding and
distilling in a clean algebraic setting the main features of
the paradigm. Our calculus captures a few features of IoT,
i.e. the partial topology of communications and the interac-
tion between sensors, actuators and computing processes to
provide useful services to the end user. To reason on these
emerging services we propose a new definition of bisimilar-
ity called end-user bisimilarity to highlight the fact that it
equates systems indistinguishable from the point of view of
the end user, and a more standard form of bisimilarity to
enable compositional reasoning, equating systems indistin-
guishable from the point of view of other devices.

Both the calculus definition and the presentation of the
paper are aimed at making the calculus understandable also
to non experts as far as possible. For instance, we avoid
full restriction (and the related burden of scope extrusion)
by using an opaque form of nodes when needed. This and
other extensions of the core calculus are isolated in Section 4
so to keep the core calculus presented in Sections 2 and 3 as
simple as possible.

Structure of the work. Section 2 describes the syntax
and the intuition underlying the core IoT-calculus. Section 3
describes the semantics of the calculus. Section 4 presents
extensions dealing with specific aspects such as broadcast
communication or mobility control. Section 5 is devoted
to the analysis of the observational semantics of the IoT-
calculus. Section 6 discusses related work while Section 7
concludes the paper.

2. THE IOT-CALCULUS
We want to model systems that follow the Internet of

Things paradigm. Those systems are composed by commu-
nicating nodes. Each node may have computational capa-
bilities, including running processes, capability of communi-
cating with other nodes and/or with the environment.

Communication among nodes is point-to-point and par-
tial: a node may communicate only with nodes inside its
transmission area. Nodes may move, thus changing the con-
nectivity. We can see any IoT system as a graph whose
nodes are labeled by information on the node capabilities
and whose edges model communication links. For simplicity
of representation, we use a term representation of the form

L ` N

where L describes links between nodes and N describes
nodes themselves. We consider here bidirectional links, while
unidirectional links are briefly discussed in Section 4.3.

A node is a physical entity with communication capabil-
ities. Each node has a unique name n and a body B. The
body B contains a parallel composition of up to three kinds
of elements: processes, representing ongoing computations,
sensors, and actuators. A sensor is a device reading a partic-
ular piece of information from the environment and making
it available to the rest of the system. We consider simple
basic sensors defined just by a name (e.g., ”Temperature
Sensor TS340”) and a value (e.g., 30 degrees). More com-
plex sensors may be modeled by nodes including one or more
basic sensors and a process managing them (see Example 4).

S ::= L ` N System
L ::= n↔ m Link

L | L Parallel Composition
N ::= n[B] Node

N | N Parallel Composition
B ::= B | B Parallel Composition

(s← v) Sensor
(a→ v) Actuator
P Running Process

P ::= 0 Nil
c〈v〉.P Output
c(x).P Input
!c(x).P Replicated Input
(x)← s.P Read from Sensor
v → a.P Write to Actuator

Figure 1: Syntax of the core IoT-calculus.

Similarly, an actuator is a device providing a value to the
environment, such as a display, an engine (here the value
is the current speed), and so on. Actuators too are de-
fined by a name and a value, but now the value is decided
by the system and is propagated to the environment. Sen-
sors and actuators are static, i.e. they are never created nor
destroyed, since they correspond to physical entities. Run-
ning processes provide computational and communication
capabilities. We use for processes a π-calculus [16] style for-
malism featuring channel-based communication, sensor read
and actuator write.

The syntax of the core IoT-calculus is in Figure 1. It relies
on infinite mutually disjoint sets of namesN for node names,
ranged over by n,m, . . . ; C for channel names, ranged over
by c, . . . ; S for sensor names, ranged over by s, . . . ; andA for
actuator names, ranged over by a, Values, ranged over
by v, . . . , include data values, and all names but node names.
For simplicity we consider just integers, booleans and strings
as data values, but other kinds of data values can easily be
added. We use x, . . . for variables. Terms c(x).P , !c(x).P
and (x)← s.P bind variable x in the continuation P .

For ensuring that values and variables are used in a suit-
able way (e.g., it is not reasonable to use an integer as chan-
nel for a communication) one could use a simple type system.
The definition of such a type system is quite standard [16,
Chapter 6], thus we will not describe it.

We assume all parallel composition operators | to be
associative and commutative (this can be formalized using
a structural congruence following [16]).

The syntax of systems and nodes has been commented
above. Processes include process 0, that performs no action
(for simplicity, we may remove trailing or parallel 0s), out-
put c〈v〉.P of value v over channel c with continuation P ,
the corresponding input c(x).P receiving a value on channel
c and replacing it for variable x in the continuation P , and
replicated input !c(x).P acting as a parallel composition of
infinitely many inputs. We write c〈〉 for c〈0〉 and c().P for
c(x).P if x does not occur in P (similarly for replicated in-
put). Read (x) ← s.P reads the current value of sensor s
into variable x. Symmetrically, write v → a.P writes the
value v into actuator a, thus making value v visible for the
environment.

