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Abstract: The Internet of Things (IoT) has made it possible for devices around the world to acquire

information and store it, in order to be able to use it at a later stage. However, this potential

opportunity is often not exploited because of the excessively big interval between the data collection

and the capability to process and analyse it. In this paper, we review the current IoT technologies,

approaches and models in order to discover what challenges need to be met to make more sense of

data. The main goal of this paper is to review the surveys related to IoT in order to provide well

integrated and context aware intelligent services for IoT. Moreover, we present a state-of-the-art of

IoT from the context aware perspective that allows the integration of IoT and social networks in the

emerging Social Internet of Things (SIoT) term.

Keywords: internet of things; big data; ontology; semantics; data mining with big data; services for

big data; social internet of things; cloud computing

1. Introduction

There are no doubts about how rapidly technology has grown in the last decade. Nowadays, a

wide variety of devices, including sensor-enabled smart devices, and all types of wearables, connect

to the Internet and power newly connected applications and solutions. On the one hand, the cost

of technology has sharply decreased, making it possible for everybody to engage in sensing data.

On the other hand, in every area we need to access the Internet, which delivers an amount of real time

information. Furthermore, some of the environments are just online, like social media, where all the

information is in the Cloud. As a result, new words as well as new expressions have appeared such as

Big Data [1,2], Cloud Computing [3] or Internet of Things (IoT) [4–6], among others.

With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor

devices, and Web technologies, the IoT approach has gained momentum in connecting everyday

objects to the Internet and facilitating machine-to-human and machine-to-machine communication

with the physical world.

According to the Gartner Research report on the IoT, billions of connected things are already in

use in 2015 and that number will reach 25 billion in just a few short years [7]. In addition, we can

appreciate how easily the data can be generated currently to create a huge amount of information

(e.g., Smart Cities [8], Business Intelligence [9], IoT [10]), generating big data [11,12].

There are several definitions or visions of IoT from different perspectives. From the viewpoint

of services provided by things, IoT means “a world where things can automatically communicate

to computers and each other providing services to the benefit of the human kind” [13]. From

the viewpoint of connectivity, IoT means “from anytime, anyplace connectivity for anyone, we
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will now have connectivity for anything” [14]. From the viewpoint of communication, IoT refers

to “a world-wide network of interconnected objects uniquely addressable, based on standard

communication protocols” [15]. Finally, from the viewpoint of networking, IoT is the Internet evolved

“from a network of interconnected computers to a network of interconnected objects” [16].

As shown in Figure 1, data is processed differently in the IoT and traditional Internet environments

(i.e., Internet of Computers). In the Internet of Computers, both main data producers and consumers

are human beings. However, in the IoT, the main actors become things, which mean things are the

majority of data producers and consumers. As pointed out by Ashton [10] IoT “has the potential to

change the world, just as the Internet did”. Figure 1 shows the “things” able to generate data.

 

Figure 1. Illustration of data acquisition equipment in IoT.

Although some reviews about IoT have been published recently (e.g., the most recent in [17]),

they focus on high level general issues and are mostly fragmented. Therefore, the main objective of

our paper is to carry out a complete survey of IoT, including the different types of technology for

IoT; to review the previous surveys of IoT, including papers dealing with applications of IoT; and to

indicate the number of services in order to incorporate context data to the information obtained both

by sensors and/or created by the user (click worldwide) so as to enrich and give meaning to otherwise

empty data.

The remainder of this paper is structured as follows: in the next section, the related work is

reviewed. In particular, due to the number of surveys carried out, we establish classification criteria,

which provide an index, facilitating easy access based on the key survey specifications. In the following

section, we review the work on context aware computing in IoT applications. Thereafter, we explore

the variety of services for the Internet of Things, including concepts such as data mining and big data

in order to provide value and meaning to the simple data obtained by the IoT technology. Finally, we

include a discussion with a summary of every section explaining our contribution to IoT.

2. Background on IoT Surveys

Given that some reviews of the IoT have been conducted recently, in this section the purpose is

instead to perform a new survey, to summarize the most influential of reviews and work conducted

recently in order to identify what are the shortcomings (if there are), the greatest opportunities and



Sensors 2016, 16, 1069 3 of 23

challenges that have not yet been addressed. In order to achieve this aim, we have grouped the IoT

work in the following categories: general purpose IoT surveys, data oriented surveys, IoT vs. cloud

computing surveys and IoT vs. data mining surveys. These categories are developed in the following

subsections, which are concluded by a subsection that details potential IoT applications, and a final

subsection that summarizes the open research issues for IoT.

2.1. General Purpose IoT Surveys

Diverse surveys give a picture of the current state of the art on the IoT. In general, they deal

with issues of the basic features of IoT including architectures and technologies used. For example,

Atzori et al. [6] provided the readers with a description of the different visions of the IoT paradigm

coming from different scientific communities and reviews the enabling technologies and illustrates

which are the major benefits of spread of this paradigm in everyday-life.

The work by [18] identifies the following key system-level features that IoT needs to support:

‚ Devices heterogeneity supported at both architectural and protocol levels.

‚ Scalability issues: (i) naming and addressing; (ii) data communication and networking;

(iii) information and knowledge, and (iv) services provisioning and management.

‚ Ubiquitous data exchange through proximity wireless technologies.

‚ Energy-optimized solutions.

‚ Localization and tracking capabilities: to track the location (and the movement) of smart objects

in the physical realm.

‚ Self-organization capabilities: making smart objects able to autonomously react to a wide range of

different situations, in order to minimize human intervention.

‚ Semantic interoperability and data management among different applications: it is necessary to

provide data with adequate and standardized formats, models and semantic description of their

content (meta-data), using well-defined languages and formats.

‚ Embedded security and privacy-preserving mechanisms.

