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Abstract

The Internet of Things (IoT) is the result of the convergence of sensing, computing, and
networking technologies, allowing devices of varying sizes and computational capabilities
(things) to intercommunicate. This communication can be achieved locally enabling what
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exploiting the computational resources in the cloud. The IoT paradigm enables a new
breed of applications in various areas including health care, energy management and smart
cities. This paper starts off with reviewing these applications and their potential benefits.
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concluded with future research directions.
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Introduction

The massive adoption of Internet of Things (IoT) opens a plethora of new use cases, ap-

plications, frameworks, and data processing architectures. A new ecosystem of support-

ing technologies is being developed in parallel with IoT to enable resource provisioning for

resource-constrained devices and systems (F. Wang, Hu, Hu, Zhou, & Zhao, 2017; Baktir,

Ozgovde, & Ersoy, 2017; Mao, You, Zhang, Huang, & Letaief, 2017). The core of future IoT

systems will be designed by integrating mobile edge computing systems, software-defined

networks, 5G, augmented reality, and data mining (including machine learning and artificial

intelligence) to name a few (Baktir et al., 2017; Mao et al., 2017). Data mining is the process

of discovering hidden knowledge patterns from raw data; therefore, the execution of knowl-

edge discovery processes in IoT environments will leverage the utility of IoT systems. In

essence, data mining will play a vital role in highly interactive and intelligent IoT systems.

The adoption of IoT systems at every level from small and medium organisations to

large-scale multinational enterprises creates unlimited opportunities (Hsu & Yeh, 2017). In

addition, governmental and non-governmental non-profit organisations are willing to adopt

IoT systems to improve their services. The continuous growth of data streams in these IoT

systems will help in developing new business models, improved and massively customised

products, and real-time personalised services (Rehman, Chang, Batool, & Wah, 2016). The

integration of data mining and knowledge discovery processes in IoT applications will fa-

cilitate development of highly intelligent IoT systems considering operational efficiency and

performance of businesses, governmental, and non-governmental organisations (M. M. Gaber,

Gomes, & Stahl, 2014).

Data mining methods in IoT systems are integrated in order to discover a variety of

knowledge patterns using well established supervised, unsupervised, semi-supervised, and

statistical methods (Cao, Wachowicz, & Cha, 2017). These data mining methods enable

classification, clustering, frequent pattern mining, and regression of incoming streaming data

in order to visualise the knowledge and activate the actuators in IoT systems (Patel, Ali,

& Sheth, 2017). Since the data mining methods vary in terms of operations (such as data

cleaning, shaping, ingestion, preprocessing, model training, testing, visualisation, and actua-
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tion) and computational complexity (such as memory and CPU utilisation), IoT applications

could be scaled up from IoT devices to edge and cloud servers.

Numerous review articles were presented for data mining and IoT in existing systems

whereby researchers focused on ubiquitous environments (Alam, Mehmood, Katib, Albogami,

& Albeshri, 2017), mobile data stream mining applications (Rehman, Sun, Wah, & Khan,

2016), and big IoT data analytics (E. Ahmed et al., 2017). However, to the best of our knowl-

edge, existing articles significantly lack in terms of data mining applications, techniques and

systems. The main objective of this article is to present a review of IoT applications from

data mining perspective considering healthcare, energy, and smart cities use cases and high-

light some important research challenges. To this end, we present a detailed literature review

and discuss the related issues for privacy preservation, networking and deployment of IoT

applications in the edge computing environments. Finally, we present a detailed review of

data mining methods, which were adopted to be deployed on the edge servers that reside at

single-hop distance from IoT devices.

IoT Applications

IoT has opened the door for a sheer number of applications that were otherwise unreleasable.

Out of these applications, healthcare, energy management and smart cities are identified to

be the areas to benefit the most from this rising technological advancement. This is due to

the use of wearables and smart sensing ambiently, enabling applications in these areas. At the

same time, IoT technologies are expected to be adopted in a wide range of other applications.

For example, a system proposed in (Mehmood et al., 2017) uses IoT for enhancing learning

experience through monitoring of the learners’ activities using a variety of devices (things)

including smart watches and smart phones.

IoT in Healthcare Applications

“When a patient is treated, their care is informed not only by their own health data - their

medical history, test results, imaging and so on - but also by the health data of thousands of

other people.” (Deepmind, 2017). This additional information provides essential knowledge
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and insight, allowing for increases in both access to care and quality of care, as well as

reducing costs (Islam, Kwak, Kabir, Hossain, & Kwak, 2015). The recent rise in IoT-driven

healthcare systems and applications has revolutionised this process, providing the necessary

platform for innovation across all healthcare domains (Niewolny, 2013). Data collected in

this manner may pave the way to an entirely new healthcare paradigm, allowing a focus

aimed more at prevention and early intervention than the responsive methods of present

day.