Example 1. We want to model a simple system where a

smartphone reads the temperature from a sensor and sends
its value to a display. The system is thus composed by three
nodes: (i) a node ns containing a temperature sensor st,
written as S = ns[(st ← 20)], (ii) a node na containing a
display ad, written A = na[(ad → 15)], and (iii) a node nt
representing the smartphone, written T = nt[!disp().(x) ←
st.x→ ad]. In this case we assume that the sensor st is sens-
ing the temperature 20 (degrees), the display ad is showing
the temperature 15 (degrees), and the smartphone provides
a functionality disp that upon invocation checks the temper-
ature on the sensor and updates the temperature shown by
the display. The whole system is the parallel composition of
the nodes above, where the smartphone nt can communicate
with both the sensor at ns and the actuator at na:

na ↔ nt | nt ↔ ns ` S | T | A

As it is now, the system provides an interesting function-
ality, but this functionality is never triggered. We can add a
running process which triggers such a functionality one-shot.

T = nt[!disp().(x)← st.x→ ad | disp〈〉]

If we want to trigger such a functionality repeatedly, we
can exploit replicated input:

T = nt[!disp().(x)← st.x→ ad |
!trig().disp〈〉.trig〈〉 | trig〈〉]

Here a message on trig triggers the replicated input, which
triggers functionality disp and then recreates the message
on trig. The detailed behavior will be clearer after the def-
inition of the semantics.

Example 2. In the Internet of Things world, a device may
have no a priori knowledge of which are the sensors/actua-
tors available in his current location. A possible solution is
to have a directory service which knows about the available
sensors/actuators. When needed, a device may contact the
directory to know about the available sensors/actuators. We
can model such a directory as follows:

D = nd[!list(ans).ans〈s1〉.ans〈sn〉.ans〈end〉 |
!descr(〈ans, s〉).ans〈find(s)〉]

The directory provides two functionalities, a functionality
list and a functionality descr. The functionality list sends
the names of the sensors he knows of to the caller using
the channel ans provided by the caller. The value end is
used to specify that there are no more available sensors.
The functionality descr receives a channel ans and a sensor
name s (we use tuples of values to simplify the modeling)
and sends over ans a description of the sensor. Here we
assume a function find computing the description of the
sensor (e.g., a string) from its name.

This example uses quite rough communication patterns,
and can be refined in many respects. For instance, the di-
rectory could manage a dynamic list of services and take
the required information from there. However, at this stage,
we just wanted to show how common IoT patterns can be
modeled.

3. SEMANTICS
We define here the semantics of the IoT-calculus. Since

systems based on the Internet of Things paradigm are inter-
acting and open, we describe the semantics of the calculus

using a labeled transition system, able to highlight interac-
tions with the environment and enabling the definition of
observational equivalences such as bisimilarity.

A transition is a triple of the form S
α−→ S′ where S may

be a node body B, a group of nodes N or a system L ` N ,
and α is the transition label. We use α, . . . to range over
labels.

Definition 1. The labeled transition system semantics of
the IoT-calculus is the smallest set of transitions closed un-
der the rules in Figure 2. In the figure α denotes the action
complementary to α. In particular, we have c〈v〉 = c(v),

s← v = (v ← s) and a→ v = (v → a). We assume α = α.

We distinguish two kinds of labels: communication labels
and notification labels. Communication labels are used to
make different components of the system interact. This is
the case, e.g., of c〈v〉 or v ← s. Notification labels instead
are just used to interact with the external environment. No-
tification labels can be recognized since they syntactically
include a τ , e.g., in τ or τ : n 6↔ m. Transitions labeled
by notification labels describe the evolution of a full system
deployed in its external environment. The distinction be-
tween the two kinds of labels will be used later on to define
end-user bisimilarity.

Rules from Out to CoWt execute basic communications by
making the communication information available in the la-
bel. Rules Out and In are for communication over channels.
The input prefix guesses the received value and replaces it for
the formal variable. This is the standard approach in the so-
called early semantics (see, e.g., π-calculus early semantics
in [16]). Rule RIn is for replicated input. A replicated input
upon receiving a value spawns a new thread to execute the
continuation instantiated by the received value, while the
input remains available to read further outputs. Replicated
input allows also to specify infinite behaviors, as for the trig
functionality in Example 1. Rd and CoRd allow to read the
value of a sensor and Wt and CoWt allow to write a value to an
actuator. Rule Sens allows a sensor to read a new value from
the external environment. This transition uses a notification
label. This highlights the fact that this transition is not used
to interact with other components of the system, but only
with the external environment. Similarly, rule Act makes
the value of the actuator available to the external environ-
ment. The semantics of sensors and actuators is somehow
symmetric, with sensors updated by the environment and
read by the system, and actuators updated by the system
and read by the environment. Rule Par allows an action to
propagate through parallel composition inside a node. Rule
IntSynch allows two complementary (communication) labels
inside the same node to synchronize. For instance, in Ex-
ample 1, the output on trig is received by the replicated
input inside the same node nt. The two synchronizing la-
bels must have the form α and α, to ensure that unrelated
actions will not synchronize and that the guess on the value
in input is correct w.r.t. the matching output. Actions per-
formed inside a node should be lifted to the node level. This
is done by rule Node for communication labels and by rule
NodePass for notification labels. The name n of the node
performing the communication is added to communication
labels, i.e., α becomes n : α, while notification labels are un-
changed. Rule NodePar allows actions to propagate among
nodes. Rule Synch allows communication between different
nodes. It is similar to rule IntSynch, but it deals with labels