The survey in [19] reviews the three different phases with which the physical-cyber world

interaction takes place: (i) collection phase (procedures for sensing the physical environment,

collecting real-time physical data and reconstructing a general perception of it); (ii) transmission

phase (mechanisms to deliver the collected data to applications and to different external servers); and

(iii) process, management and utilization phase (by service-oriented architecture, cloud computing or

peer-to-peer systems).

2.2. Surveys Oriented to Data

With regard to the characteristics of the data in IoT, surveys show the different types of data

used and the main problems to be addressed related to them: generation, interoperability, storage,

quality, and processing. The work in [20] presents five IoT technologies that are essential in the

deployment of successful IoT-based products and services and discusses three IoT categories for

enterprise applications used to enhance customer value. Because of the potential but uncertain benefits

and high investment costs of the IoT, firms need to carefully assess every IoT-induced opportunity and

challenge to ensure that their resources are spent judiciously. The authors of [21] study and discusses

state-of-the-art techniques of IoT from the data-centric perspective.

A data stream, which is described in [21,22], is a sequence of data objects of which the number is

potentially unbounded, continuously generated at a rapid rate. In the data stream, each data object

can be described by a multi-dimensional attribute vector within a continuous, categorical, or mixed

attribute space. In addition, there are some typical characteristics of data streams:

‚ Continuous arrival of data objects.

‚ Disordered arrival of data objects.
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‚ Potentially unbounded size of a stream.

‚ Normally no persistence of data objects after being processed.

‚ Changing probability distributions of the unknown data generation process.

In general data stream processing one of the challenging issues is power constraints. In a typical

sensor data processing system, techniques, including data aggregation, data compression, modeling

and online querying, should be performed on-site or in-network to reduce communication cost [23].

RDF [24] as a general method for conceptual description and its predominant query language,

graphs SPARQL [25,26], are standard in IoT and very often have been referenced in many studies.

Linked Data is a method for publishing structured data and interlink such data to make it more

useful with the purpose of extracting RDF triples from unstructured data streams. Although the

current Linked Open Data (LOD) cloud has tremendously grown over the last few years, it delivers

mostly encyclopedic information (such as albums, places, and kings) and fails to provide up-to-date

information [27]. Based on such observation, they develop RdfLiveNews, an approach that allows

extracting RDF from unstructured (i.e., textual) data streams in a fashion similar to the live versions of

the DBpedia and LinkedGeoData datasets.

In Table 1, we can see a data taxonomy representation, by identifying the intrinsic characteristics

of IoT data and classify them into three categories, including data generation, data quality, and data

interoperability. This three categories described in [21] are summarized in this Table 1.

Table 1. IoT Data Taxonomy.

IoT Data Taxonomy

Data Generation

Velocity Generated at different rates
Scalability Large scale expectation
Dynamics Mobile location, change Environments, connections intermittent.

Heterogeneity Things generate data in different formats

Data Interoperability

Incompleteness Determine best data sources to address the incompleteness
Semantics Injecting semantics into data is an initial step in IoT

Data Quality

Uncertainty Comes from different sources
Redundancy Multiple measures
Ambiguity Interpreted in different ways due to different data needs

Inconsistency It can occur due: to missing readings, multiple sensors

In [21], the authors address storage issues in large scale systems. An interesting discussion arises

about the solutions on how to replicate data across globally distributed data centres. For instance the

idea of replicating all data to all locations requires using huge amounts of resources since users from

different locations may have different data consumption needs [28]. In order to satisfy exceptional

requirements of data storage in IoT, the distributed storage systems are crucial. There are three factors or

requirements to be considered when designing a distributed storage system [1] which are consistency,

availability and partition tolerance.

The work in [21] reviews the state-of-the-art research in IoT focusing on data, involving the

processing of data stream, management and modeling of data storage. They identify the intrinsic

characteristics of IoT data and classify them into three categories, including data generation, data

quality, and data interoperability (see Table 1). They also discuss data stream research efforts that

can help handle IoT data, including general data stream processing (analysing power constraints

challenges), RFID data stream processing (analysing high-rate data streams processing challenges),

and RDF triple stream processing (analysing linked data challenges). with regard to issues about
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data storage models, they examine traditional database management systems (DBMSs) and data

warehouses, in contrast to large-scale storage in distributed environments, especially due to the arrival

of the big data era. Moreover, they also discusses state-of-the-art techniques in searching things in the

IoT environments, both in keywords based search on the textual description of the object whose sensor

is attached, and in the collaborative search of things (e.g., through the collaboration of mobile phones).

2.3. Surveys about the Integration of Cloud Computing and IoT

Due to the relationships between IoT and cloud computing, some surveys show the connections

between them and how they benefit each other. As the work in [29] states, cloud computing and IoT are

often referenced as synonymous words. This is probably because they are complementary as they need

each other, creating the Cloud-IoT concept. IoT can benefit from the virtually unlimited capabilities

and resources of clouds to compensate its technological constraints (e.g., storage, processing and

communication). On the other hand, clouds can benefit from IoT by extending their scope to deal with

real world things in a more distributed and dynamic manner, and for delivering new services in a

large number of real life scenarios.

The authors in [30] also consider that the Cloud will be a sort of intermediate layer to make

connections between smart objects and applications. The goal is to make an efficient use of data and

all the resources that these objects provide. They review the integration of IoT and cloud computing

paradigms; provide an overview of the current state of research on this topic; and identify important

gaps in the existing approaches.

Similarly, the work in [31] highlights how the IoT is capable to produce rapidly vast quantity of

heterogenous data when there are millions of smarts obejcts providing data to cloud computing. The

authors show a survey of integration components that consists of platforms and infrastructures for the

Cloud and IoT middleware.