Mobile devices are now ubiquitous with most people carrying between one and two de-

vices at any time (Konstantinidis, Bamparapoulos, Billis, & Bamidis, 2015). These devices

along with multiple other physiological signal sensor technologies allow for the constant real-

time capture of personal biomedical data. Using IoT, this data may then be leveraged for

use in a broad spectrum of healthcare applications. Data collected through this approach

enables both faster medical intervention during emergencies (Mohammed et al., 2014), as

well as offering potential preventative measures in some cases (Hii, Lee, Kwon, & Chung,

2011), whilst simultaneously reducing equipment costs and other resource usage. These ap-

plications may be split into two classes: those that look to improve health and those that

raise productivity (Manyika et al., 2015). Some of the most prominent uses of IoT within

both categories are reviewed in the following subsections.

Remote Patient Monitoring

Remote patient monitoring provides a prime example of the potential of IoT based healthcare

applications. A wide range of non-intrusive sensors for monitoring various health parameters

have been developed for an array of applications (Islam et al., 2015), allowing for the real-

time monitoring and optimisation of patient care (Cognizant, 2016). By capturing such data

and securely storing it in the cloud, real-time access of a users physiological data may be

accessed by all involved in their care, from the patient and the patients family to medical

professionals (Mohammed et al., 2014).

Bringing monitoring to a patient rather than vice-versa provides a multitude of benefits.

Without constant monitoring, particularly during stages of rehabilitation and recovery (Hii et

al., 2011), patient relapse is shown to be far more common (Fong & Chung, 2013). Pressures
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on important medical resources in both equipment and medical professionals are reduced

and significantly increased access to care means patients are given the freedom of being able

to live much more independently, greatly improving their quality of life (Niewolny, 2013).

By applying a diverse range of complex analysis algorithms to collected data in real-time,

patients deemed most at risk, such as the elderly and those suffering from chronic conditions,

are far less likely to develop any serious complications, as this constant observation often

allows diagnosis to be made substantially earlier.

However, it should be noted that benefits of such applications are not reserved solely

for the elderly and incapacitated. There is also great scope for such technologies to be

utilised by more able-bodied users. Through monitoring a users general wellbeing whilst

undertaking daily activities, it is possible for diagnosis of potential health concerns to be

made significantly earlier than they otherwise would have been. This allows for a far more

preventative approach to healthcare, where early intervention is critical.

Condition Monitoring and Management

In a similar vein to that of remote patient monitoring, IoT-based applications allow for the

monitoring and management of chronic health conditions. Whilst conventional methods

often involve visiting a hospital or clinic and are therefore costly and time consuming, these

applications bring the potential for in-home monitoring of such conditions (Manyika et al.,

2015). This comes with the additional benefit of much more frequent health parameter

readings over the episodic readings of more traditional methods (for example, when blood

is taken). By using wearable devices, or even devices used intermittently, there has already

been evidence of reduced healthcare costs and improved health in those suffering from COPD

(chronic obstructive pulmonary disease), diabetes and chronic heart failure (Manyika et al.,

2015). Various other research looks at monitoring glucose levels (Istepanian, Hu, Philip, &

Sungoor, 2011), oxygen saturation levels (Larson et al., 2011), blood pressure (Puustjarvi

& Puustjarvi, 2011), electrocardiogram (EKG) (Jara, Zamora-Izquierdo, & Skarmeta, 2013)

and body temperature (Jian, Zhanli, & Zhuang, 2012) through use of a combination of

non-invasive sensors and smart phones.
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Assistive Technologies

The integration of IoT into assistive technologies has proven to be a life changing advance-

ment for the disabled and elderly, enhancing both quality of life and allowing for much im-

proved independent living (H. Lee, 2016). Interconnected devices creating automated homes

and other smart environments (G3ict, 2015) are often used in conjunction with brain com-

puter interfaces (BCIs), equipping usually disadvantaged users to better navigate daily life.

By utilising connected sensors and cameras, especially within the users home, and coupling

these with an accessible and intuitive smart phone interface, users may perform tasks, which

would otherwise be impossible or extremely demanding. Other assistive technologies, such

as smart wheelchairs (Abhishek, Manjunatha, Sudarshan, & Reddy, 2016) and wheelchair

management systems (Islam et al., 2015), have also been developed, using IoT to monitor

the status of the user and collect data on their location and surroundings.

Smart home platforms have been adapted to benefit less abled users suffering from a range

of conditions. Home automation applications developed for simple control of appliances

and other home devices, such as security systems and thermostats combined with a smart

phone with compatible screen reader, have proved beneficial for blind and low vision users.

Users with poor mobility have found advantageous applications to manage systems physically

difficult to reach, such as door locking and lighting. Sensors used for these purposes also

have the potential to gather information over a period of time, defining a users typical daily

routine and allowing for remote monitoring by care givers.