(Out) c〈v〉.P c〈v〉−−→ P (In) c(x).P
c(v)−−→ P{v/x}

(RIn) !c(x).P
c(v)−−→!c(x).P | P{v/x}

(Rd) (x)← s.P
v←s−−−→ P{v/x}

(CoRd) (s← v)
(s←v)−−−−→ (s← v) (Wt) v → a.P

v→a−−−→ P

(CoWt) (a→ v)
(a→v′)−−−−→ (a→ v′)

(Sens) (s← v)
τ :s←v′−−−−→ (s← v′)

(Act) (a→ v)
τ :a→v−−−−→ (a→ v)

(Par)
B

α−→ B′

B | C α−→ B′ | C

(IntSynch)
B

α−→ B′ C
α−→ C′

B | C τ−→ B′ | C′

(Node)
B

α−→ B′ α /∈ {τ, τ : s← v, τ : a→ v}
n[B]

n:α−−→ n[B′]

(NodePass)
B

α−→ B′ α ∈ {τ, τ : s← v, τ : a→ v}
n[B]

α−→ n[B′]

(NodePar)
N

α−→ N ′

N |M α−→ N ′ |M

(Synch)
N

n:α−−→ N ′ M
m:α−−→M ′ n↔ m

N |M τ−→ N ′ |M ′

(Judg)
N

α−→ N ′

L ` N α−→ L ` N ′

(Conn) L ` N τ :n↔m−−−−−→ L | n↔ m ` N

(Disc) L | n↔ m ` N τ :n6↔m−−−−−→ L ` N

Figure 2: Semantics of the core IoT-calculus.

including node names, and it checks that the communicat-
ing nodes are actually connected. The condition n ↔ m
requires that the link n ↔ m occurs in the judgment (a
more precise but more complex formalization would add the
information to the label and check it at the judgment level).
Rule Judg propagates an action to the judgment level. Rule
Conn adds a new connection to the judgment, while rule Disc
removes a connection from the judgment. The label makes
the change visible to the environment (or, better, forced by
the environment, as we will see in the following). Note that
the semantics allows multiple links between the same nodes.
They may represent, e.g., links based on different technolo-
gies. In the core calculus multiple links are redundant (but
nodes are not disconnected till they are all removed), while
this is not the case, e.g., in the extension with costs for

communication (see Section 4.6).

Example 3. A simple computation of the system described
by Example 1 is in Figure 3. All the labels in the compu-
tation are notification labels, thus the computation shows a
(possible) behavior of a full system deployed in its environ-
ment. In the computation, internal communications in the
smartphone and communications between smartphone and
sensor and smartphone and actuator propagate the value
sensed by the sensor to the actuator. The new value of the
actuator is propagated to the environment in the last label
τ : ad → 20 (the transition leaves the process unchanged).
Note that the transition propagating the value of the actu-
ator is always enabled: this holds in any system including
an actuator, and it means that the environment can always
check the value of actuators. Similarly, transitions updating
the value of sensors are always enabled (if at least a sensor
exists) since the environment can always change the value
sensed by a sensor. Finally, transitions connecting and dis-
connecting nodes are always enabled (unless mobility control
is used, see Section 4.5) meaning that the environment may
move nodes so to create or destroy connections.

4. EXTENSIONS
Previous sections presented the core of the IoT-calculus,

which is kept minimal to highlight the most relevant fea-
tures while keeping the complexity reasonable. However
extensions may be needed to simplify modeling of specific
systems or to give better control on particular aspects. We
will describe some possible extensions below, in increasing
order of complexity. The first two extensions consider clas-
sical process calculi operators, while the other extensions
tackle typical features of IoT systems.

4.1 Choice
Nondeterminstic choice is frequently used in process cal-

culi, and can be defined for IoT processes in a standard way,
see, e.g., [16]. However, it is needed more for axiomatiza-
tions than for modeling, thus we avoid it here. Deterministic
choice, i.e. if-then-else, instead can help modeling. We can
add the operator if v then P elseQ endif to IoT processes,
with the semantics below.

(IfT) if true then P else Q endif
τ−→ P

(IfF) if false then P else Q endif
τ−→ Q

Note that if v then P else Q endif is blocked if v is not a
boolean value.