2.4. Surveys Oriented to Data Mining

The analysis of the large amount of data generated by IoT is a crucial problem. For this reason,

new approaches of data mining for this kind of data are being developed. The survey presented

in [32] summarizes the features of data mining for IoT. The authors present the relationship between

data mining, Knowledge Discovery in Databases (KDD) and big data for IoT. The different mining

technologies for IoT are also discussed in that work. The first reflexion is that the data from IoT are

mostly too big and too tricky to be processed by the tools available currently [33–36]. Baraniuk in [37]

describes that the bottleneck of data processing will be shifted from sensor to the data processing,

communication, and storage capability of sensor. This observation also implies that the design and

implementation issues of information system will be changed because of IoT.

Obviously, it is always much easier to create data than to analyze it. The flood of data it is certainly

a serious problem of IoT. KDD systems available today and most traditional mining algorithms

cannot be applied directly in order to process the large amount of data of IoT. Likewise, data mining

technologies that exist currently work properly when they are applied to small scale IoT system.

Therefore KDD and data mining technologies need to be redesigned for IoT in order to deal with large

amount of data. New framework is presented in [32] to understand data mining algorithms [38–42].

The survey of data stream clustering in [22] presents an overview focused on data stream mining.

The main goal is to find patterns and knowledge from huge amounts of unceasingly generated data.

They review, with a deep analysis, data stream clustering algorithms to carry out unsupervised

learning. They present a section of data stream clustering in practice presenting applications, data

repositories and software packages.

2.5. Potential IoT Applications

The huge potential of IoT is evident; therefore, many surveys have focused on IoT applications.

From our point of view, we conclude that they could be divided into three big sets: smart city, industry
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and business, and health. The authors in [21] consider the following main groups of potential general

IoT applications: smart cities and homes; environment monitoring; health; energy; business. In a

similar way, the work in [6] groups these applications into the following domains: transportation

and logistics domain; healthcare domain; smart environment (home, office, plant) domain; personal

and social domain. In [43], the authors describe another IoT application: security and surveillance

for enterprise buildings, shopping malls, factory floors, car parks and many other public places,

as well as homeland security scenarios. The authors enumerate some specific applications such as

the use of ambient sensors to monitor the presence of dangerous chemicals; sensors monitoring the

behaviour of people may be used to assess the presence of people acting in a suspicious way; or

personal identification by means of RFID or similar technologies. The work in [19] explores the IoT

application domains and related applications is presented, where we can see a huge spectrum of

application of IoT. Figure 2 shows the IoT application domains.

Figure 2. IoT application domains.

The main contribution of the survey presented in [44] is to show the state-of-the-art IoT in

industries. In its background and current research of IoT section, RFID technology is considered as

a foundational technology for IoT. RFID technology has been possible to identify, track and monitor

any objects attached with RFID tags automatically [45]. RFID has been widely used in many and

diverse areas, such as logistics, pharmaceutical production, retailing and supply chain management,

since 1980s [46]. Another basic technology, contribute to the development of IoT, is the wireless sensor

networks (WSN). WSN use interconnected intelligent sensors to sense and monitoring. Similarly to

RFID, its applications are developed in many areas including environmental monitoring, healthcare,

industrial monitoring, traffic monitoring, etc. [47,48].

Apart from RFID and WSN, many other technologies and devices are available today, such as

barcodes, smart phones, social networks, and cloud computing. All these technologies are being used

to establish an extensive network for supporting IoT [49–52].
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Figure 2 illustrates some application scenarios. There exist some common challenges apart

from the specific domains, which are: security, privacy, data integrity, analytics, mobility support,

heterogeneity of objects and scalability. In addition to these challenges, there are technology specific

challenges such as architecture, energy efficiency and quality of service. More applications can be

found in [53] where a model-based methodology for the development of IoT applications in WSN is

presented providing the development tools and software component libraries to describe the high-level

application architecture, graphical definition, etc.

In [20], the authors categorize the IoT enterprise applications in three groups: (1) monitoring and

control (where the smart home is known to be at the forefront of innovation regarding IoT monitoring

and control systems); (2) big data and business analytics (to discover changes in customer behaviors

and market conditions, to increase customer satisfaction, and to provide value-added services to

customers); (3) information sharing and collaboration.

As mentioned, the survey reported in [44] focuses on the interest of using IoT technologies in

various industries, as IoT is expected to offer promising solutions to transform the operation and

role of many existing industrial systems such as transportation systems and manufacturing systems.

Specifically, they review the IoT interests in agriculture, food processing industry, environmental

monitoring, security surveillance, logistics, manufacturing, retailing, and pharmaceutics industries.

They classify these interests in the following groups:

‚ IoT in the healthcare service industry: powered by IoT’s ubiquitous identification, sensing, and

communication capacities, all objects in the healthcare systems (people, equipment, medicine, etc.)

can be tracked and monitored constantly.

‚ Using IoT in food supply chain (FSC) to address the traceability, visibility, and controllability

challenges. The so-called food-IoT comprises three parts: (a) the field devices such as WSN nodes,

RFID readers/tags, user interface terminals, etc.; (b) the backbone system such as databases,

servers, and many kinds of terminals connected by distributed computer networks, etc.; and

(c) the communication infrastructures such as WLAN, cellular, satellite, power line, Ethernet, etc.

As the IoT system offers ubiquitous networking capacity, all of these elements can be distributed

throughout the entire FSC. Other work related to this issue are [54–56].

‚ IoT for safer mining production to sense mine disaster signals in order to make early warning,

disaster forecasting, and safety improvement of underground production possible. For example,

the effective communication between surface and underground in order to track the location of

underground miners and analyze critical safety data collected from sensors to enhance safety

measures. Another useful application is to use chemical and biological sensors for the early disease

detection and diagnosis of underground miners, as they work in a hazardous environment.

‚ Using IoT in transportation and logistics to conduct real-time monitoring of the move of physical

objects from an origin to a destination across the entire supply chain including manufacturing,

shipping, distribution, and so on. Furthermore, IoT is expected to offer promising solutions to

transform transportation systems and automobile services.

‚ IoT in firefighting to detect potential fire and provide early warning for possible fire disasters.

By leveraging RFID tags, mobile RFID readers, intelligent video cameras, sensor networks,

and wireless communication networks, the firefighting authority or related organizations could

perform automatic diagnosis to realize real-time environmental monitoring.

In [57] they use IoT in the healthcare service industry. They insist on the importance of establishing

an ecosystem in advance to take advantage optimally of opportunities. IoT provides new opportunities

to improve healthcare [58]. Powered by IoT’s ubiquitous identification, sensing, and communication

capacities, all objects in the healthcare systems (people, equipment, medicine, etc.) can be tracked and

monitored constantly [59]. The healthcare-related information (logistics, diagnosis, therapy, recovery,

medication, management, finance and even daily activity) can be collected, managed, and shared

efficiently. The personal computing devices, such as laptop, mobile phone, tablet, wearables, etc. and
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mobile internet access (WiFi, optical fiber, 3G or 4G, LTE, etc.), the IoT-based healthcare services can be

mobile and personalized [60]. They claim that since most societies are aging, IoT in the health sector

could contribute to making elderly people’s lives easier.

There are other studies that focus in offering a framework for general applications. In the survey

of Integration of cloud computing and Internet of Things [29], the authors explain that a cloud-based

data access is able to cover the latency energy requirements of low power and the ubiquitous and fast

access to data. In [61], the authors present the functional design and implementation of a complete

WSN platform. The advantages of this proposal is not only the use for environmental monitoring

IoT applications but also to take into account the requirements of design and specification such as

low cost, high number of sensors, fast deployment, etc. The varied range of devices in IoT, with very

heterogeneous capabilities whose response times are difficult to predict, are described in this work [62],

which aims to respond to this issue by developing a computational model that formalizes the problem

and that defines adjusting computing methods. The work presented in [62] describes the variety of

devices in IoT. A computational model validate the problem in order to adjust computing methods.

In [63], López-Matencio proposes and studies a new node placement algorithm as this is a critical

aspects of WSN design. The node placement determines sensing capacities, network connectivity,

network lifetime and other capabilities of the WSN. WSNs are considered an enabling technology

for unattended, long-lasting and rough terrain monitoring and have been widely studied in recent

years [64] taking into account several considerations of design for optimization.

The authors of [65] present a computational architecture based on RFID Sensors. This study is

applied to the traceability in smart cities. The aim of this distributed system is to obtain, represent and

provide the flow and movement of people in densely populated geographical areas.

2.6. Open Research Issues for IoT

The general purpose surveys of IoT coincide in a set of open research issues for IoT, such as

standardization, quality, security, or mobilization. For example, the survey by [6] enumerates the

following: standardization, mobility support (e.g., scalability and adaptability to heterogeneous

technologies), naming (i.e., mapping a reference to a description of a specific object), transport protocol,

traffic characterization, authentication, data integrity, privacy and digital forgetting. The survey by [43],

as a consequence of the previously described key system-level features that IoT needs to support,

considers the following research challenges in IoT: computing, communication and identification

technologies; distributed systems technology; distributed intelligence; security; data confidentiality;

privacy; trust.

The work by [21] also discusses open research issues for IoT, but again focuses in data

management issues. Specifically they enumerate the following issues: data quality and uncertainty

(e.g., inconsistency detection); co-space data (e.g., to synchronize data in both real and virtual worlds);

transaction handling (e.g., interaction between different networked computers/smart things with

differing update policies); frequently updated timestamped structured (FUTS) data (e.g., real-time

traffic reports, air pollution detection, temperature monitoring, and crops monitoring); distributed and

mobile data (which makes IoT much more highly distributed and data intensive); semantic enrichment

and semantic event processing (e.g., the progress of semantic Web to process and understand data

through the semantic enrichment of sensing data); mining (e.g., the exploration and analysis of

huge volume of IoT data); knowledge discovery (e.g., automatic extraction of relational facts from

natural-language text and multi-modal contexts); security (e.g., RFID security); privacy (e.g., the lack of

mechanisms to help people expose appropriate amounts of their identity information); social concerns

(e.g., online social networks with personal things information may incur social concerns as well, such

as disclosures of personal activities and hobbies).

Similarly, the survey reported in [44] focuses on research challenges for industrial use such as

technology, standardization, security, and privacy. In particular, the authors consider as the main

technical challenges: the design of a service-oriented architecture (SOA) for IoT (e.g., scalability issues,
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and situations in which service-based things might suffer from performance and cost limitations); to

develop networking technologies and standards that can allow data gathered by a large number of

devices to move efficiently within IoT networks; the lack of a commonly accepted service description

language that facilitates the service development and integration of resources of physical objects into

value-added services; the development of service discovery methods and object naming services; the

integration of IoT with existing IT systems or legacy systems into a unified information infrastructure

(e.g., the development of various middleware solutions in order to integrate IoT devices with

external resources such as existing software systems and Web services); the development of green IoT

technologies (e.g., energy-efficient techniques or approaches that can reduce the consumed power by

sensors). Table 2 shows a summary of the different surveys studied along this section.

Table 2. Summary of surveys.

References Description Main Proposals

[6,18,19]
General purpose

IoT surveys
General visions of IoT. Key features and the driver technologies
of IoT. Phases and interaction with the physical-cyber world.

[10,20,22–27]
Surveys oriented

to data

Technologies in IoT-based products. Techniques of IoT from the
data perspective. Data stream and data stream processing. RDF
and SPARQL as method for conceptual description and query
language respectively in IoT. Extraction of RDF triples from
unstructured data streams.

[29–31]

Surveys about the
integration of

Cloud computing
and IoT

Cloud computing and IoT are different technologies, but are
complementary. Cloud becomes an intermediate layer between
smart objects and applications. Integration components: cloud
platforms, cloud infrastructures and IoT middleware.

[22,32–42,66]
Surveys oriented to

data mining

Relationships between data mining, KDD and big data for IoT.
Processing of big data and sensor information. Data mining
algorithms. Data stream clustering.