4.2 Restriction
In the calculus described till now, all interactions are vis-

ible from the outside. For instance, an internal communica-
tion in a node can also be received by other nodes (if they
are in the communication range). In practice, this is not fre-
quent, since different means are used for internal and exter-
nal communication. A general solution to this problem can
be obtained using the restriction operator as in π-calculus
[16]. However, this is more powerful and more complex than
what is normally needed here. Thus we present a simple
solution that equips nodes with a set of closed names, i.e.
names which are used only inside the node and not outside.
The syntax for such a node is n[B]C where C is a set of

na ↔ nt | nt ↔ ns ` ns[(st ← 20)] | nt[!disp().(x)← st.x→ ad | !trig().disp〈〉.trig〈〉 | trig〈〉] | na[(ad → 15)]
τ−→

na ↔ nt | nt ↔ ns ` ns[(st ← 20)] | nt[!disp().(x)← st.x→ ad | !trig().disp〈〉.trig〈〉 | disp〈〉.trig〈〉] | na[(ad → 15)]
τ−→

na ↔ nt | nt ↔ ns ` ns[(st ← 20)] | nt[!disp().(x)← st.x→ ad | (x)← st.x→ ad | !trig().disp〈〉.trig〈〉 | trig〈〉] | na[(ad → 15)]
τ−→

na ↔ nt | nt ↔ ns ` ns[(st ← 20)] | nt[!disp().(x)← st.x→ ad | 20→ ad | !trig().disp〈〉.trig〈〉 | trig〈〉] | na[(ad → 15)]
τ−→

na ↔ nt | nt ↔ ns ` ns[(st ← 20)] | nt[!disp().(x)← st.x→ ad | !trig().disp〈〉.trig〈〉 | trig〈〉] | na[(ad → 20)]
τ :ad→20−−−−−−→

Figure 3: Sample computation.

names. To integrate these ”opaque” nodes into the seman-
tics we just have to add the condition n(α) ∩ C = ∅ to rule
Node, where n(α) is the set of names occurring in α. See
Example 7 for an application of this extension.

4.3 Unidirectional links
The core IoT-calculus allows only for bidirectional links.

Unidirectional links can be represented as n→ m, meaning
that n may send messages to m. These messages may be
messages over channels from n to m, or write to actuators
in m, or sensors in n sending their value to processes in m. A
bidirectional link n↔ m can be seen as n→ m | m→ n. In
order to accommodate unidirectional links in the semantics
we have just to change rule Synch to check that a link in the
required direction is available.

4.4 Broadcast
Till now we just considered point-to-point communica-

tion, however many IoT systems may exploit also broadcast
communication. A broadcast output c!〈v〉 is received by
all the broadcast inputs c?(x) it reaches. The semantics of
broadcast has been studied in a fully connected setting in [6,
4], and heavily studied in a partial connected setting in the
field of wireless networks, see e.g. [15, 7]. Techniques similar
to the ones used in wireless systems can be used to define
the semantics of broadcast in the IoT-calculus. Essentially,
a broadcast input interacts with a broadcast output and
the result is again a broadcast output. At judgment level a
broadcast output becomes a τ action.

Example 4. We show here how broadcast can be used to
model a way of discovering sensors nearby different from the
one in Example 2. Here we assume that sensors are slightly
more complex, with the capability of receiving broadcast re-
quests and answering by advertising themselves. Assuming
the channel discover is used for discovery, such a sensor can
be written as:

ns[(st ← 25) | !discover?(x).x〈〈st, ”Temperature sensor”〉〉]

A device looking for sensors can send a broadcast request on
channel discover with the name of the channel to be used
for answering as a parameter. It can then choose among the
answers the sensor more suitable for its need (we can easily
imagine that the sensor provides additional information),
and then interact directly with the sensor.

4.5 Mobility control
The core calculus allows for full mobility: at any moment

any link can disappear, and any link can appear. In many
cases this is not reasonable: some links may be always avail-
able, while others impossible to establish (e.g., if the com-
municating partners are not mobile). Since all the mobility
information is available in the computation labels, one may
impose these constraints by restricting the attention to a

suitable subset of computations, e.g., requiring that the la-
bel τ : n 6↔ m disconnecting n from m never occurs ensures
that connection n ↔ m is persistent (if it exists at the be-
ginning, or after its creation).

However, simple restrictions as above can also be hard-
wired in the syntax and semantics of the calculus. E.g., one
can extend the syntax of links with permanent links n↔• m,
which act as n ↔ m but cannot be destroyed by rule Disc.
Similarly one can add forbidden links n 6↔• m which do not
allow communication but forbid to add links n ↔ m using
rule Conn (the rule should be changed to perform the check).
See Example 5 for an application of permanent links.