[6,19–21,43–65,67]
Potential IoT
applications

General IoT applications: smart cities and homes, environment
monitoring, health, energy, business. Classification according
several domains: transportation and logistics, healthcare, smart
environment (home, office, plant), personal and social. Security
and surveillance. Huge spectrum of applications of IoT. IoT
applications in industries. RFID technology, wireless sensor
networks, barcodes, smart phones, social networks, and cloud
computing. Food supply chain. Different devices (capabilities)
in IoT. Architectures based on WSN and RFID.

[6,19,21,43,44]
Open research
issues for IoT

Standardization, mobility support, naming, transport protocol,
traffic characterization, authentication, data integrity, privacy
and digital forgetting. Computing, communication and
identification technologies, distributed systems technology,
distributed intelligence, security, data confidentiality, privacy
and trust. Data quality and uncertainty, co-space data,
transaction handling, Frequently updated timestamped
structured data, distributed and mobile data, semantic
enrichment and semantic event processing, mining, knowledge
discovery, security, privacy and social concerns. Challenges for
industrial use: technology, standardization, security and privacy.
IoT and social networks and IoT and context-aware computing.

3. Context Aware IoT

Given the work reviewed in previous section about IoT surveys, in this section we explore

the recent work developed on context aware intelligent services, in which the things in IoT

dispose of enough intelligence to interact as social networks (as the capacities enumerated in [29]:

self-configuration, self-optimization, self-protection, and self-healing). To the best of our knowledge,

this is the first article that surveys the state-of-the-art of IoT from the context aware perspective
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that allows the integration of IoT and social networks in the emerging paradigm called Social IoT

(SIoT) [68–70]. This section is concluded with the findings on this issue.

3.1. From Context Aware IoT to Social IoT

The context data add more meaning and value to the sensor data [71,72]. Borgia [19] highlights

two IoT emerging research directions: IoT and social networks; and IoT and context-aware computing.

The former reviews the interaction among smart objects following the social network paradigm. The

main idea is that objects may have a social consciousness and may exhibit social behaviors allowing

them to build their own social network of objects. This social network of objects can be exploited to

enhance the trust level between objects that are “friends”, to guarantee a higher network navigability,

and to make applications and services more efficient. Regarding the latter, the context awareness may

provide a great support to process and store the big data, and to make their interpretation easier.

As the authors in [21] remark, they consider social concerns as a research challenge for IoT,

specifically regarding the interaction of things in social networks. Likewise, Botta et al. [29] highlight

the necessity of integrating social networking with IoT solutions, because they consider that there is

a strong interest in using social networking to enhance communication among different IoT things.

There is a trend for the move from IoT to a new vision named Web of Things that allows IoT objects to

become active actors and peers on the Web.

The interpretation of SIoT in [73] attempts utilize users’ intuitive understanding of social networks

to make the interconnected nature of IoT understandable and acceptable. In this line, the work in [74]

makes use of an interactive IoT service on mobile devices. The concept of Social Web of Things (SWoT)

is its foundation in order to do users capable of interacting with IoT in the same manner they use

the social network services. As Rau et al. state, in SWoT, devices are presented as “beings” in social

networks, with their interconnections compared to social relations. In addition, users can comment on

the messages with natural language.

Atzori et al.’s work [75] identifies policies in order to establish as well as to manage social

relationships to become a navigable social network. In addition, they describe an architecture for

the IoT with the required functionalities of social network, and finally, they carry out simulations to

study the characteristics of the SIoT network. The work in [76] introduces the idea of objects able

to participate in conversations by discussing about the technology needed to guarantee an efficient

interaction between the physical, social and virtual worlds. To ensure this interaction it is required

the development of a data-centric architecture available for the people when and where they really

require it.

Regarding the interconnections required between things, information retrieval (IR) techniques

are introduced in the smart things. For example, Zhao et al. [77] propose an IR system based on

topic discovery and semantic awareness in IoT environment. In this work and the one by [74], the

state-of-the-art in IR for IoT is summarized. For example, the OCH system [78] allows users to query

the current location of lost real-world objects; Dyser [79] is a search engine for the Web of Things,

which allows real-world entities (i.e., people, places, and objects) to be searched by their current state;

Snoogle [80] and Microsearch [81] are two systems that maintain an aggregate view of all sensors in a

certain geographical area such as a room.

Context-aware approach is widely used for searching in IoT. For example, Covington et al. [82]

proposed a role-based access control framework for context-aware applications. Giannikos and

Kokoli [83] proposed and implemented a secure and context aware information lookup architecture

for the IoT, which uses attributes to define access control policies, as well as, to semantically determine

users and information items. In [84], the authors propose a context-aware service framework on

top of IoT controlled systems, which is applied on the fault management process in electric power

distribution networks. Their proposal takes automate actions depending on contextual information

sensed from the IoT environment and received by the framework through its controlled systems.
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In [85], a context-aware and multi-service trust management system fitting the new requirements of

the IoT is designed.

Information extraction (IE) is another artificial intelligence technique that is required for achieving

the required high level of intelligence in things. For example in [77] proposal, the IE goal is to get

metadata, such as the location and the topics, from the collected contents. These authors also use topic

discovery tools to achieve topic self-adaptive retrieval, in which the theme information hidden in the

texts is discovered and parsed out. Automatic classification and clustering for dividing the collected

contents into two categories is also used in their approach: one category is the contents collected by

topic focused collector (used to access data from predefined topic objects whose contents belong to a

specific area) from topic websites or related IoT devices; the other category is the contents collected

by general search engines-based collector (used to access general information on application-layer).

Finally, natural language processing is an active research area used in this issue, which covers all the

processing, understanding and interaction tasks [86–89].

3.2. Findings and Analysis on Context Aware IoT

After the reviewing of the work related on context aware IoT, next we summarize the main and

open issues in this area:

1. There are two IoT emerging research directions: IoT and social networks; and IoT and

context-aware computing.

2. The integration of IoT and social networks generates the emerging SIoT term.

3. There is a strong interest in using social networking to enhance communication among different

IoT things.

4. There is a trend for the move from IoT to a new vision named Web of Things that allows IoT

objects to become active actors and peers on the Web.

5. An agreed architecture is required, which includes the functionalities required to integrate things

into a social network.

6. A further development of the technology is required to ensure an efficient interaction between the

physical, social and virtual worlds by extending the Internet by means of interconnected objects.

7. Context-aware techniques are widely used for searching in IoT, such as information retrieval,

information extraction and natural language processing techniques.

The main work reviewed in this section is summarized in Table 3.

Table 3. Recent work on Context Aware IoT.

Work Discussion

Internet of things
marries social media [73]

Utilize users’ intuitive understanding of social networks to make the
interconnected nature of IoT understandable and acceptable

Social web of things
of Chinese users [74]

An interactive IoT service on mobile devices based upon the concept of SWoT

The social internet of things [75]

It identifies appropriate policies for the establishment and the management of
social relationships between objects in such a way that the resulting social
network is navigable. They describe an architecture for the IoT that includes
the functionalities required to integrate things into a social network

Social-driven internet
of connected objects [76]

It introduces the idea of objects able to participate in conversations, and
discusses about the technology required to ensure an efficient interaction
between the physical, social and virtual worlds.

Topic-centric and semantic-aware
retrieval system [74,77]

An IR system based on topic discovery and semantic awareness in
IoT environment

The OCH system [78] It allows users to query the current location of lost real-world objects

Dyser [79]
It is a search engine for the Web of things, which allows real-world entities to
be searched by their current state
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Table 3. Cont.

Work Discussion

Snoogle [80] and Microsearch [81]
Systems that maintain an aggregate view of all sensors in a certain
geographical area such as a room

Covington et al. [82] A role-based access control framework for context-aware applications

Secure and context-aware
information lookup for the IoT [83]

A secure and context aware information lookup architecture for the IoT

A context-aware
dispatcher for the IoT [84]

A context-aware service framework on top of IoT controlled systems, which is
applied on the fault management process in electric power
distribution networks

A context-aware and
multi-service approach [85]

A context-aware and multi-service trust management system fitting the new
requirements of the IoT

Topic-centric and semantic-aware
retrieval system for IoT [77]

Information Extraction techniques are applied to get metadata, such as the
location and the topics, from the collected contents

Natural Language
Processing for IoT [86–89]

NLP techniques applied on the processing, understanding and
interaction tasks

4. Services for IoT

Figure 3 shows the overall scheme and layers of the combination of IoT deployments, Cloud

Computing technologies and end-user applications. As it can be seen, it is based on Figure 1 and it

includes the different layers than can be integrated as the services we will explain in this section.

Figure 3. Overall architecture for IoT deployments and Applications.

As it has been shown in previous sections, there are a lot of surveys related to the IoT technologies.

However, the contribution of the review presented in this section is the global as well as comprehensive

vision where all the techniques are integrated in order to provide services to the final users. In addition,

many of those services will be able to be used by the applications developed in many diverse areas,

such as surveillance, health, etc. Many of these applications were also reviewed in the former section.

The layers of the Figure represent different acting areas of the services that will be explained in the

next sections.
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4.1. Service-Oriented Architecture (SOA) of IoT

The decentralized and heterogeneous nature of IoT (IoT connects different things over the

networks) requires that the architecture provides IoT efficient event-driven capability. As a key

technology in integrating heterogeneous systems or devices, SOA can be applied to support IoT

because it is appropriate method to achieve integrity and reliability among all the heterogeneous

sources provided by multitude of devices [6,43,90]. SOA has been fruitfully settled in research areas

such as cloud computing, WSNs and vehicular network [90–92]. In [44] it is explained how the

International Telecommunication Union recommends that IoT architecture consists of five different

layers: sensing, accessing, networking, middleware, and application layers. It is very suitability

to represent SOA architecture by means of layers. Other studies suggest other number of layers.

Jia et al. [45] and Domingo [58] propose to divide the IoT system architecture into three layers instead

the former five layers. These are perception layer, network layer, and service layer (or application

layer). Atzori et al. [6] established a three-layered architectural model for IoT which consists of the

application layer, the network layer, and the sensing layer. Liu et al. [93] designed an IoT application

foundation that comprises a four-layered SOA of IoT, physical layer, transport layer, middleware layer

and applications layer.

4.2. Service Models for Big Data Generated by IoT

The data produced by interconnected devices which sensing and interacting capabilities with

the environment can be analyzed through data strategies. Its possibilities and opportunities are now

endless. Today, the significance of IoT is not only a lot of devices interconnected. It is that the data

generated from these devices is analysed upon new big data techniques to provide new perspectives

on the environment around us. These scenarios of big data analysis on IoT systems provide enriched

information to understand the dynamics of IoT applications, assist decision-making and management.

However, some of the operating characteristics of the IoT applications represent a challenge for

IoT analysis: in first place, the communication needs of the connected things; secondly, the scale

deployment of IoT applications can be very large; and finally, the variety of information sources and

large amount of data generated in many of its implementation scenarios (smart city, smart transport,

retail and logistics, etc.). In these cases, the ability of performing real-time analytics are out of reach

of many organizations with limited resources. Here is where service models for big data come into

play. This idea consists on providing big data services over the Cloud [5]. Currently, more and

more companies are exploring cloud computing opportunities, using resources only when and where

needed, as a way to reduce the cost and complexity of their IT services [94].

The definition provided by Patidar et al. defines cloud computing as a type of computing

in which massively scalable IT-related capabilities are provided “as a service” by using Internet

technologies to multiple external customers [95]. In other words, cloud computing is an IT paradigm for

offering internet services. The adoption of cloud computing services is characterized by the following

features [96,97]: on demand service, QoS guaranteed offer, autonomous system and scalability.