4.6 Cost of actions
A main feature of the Internet of Things (and of other

kinds of networks) is that computations and communica-
tions may be costly. Costs may refer to energy, bandwidth
or also economic cost. Understanding how to model all these
kinds of cost, and how to exploit them for analysis, e.g., to
understand which communication patterns can be executed
within given bounds on resources, is a complex problem, and
we plan to devote the due attention to it in future work.
However, we want to remark here that the IoT-calculus is
suitable to help in this kind of analysis. We give two exam-
ples in this direction.

The first example refers to energy cost of computation
and communication inside nodes. We want to model the
fact that each node has a finite amount of energy e, and
each action consumes energy. When energy is exhausted,
i.e. e = 0, the node is no more operational. To model this,
note that all the actions performed by a node traverse the
node boundary using rules Node and NodePass. Thus we
may add to node terms information about the energy level
e in the node, and rules Node and NodePass can be extended
to check that e is positive, and to decrease it according to
the performed action. One can also imagine a special action
modeling battery recharge restoring e to the initial value.

A different kind of cost is strictly related to communi-
cation. Assume that communication channels come with a
cost that has to be paid for communication. This is for
instance the case of telephone networks. This cost can be
associated to links, and added to the τ label resulting from
the communication. In this way the labels of a computa-
tion show its cost, and suitable definitions of bisimulation
can allow to distinguish computations performing the same
task with different costs. Note that in this setting different
links between the same nodes are not redundant if they have
different costs.

5. BISIMULATION
A main reason to define a labeled transition system is

to allow to check systems for equivalence using coinductive
techniques. For IoT systems we distinguish two forms of

equivalence: one from the point of view of the end user
(which acts as an environment for the system) that we call
end-user bisimilarity, and one from the point of view of other
components interacting with the system that we simply call
bisimilarity. We will show that the second one is compo-
sitional, thus enabling compositional reasoning on complex
systems.

The end user of the system can just interact with the
system by providing values to sensors and by checking values
provided by actuators. We assume that the end user can also
move nodes thus creating or removing connections. End user
bisimilarity is designed to compare the overall behavior of
fully specified systems. In the π-calculus tradition one would
require all the names to be bound. Here however we want
to avoid the burden of defining restrictions and the related
semantic subtleties, and we just force the system to compute
on its own, i.e. to use only notification labels.

As standard, for both end-user bisimilarity and bisimilar-
ity we consider two variants: a strong one requiring perfect
match of actions, and a weak one allowing different internal
computations provided that the effect on the environment is
the same. To define weak bisimilarity we need first to define
weak transitions.

Definition 2. We denote with ⇒ the reflexive and transi-
tive closure of

τ−→. We write
α⇒ for ⇒ α−→⇒ if α 6= τ , for ⇒

if α = τ .

We start by defining end-user bisimilarity.

Definition 3. A strong (resp. weak) end-user bisimulation
is a relationR among systems such that L1 ` N1 R L2 ` N2

implies:

• if L1 ` N1
α−→ L′1 ` N ′1 where α is a notification label

then L2 ` N2
α−→ L′2 ` N ′2 (resp. L2 ` N2

α⇒ L′2 ` N ′2)
and L′1 ` N ′1 R L′2 ` N ′2;

• viceversa, with the challenge from L2 ` N2.

Strong (resp. weak) end-user bisimilarity, denoted ∼e (resp.
≈e), is the largest strong (resp. weak) end-user bisimulation.

Two systems with different connections between nodes are
not end-user bisimilar, since computations performing ac-
tions τ : n 6↔ m allow to count the number of connections
between nodes n and m. Thus we will use end-user bisimi-
larity to compare systems with the same connections.

Example 5. Consider the system in Example 1 and a vari-
ant of it where the smartphone is node nt1 instead of node
nt. To avoid to distinguish them simply because of connec-
tions, assume that in both of them the available links are:
L = na ↔ nt | nt ↔ ns | na ↔ nt1 | nt1 ↔ ns.

The two systems however are not end-user bisimilar, since
the first one can disconnect the link na ↔ nt1, and then
update the value of the display, while the second one cannot
match this computation.

However, they become end-user bisimilar if we consider
persistent links L′ = na ↔• nt | nt ↔• ns | na ↔•
nt1 | nt1 ↔• ns. This is easily proved by considering as
bisimulation the relation R below:

R = {(L′′ ` N,L′′ ` N{nt1/nt})|

L′ ` S | T | A α1−−→ · · · αk−−→ L′′ ` N∧
α1 . . . αn notification labels}}

Actually, with persistent connections the user cannot dis-
tinguish whether there is just one smartphone providing the
update functionality or there are many of them:

L′ ` S | T | A ∼e L′ ` S | T | T{nt1/nt} | A

The properties emerging from the example above can be
generalized to suitable axiomatic laws correct w.r.t. end-user
bisimilarity. While studying the axiomatization of the IoT-
calculus is out of the scope of the present paper we describe
below a few rules inspired by the example above. They are
valid only for fixed topologies. In the rules below N has no
node named n and Ln,m denotes a topology where n and m
have the same connections, and n is connected to m.