In general terms, this technology paradigm can be deployed according three service models:

software as a service (SaaS), platform as a service (PaaS), and infrastructure as a service (IaaS) [97,98].

Infrastructure as a service (IaaS) provides IT hardware to the organizations. These resources meet the

end-user requirements in terms of memory, computing and storage; platform as a service (PaaS) offers

a development platform where end-users can build their own applications in the Cloud. Normally,

PaaS contracts are complemented with IaaS to create cloud solutions for companies; software as a

service (SaaS) delivers software or applications across the Internet. The end-users do not need to install

and run the application on their local computers.
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4.3. Data as a Service

Data and information are the most valuable resources in today information society. There are new

service models that have arisen to provide specific services on data to the end-users thought Internet.

In these scenarios, the Cloud providers are responsible for protect and supply the data in an affordable

manner. In this way, useful data can be supplied to users on demand.

The Cloud, combined with other key technologies, enables companies to radically change how

they service consumers and run their business [99]. A first step towards adopting cloud services

is to perform data storage through an IaaS model and ubiquitous data access with a SaaS model.

This case is known as ‘data as a service’ (DaaS) and it means that the data from multiple sources

in several formats can be accessible via Cloud services. Allowing the data to be stored in the Cloud

and be accessed without geographical and scalability limitations will remove many bottlenecks in

bringing data-oriented innovations. DaaS aims to overcome drawbacks on data storage and access

from repositories.

There are two approaches for DaaS: (a) on one hand, the data are collected and stored into the

cloud by a third party and are rented to the organizations to perform analysis, graphs, maps, etc. For

example, the data produced by a network of IoT devices in a smart city environment is provided on

the Cloud to organizations which analyze them to generate added-value services to the citizen and

city administrators; (b) On the other hand, the organizations decouple their data from applications

and store them on the Cloud to be accessible for whole processes, and even, offer it to other partners.

For example, the data generated by an ERP about the habits of their customers can be sold to other

companies for offering commercial proposals or targeting marketing campaigns.

Combinations of they both can exists according to the business models around data [100].

In addition, a new concept of ‘open data’ has emerged. This term defines new ways to share information,

which involves more transparency and wider access to information [101]. In this way, typical DaaS

providers support from generic data assets, such as Amazon Web Services [102] or Microsoft Azure

Data Marketplace [103].

The new scenarios introduced by the IoT paradigm involve that the data could be generated by

a huge amount of ‘things’ all the time (in a city environment for example: weather stations, traffic

cameras, metering devices, smart urban furniture, street lights, etc.) [8].

This changed reality of distributed sensing devices and their working contexts raise new challenges

on data processing that must be addressed [99,104,105]. This list is not exhaustive and singles out the

issues related with IoT and meaning extraction: structuring, interoperability, portability, decoupling:

‚ Structuring and classification: allows extracting meaningful content out of it and perform to

make queries about it. In IoT scenarios, the data from sensors and other devices can be in an

unstructured form. It is needed to define structures and protocols to add semantics such as tags,

contextual info and other additional information.

‚ Interoperability: improves the data utilization. Collecting data from multiple sources can

cause compatibility problems. The data can be heterogeneous in content and fashion. The

standardization plays a key role in transforming the data towards a common interface to enable

portability and facilitate accessing to it and re-use of data assets across different applications. This

normalization produces data that can be handled by different services, applications and users.

‚ Decoupling data from applications: facilitates transparency, privacy and effectivity, and the

developing of business models around the collected data. The data must be anonymized and

decoupled from the sensing technology and its owner. For example, RFID tags on clothes.

‚ Integration: enables the data assimilation from different sources. The data is combined into

valuable information. This process can involve adapting data fields and/or dimensionality

reduction. Large scale data sets can be created by acquiring data from many sources, for example,

from a network of IoT devices deployed on a smart city.
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Table 4 summarizes a list of recent work on these issues only from a data management point of

view as a representative example of the intense research that is currently being done.

Table 4. Recent work on issues for offering quality DaaS.

Work Discussion Main Proposals

XCLOUDX [99]
Data structuring, management,
data services

Cloud-assisted data model

DaaS [106]
Large data sets challenges;
decoupling data location

DaaS approach for abstracting the data location; fully
decouple the data

Potential of Data [101]
Open standards,
interoperability

Best practices recommendations to enhance
manageability, discovery, accessibility and usability

Open Data as
Universal Service [101]

Open data, interoperability New roles for data queries

Data services [107]
SOA architectures and Cloud
computing for data processing

Conceptual framework for service oriented decision
support systems

Data management in
the Cloud [108]

Data management and data
analysis in the Cloud

Parallel databases features for cloud data
computing environments

Data as a Service
Framework [109]

Integration, interoperability,
data services

A framework for providing reusable enterprise
data services

Demods [110]
Service and data discovery,
data integration

Model for data-as-a-service

DaaS concerns [111] Data services issues
Modelling concerns for DaaS. Evaluation of current
Daas publishing

Data Integration [112]
Data services, interoperability,
integration

Ontology-based framework for describing and
integrating data

Privacy-Preserving
DaaS [113]

Decoupling, privacy
preserving, anonymization

A framework for privacy-preserving
data-as-a-service

SOA data
mashup [114]

Data services, privacy
preserving, data integration

SOA architecture for high-dimensional private
data mashup

Data integration [115]
Data integration,
multidimensional data

Semantic foundation for multidimensional data
integration, query operators and optimization

In addition, there is work that specifically deals with sensing and IoT data acquisition issues.

Table 5 describes an illustrative list of recent proposals.

Table 5. Recent work on sensing and IoT data acquisition issues.