L ` N ∼e (L ` N){n/m} (1)

Ln,m ` n[B | B′] ∼e Ln,m ` n[B] | m[B′] (2)

The first rule shows that names of nodes are immaterial if
the topology is fixed, while the second one shows that the
body of a node can be split into two distinct, connected
nodes.

Example 6. The example above shows the use of strong
end-user bisimilarity. However, strong end-user bisimilarity
distinguishes systems which differ only for the amount of
computation done to reach a goal. In most of the cases
these systems can be considered equivalent. This form of
equivalence is formalized by weak end-user bisimilarity.

We present now a scenario which is equivalent to the
smartphone scenario above according to weak end-user bi-
similarity but not according to strong end-user bisimilarity.
In the new scenario a smartphone nt1 reads the value of
the sensor and sends it to a second smartphone nt2, which
updates the display. The system can be modeled as follows:

ns ↔ nt1 | nt1 ↔ nt2 | nt2 ↔ na ` S |
nt1[!disp().(x)← st.comm〈x〉 | !trig().disp〈〉.trig〈〉 | trig〈〉]

nt2[!comm(x).x→ ad] | A

We assume for both this system and the one with a unique
smartphone a static topology and the same connections. Ac-
cording to strong end-user bisimilarity this system is not
equivalent to the previous one. This can be proved by not-
ing that in this system at least 3 τ steps are needed to prop-
agate a value from the sensor to the actuator (read of the
sensor, communication between smartphones, write to the
actuator), while in the previous case 2 τ steps were enough.

However the two systems are equivalent according to weak
end-user bisimilarity. This means that if the observer cannot
check how much computation and/or communication takes
place, the two systems are indistinguishable. This kind of
equivalence is reasonable in most of the cases.

End-user bisimilarity captures relevant aspects of IoT sys-
tems, but it is not compositional. This can be simply verified
by noting that two systems with the same connectivity, the
same sensors and with no actuators are equivalent. For in-
stance L ` S ∼e L ` S | T where S and T are the sensor
and the smartphone from the example above. It is clear that
adding the actuator A to the two systems breaks the equiva-
lence, since in the second case the actuator is updated while
in the first one it is not. Compositionality is a desirable fea-
ture, since it allows to prove equivalence of large systems by
proving equivalence of smaller ones.

We present now a different form of bisimilarity which is
compositional, and which implies end-user bisimilarity. We
simply call it bisimilarity.

Definition 4. A strong (resp. weak) bisimulation is a re-
lation R among systems such that L1 ` N1 R L2 ` N2

implies:

• if L1 ` N1
α−→ L′1 ` N ′1 where α is a label then L2 `

N2
α−→ L′2 ` N ′2 (resp. L2 ` N2

α⇒ L′2 ` N ′2) and
L′1 ` N ′1 R L′2 ` N ′2;

• viceversa, with the challenge from L2 ` N2.

Strong (resp. weak) bisimilarity, denoted ∼ (resp. ≈), is the
largest strong (resp. weak) bisimulation.

It is clear from the definitions that bisimilarity is stronger
than end-user bisimilarity.

Proposition 1. If L ` N ∼ L′ ` N ′ then L ` N ∼e
L′ ` N ′. If L ` N ≈ L′ ` N ′ then L ` N ≈e L′ ` N ′.

We have now to show that bisimilarity is compositional.
First we have to define composition of IoT systems. We re-
strict composition to systems whose node parts have disjoint
sets of node names.

Definition 5. The composition of two systems L ` N and
L′ ` N ′ such that N and N ′ have disjoint sets of node names
is L | L′ ` N | N ′.

Theorem 1. If L1 ` N1 ∼ L′1 ` N ′1, L2 ` N2 ∼ L′2 ` N ′2
and L1 ` N1 and L2 ` N2 can be composed then L1 | L2 `
N1 | N2 ∼ L′1 | L′2 ` N ′1 | N ′2.

Proof sketch. We have to show that the relation:

R = {(L1 | L2 ` N1 | N2, L
′
1 | L′2 ` N ′1 | N ′2) |

L1 ` N1 ∼ L′1 ` N ′1 ∧ L2 ` N2 ∼ L′2 ` N ′2 ∧
L1 ` N1 and L2 ` N2 can be composed}

is a bisimulation. The proof is by coinduction. Assume
L1 | L2 ` N1 | N2

α−→ I ` M . Note that bisimilar systems
have the same links, thus we have to show that L1 | L2 `
N ′1 | N ′2

α−→ I ′ `M ′ with I `M ∼ I ′ `M ′. We have a case
analysis on the rule used to derive the transition. For rule
Disc the removed link belongs to either L1 or L2. Assume
it belongs to L1 (the other case is similar). Then L1 | L2 `
N1 | N2