Work Discussion Main proposals

Sensor Data as a
Service [116]

Sensor network and service platforms
Sensor data federation as a service featuring
interoperability, reusability and decoupling

Sensor Data Services
Query [117]

Data structuring, sensor data services Service model for query sensor data

DaaS IoT [118]
Data structuring, integration, dimensionality

reduction, data services
Data-as-a-service framework for IoT

Service model for
smart cities [8]

Service model, data services, data acquisition,
privacy preservation, decoupling

Model for sensing as a service supported by
Internet of Things

CityWatch [119]
Sensor data, data acquisition,
interoperability, integration

Data sensing and sensor
dissemination framework

IoT Data
distribution [120]

Data acquisition, interoperability, integration Data framework to distribute context data

IoT Cloud
Computing [29]

Integration, data Interoperability, structuring,
large scale, interoperability

Analyssis of cloud IoT paradigm and identify the
open issues and future directions in this field

Data Analysis as a
Service [121]

Data acquisition, integration, interoperability
Infrastructure for storing and analyzing data

from the Internet of Things
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Other challenges related with pricing the data, security of the data, data governance, and

management of the services are also important issues in order to provide a quality data as a service.

4.4. Service Models of Data Mining with Big Data

In this section, we examine the different techniques and methods to be able to carry out experiment

with the taxonomy of the IoT dataset. There are several initiatives that explore this objective [122–126].

After the study of those approaches, the idea is to offer services of data mining with all the data

generated by IoT.

Table 6 includes a selection of the most common and employed programs for data mining and

machine learning. Some of the software of the table is more advanced in the big data technologies than

others, but all of them have approaches in order to deal with it. However, as will be explained later,

data mining for big data (generated basically by IoT) is an outstanding issue and a big challenge for all

the current technologies which are investing a lot of resources to deal with it.

Table 6. Data Mining for IoT.

Work Name Description

[127,128] R
Open source programming language and software environment, is
designed for data mining/analysis and visualization. It is used for data
exploration, statistical analysis, and drawing plots.

[40,123,129,130] Weka

Weka is a free and open-source machine learning and datamining
software written in Java. Weka provides such functions as data
processing, feature selection, classification, regression, clustering,
association rule, and visualization, etc.

[131]
Rapid-I

Rapidminer

Rapidminer is an open source software used for data mining, machine
learning, and predictive analysis. Data mining and machine learning
programs provided by RapidMiner include Extract, Transform and
Load (ETL), data pre-processing and visualization, modeling,
evaluation, and deployment.

[132] KNMINE
It is a user-friendly, intelligent, and open-source-rich data integration,
data processing, data analysis, and data mining platform.

Although many devices are mainly capable of generating data, some of the latest studies indicate

that most of the things of IoT are supposed to have intelligence, thus are called “smart objects” (SO)

and are assumed capable of being identified, sensing events, interacting with others, and making

decisions by themselves [43,133–135]. One of the questions which arises in this survey is how do we

convert the data generated or captured by IoT into knowledge. This is where KDD and data mining

technologies come into play to find out the information hidden in the data of IoT. For this task a lot of

researches have been using or developing effective data mining technologies for the IoT. The results

described in [34,136–138] show that data mining algorithms can be used to make IoT more intelligent,

thus providing smarter services.

4.5. Findings and Analysis on Services for IoT

After we have reviewed the services offered by IoT, here we present the opportunities

and challenges:

1. The data generated from the different devices are analysed with new big data techniques to make

easier the decision-making process. Data mining (DM) and machine learning (ML) techniques can

be used.

2. Real-time analytics is possible through big data services over the Cloud.

3. The data are generated by a huge amount of ‘things’ all the time (in a city environment for

example: weather stations, traffic cameras, metering devices, smart urban furniture, street lights,
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etc.). Depending on their characteristics, different techniques will be used: (1) natural language

processing techniques (for example information extraction or question answering) to extract

relevant information from textual unstructured information; (2) DM and ML techniques to make

predictions about collected data; (3) Visualization techniques (dashboards or Google Analytics) to

view graphically the data in order to facilitate the decision-making process.

4. Data from multiple sources in several formats are accessible via cloud services (data as a service,

DaaS). The data are collected and stored into the Cloud and can be used/rented by other

organizations to perform analysis, graphs, maps, etc.

5. Integration of information. It is a big challenge. The major idea is to integrate structured and

unstructured information from different sources. Moreover, general/domain ontologies and

reasoning techniques to match equivalent concepts among all the collected information can

be used.

5. Conclusions

There are a considerable number of reviews about IoT and so far most of them have been

conducted focusing on high level general issues. Furthermore, these articles do not specifically cover

techniques on data processing and management, which is fundamentally critical to fully embrace IoT.

In this paper, we have presented a systematic review of the diverse surveys of IoT. The huge volume

of surveys that appear in the literature makes it easy to obtain a general picture of the current state of

the art on the IoT but it is more difficult to discover the more promising parts of IoT, which is the key

to succeeding when making a decision on IoT.

We review the current IoT technologies, approaches and models in order to discover what

opportunities and challenges need to be met to make more sense of data. The revision of the available

surveys in order to provide well integrated and context aware intelligent services for IoT has been

carried out. Moreover, we propose an exhaustive state-of-the-art of IoT from the context aware

perspective that allows the integration of IoT and social networks in the emerging social internet

of things (SIoT) term, in which the things in IoT dispose of enough intelligence to interact as social

networks. To the best of our knowledge, this is the first article that surveys the state-of-the-art of IoT

from the context aware perspective that includes SIoT.

Finally, the diverse variety of services for IoT has been described. An overview and particular

description of each service is has been developed concluding with a summary of those services and

their opportunities.

This new field offers a lot of research challenges, but the main goal of this line of research is to

make sense of data in any IoT environment. It has been pointed out that it is always much easier

to create data than to analyze them. With this in mind, new conceptual modelling, (provided by

ontologies, semantic, etc.) as well as new paradigms of data mining techniques, will be crucial to

provide value and meaning to initially empty data.
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