τ :n 6↔m−−−−−→ I1 | L2 ` N1 | N2. Similarly L1 | L2 `
N ′1 | N ′2

τ :n 6↔m−−−−−→ I1 | L2 ` N ′1 | N ′2. Since L1 ` N1
τ :n 6↔m−−−−−→

I1 ` N1 and L1 ` N1 ∼ L1 ` N2 we also have I1 ` N1 ∼
I1 ` N ′1 and thus I1 | L2 ` N1 | N2 ∼ I1 | L2 ` N ′1 | N ′2
as desired. Note, in fact, that transitions do not change
the sets of nodes, thus the systems above can be composed.
The proof is similar for rule Conn (the new connection can
be added equivalently to the left or to the right link term).
For rule Judg we have to show that also node terms satisfy
the compositionality property. The proof is similar to the
one for systems, and thus requires a case analysis on the rule
used to derive the transition for node terms. For rule Synch
if both the interacting nodes and the link they use belong
to the same term the thesis follows easily. If two nodes in
different terms interact via a link belonging to one of them
then by inductive hypothesis the corresponding subterms

can perform the same complementary actions, which can be
composed again at the level of the composed system. The
most tricky case is when two nodes from one term interact
via a link provided by the other term. However the same
result can be obtained by adding the same link to the term
performing the interaction, performing the communication
and then removing the link. Since we have already proved
the thesis for all these actions, the thesis follows. The case
of rule NodePar directly follows by induction.

Example 7. Let us consider the smartphone T with re-
peated trigger from Example 1. Instead of using the auxil-
iary channel trig for generating triggers, one can use directly
channel disp:

T ′ = nt[!disp().disp〈〉.(x)← st.x→ ad | disp〈〉]

Smartphones T ′ and T are end-user bisimilar, but this gives
no hint on their behavior when used as part of a complex
IoT system. It is clear that they are not strong bisimilar,
since they use a different amount of communication to reach
the same goal. As they are, they are not weak bisimilar ei-
ther, since T can perform communication on channel trig
while T ′ can not. However, channels trig and disp are only
meant to be used internally. If one transforms node nt in
the two systems into an opaque node as described in Sec-
tion 4.2 choosing C = {trig, disp} the two smartphones be-
come weak bisimilar. Thus using Theorem 1 one can prove
that complex systems using T are weak bisimilar to corre-
sponding systems using T ′. Then using Proposition 1 one
can show that the systems are also weak end-user bisimilar.
For instance, with L = na ↔ nt | nt ↔ ns, we have:

L ` S | T | A ≈e L ` S | T ′ | A

6. RELATED WORK
Initial research on IoT was mainly focused on the issues

of traceability and addressability of objects equipped with
Radio-Frequency IDentification (RFID) tags [2]. However,
the RFID-centric vision of IoT has been progressively en-
larged in these last years by including also sensors and mo-
bile devices (e.g. smartphones). To this aim, the 6LoW-
PAN protocol (IPv6 over Low power Wireless Personal Area
Networks) [22] has been proposed to guarantee the unique
addressability of objects with limited processing capabil-
ities. Moreover, middleware solutions have been investi-
gated to support data aggregation and sharing over het-
erogeneous IoT network environments, abstracting from the
specific software/hardware characteristics of each network
device [18]. Among the most recent initiatives, we cite the
Smart-M3 [9] middleware, based on an ontology-oriented de-
sign, and the SOCRADES [8] platform, that investigates the
application of Service Oriented Architecture (SOA) princi-
ples to the IoT scenario. At the same time, different IoT
architectures and prototype implementations have been pro-
posed for small-scale scenarios, like smart-home environ-
ments [21]. In these cases, the modeling and validation of the
network protocols and applications is performed by means
of testbeds and discrete-event network simulators, such as
OMNET++ [20] and NS3 [19]. However, the network simu-
lation covers only a subset of the system behaviors due to the
potential high number of parameters affecting the wireless
environment. As far as we know this is the first work ad-
dressing formal methods for the modeling and validation of

IoT applications through an algebraic language. However, it
takes inspiration from algebraic models of similar systems,
in particular wireless systems. Algebraic models for wire-
less systems are normally based on broadcast on a partial
topology, while we consider mainly point-to-point communi-
cation and we have sensors and actuators as explicit entities
in our models. Among these models the nearest to ours is
[7], which has a similar way of modeling connectivity. Other
works are more oriented towards security, such as [15], anal-
ysis of probabilistic and timed behaviors, such as [12], or
analysis of low level features such as interferences [11] or
network deployment [13].

7. CONCLUSIONS
We see this paper as a first step in a quite unexplored

area. In fact, while process calculi have been applied quite
extensively to model various paradigms of distributed com-
putation, such as wireless sensor networks [12, 13] or service
oriented computing systems (see, e.g., the survey in [5]), we
are not aware of other calculi devised for modeling Inter-
net of Things systems. It is quite difficult to ensure that
the formalization of a computational paradigm provided by
a calculus is the best possible one. For instance, such an
agreement has not been reached among the calculi in [5] af-
ter years of research. Thus we are not claiming that our
formalization is the best possible one, and we will continue
to refine and extend it in the future. We will also devote
more attention to important aspects that we have just cited
here. As already said, understanding the importance of costs
for computation and communication is a main aim. Also,
how to control mobility is an open problem which we inherit
from models for wireless networks, and which is quite rel-
evant here as shown by its impact on bisimilarity between
systems. Also, from the point of view of equivalences, we
have presented here a form of bisimilarity, end-user bisimi-
larity, which reminds a barbed equivalence, where barbs are
mimicked by notification actions. Analyzing barbed equiv-
alence and congruence in this setting, and their relation to
bisimilarity, is interesting to clarify the abstract semantics
of IoT systems.

8. REFERENCES
[1] L. Atzori, A. Iera, and G. Morabito. The Internet of

Things: A survey. Computer Networks,
54(15):2787–2805, 2010.

[2] Auto-Id Labs. http://www.autoidlabs.org/.

[3] E. N. Barnhart and C. A. Bokath. Considerations for
Machine-to-Machine communications architecture and
security standardization. In Proc. of Conference on
Internet Multimedia Systems Architecture and
Application 2011, pages 1–6. IEEE Computer Society,
2011.

[4] R. Bruni and I. Lanese. PRISMA: A mobile calculus
with parametric synchronization. In Proc. of TGC’06,
volume 4661 of LNCS, pages 132–149. Springer, 2006.

[5] L. Caires, R. De Nicola, R. Pugliese, V. T.
Vasconcelos, and G. Zavattaro. Core calculi for
service-oriented computing. In Results of the
SENSORIA Project, volume 6582 of LNCS, pages
153–188. Springer, 2011.

[6] C. Ene and T. Muntean. A broadcast-based calculus
for communicating systems. In Proc. of IPDPS’01,

page 149. IEEE Computer Society, 2001.

[7] J. C. Godskesen. A calculus for mobile ad hoc
networks. In Proc. of COORDINATION’07, volume
4467 of LNCS, pages 132–150. Springer, 2007.

[8] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and
D. Savio. Interacting with the SOA-based Internet of
Things: Discovery, query, selection, and on-demand
provisioning of web services. IEEE Transactions on
Services Computing, 3(3):223–235, 2010.

[9] J. Honkola, H. Laine, R. Brown, and O. Tyrkko.
Smart-m3 information sharing platform. In IEEE
Symposium on Computers and Communications 2010,
volume 3, pages 1041–1046. IEEE Computer Society,
2010.

[10] G. Kortuem, F. Kawsar, V. Sundramoorthy, and
D. Fitton. Smart objects as building blocks for the
internet of things. IEEE Internet Computing,
14(1):44–51, 2010.

[11] I. Lanese and D. Sangiorgi. An operational semantics
for a calculus for wireless systems. Theor. Comput.
Sci., 411(19):1928–1948, 2010.

[12] R. Lanotte and M. Merro. Semantic analysis of gossip
protocols for wireless sensor networks. In Proc. of
CONCUR 2011, volume 6901 of LNCS, pages
156–170. Springer, 2011.

[13] L. Lopes, F. Martins, M. S. Silva, and J. Barros. A
process calculus approach to sensor networks
programming. In Proc. of SENSORCOMM’07, pages
451–456. IEEE Computer Society, 2007.

[14] F. Mattern and C. Floerkemeier. From the Internet of
Computers to the Internet of Things. In From active
data management to event-based systems and more,
volume 6462 of LNCS, pages 242–259. Springer, 2010.

[15] S. Nanz and C. Hankin. A framework for security
analysis of mobile wireless networks. Theor. Comput.
Sci., 367(1-2):203–227, 2006.

[16] D. Sangiorgi and D. Walker. The π-calculus: A Theory
of Mobile Processes. Cambridge University Press,
2001.

[17] Z. Song, A. A. Cárdenas, and R. Masuoka. Semantic
middleware for the Internet of Things. In Proc. of
Internet of Things 2010, volume 120, pages 1–8. IEEE
Computer Society, 2010.

[18] T. Teixeira, S. Hachem, V. Issarny, and N. Georgantas.
Service oriented middleware for the internet of things:
A perspective. In Proc. of ServiceWave 2011, pages
220–229. Springer-Verlag, 2011.

[19] The network simulator 3. http://www.nsnam.org/.

[20] The OMNET++ network simulation framework.
http://www.omnetpp.org/.

[21] C.-L. Wu and L.-C. Fu. Design and realization of a
framework for human-system interaction in smart
homes. IEEE Transactions on Systems, Man and
Cybernetics, Part A: Systems and Humans,
42(1):15–31, 2012.

[22] C. Yibo, K.-M. Hou, H. Zhou, H. ling Shi, X. Liu,
X. Diao, H. Ding, J.-J. Li, and C. D. Vaulx.
6LoWPAN Stacks: A Survey. In Conference on
Wireless Communications Networking and Mobile
Computing 2011, pages 1–4. IEEE Computer Society,
2011.