Hospital Workflows

Hospital workflows present another area set to greatly benefit with advances in both inter-

operability and digitalisation. The DeepMind Health Streams application, currently being

trialled in a number of the UK NHS hospitals for identifying and treating acute kidney injury

(AKI) (Deepmind, 2017), gives a prime example of this. Analysing blood test results as soon

as they become available and automatically escalating to the relevant medical professional

whenever there appears to be a cause for concern ensures warning signs are picked up and

promptly acted upon. Urgent alerts sent to a clinicians mobile device also contain addi-
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tional important patient data, including personal information, a linear record of all previous

work since admission and medical history (Connell et al., 2017) allowing for an immediate

diagnosis and prioritised treatment to be made.

Current workflows frequently involve communication between multiple technicians, nurses

and doctors using outdated, often paper based methods and requiring access to a desktop

computer to review results. Alleviating these delays allows for both better coordination of

patient care and ensures those patients most at risk receive the care they need in adequate

time. Applications like this may be developed to cover a wide range of other conditions, as

well as being used to simplify everyday events, such as shift changes and patient handovers.

Issues and Challenges in IoT-enabled Healthcare Applications

Despite the many notable benefits of the healthcare applications discussed, many issues

and challenges are also present, especially regarding the security and privacy of often sen-

sitive gathered medical data and interference with other medical devices. These issues are

often made more challenging by the diversity of IoT components (Abouzakhar, Jones, &

Angelopouloui, 2017). In particular, IoT based healthcare applications rely on intercon-

nected devices exchanging potentially sensitive information (Abouzakhar et al., 2017) and,

as such, are prone to a range of different security and privacy attacks (Al-mawee, 2012).

Multiple questions have been raised regarding gathered personal medical data, specifically

about ownership of the data, who has access rights to it and where it is stored, questions

that must be answered to ensure the integrity of the data and the privacy of the individual

it belongs to. These concerns are often magnified in the case of commercial organisations

being involved (Deepmind, 2017), as more and more private companies gain access to often

intensely personal health data.

Healthcare Applications: a Leap in the Future

The real vision for the future is that the discussed various smaller applications will converge

to form a whole. Emerging applications have the potential to transform a wide range of

health-care therapies and enable remote surgery. Ingestibles and injectables (smart pills

and nanobots) have the potential eventually to replace many surgeries with less invasive
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procedures that could offer faster recovery, reduced risk of complications, and lower cost.

IoT solutions can have a real impact on one of the most vexing problems in healthcare today:

human behaviour. Using IoT systems to convince healthy people to change their living habits

and to help sick patients adhere to doctors prescriptions would be a true breakthrough. As

technology evolves, costs will continue to fall, enabling broader adoption and use by a wider

range of patients (Manyika et al., 2015).

Energy Applications

Smart Grid – Energy Consumption Monitoring and Management

Electrical grids continuously grow to meet the increasing power demands, hence, monitoring

and controlling such grids become complicated and far from efficient. Moreover, the growing

shift in Europe and USA to integrate more distributed and renewable energy, originated from

wind, solar and biomass, introduces unpredictability, variability and intermittent power gen-

eration. All these undesirable operational scenarios combined with aging infrastructure cause

electrical grids to constantly operate at their maximum limits. This in turn reduces their life

expectancy, and causes high power disturbances (Gungor et al., 2011). Electrical grids op-

erate under unpredicted circumstances, as they have to cope with rapid changes in seasonal

loads and variation of weather conditions which has increased due to climate change. These

operational circumstances raise challenges in terms of reliability and stability of the grid.

For example, dealing with sudden regional energy demand for cooling due unpredicted heat

can cause energy congestions, rapid change of power patterns, and inefficacy in emergency

loading, etc. (Gungor et al., 2011). To cope with these challenges, a Supervisory Control

And Data Acquisition (SCADA) (Sallam & Malik, 2011) is a widely used situational aware-

ness system to efficiently manage energy in grids. However, SCADA offers a steady state

analysis, which fails to fully monitor and predict the dynamically changing power system.

Due to the recent advances in IoT in terms of communication and its capability in capturing

huge amount of life sensor data, IoT can increase situation awareness through monitoring of

the gird status, which can lead to balancing energy load on transmission lines, controlling

technological derangements, reducing power disturbances, and fine-tuning emergency and
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protective automation (Sallam & Malik, 2011).

As an example, Figure 1 shows a community scale energy supply from renewable energy,

where energy is produced and controlled locally. In this scenario, energy delivery at commu-

nity level utilises IoT and data mining to optimise energy distribution and energy allowance

for each property based on occupants usage, tenants habits, property size and house energy

profile. Principles of Multi-Agent System can also be applied here by allowing autonomous

agents to act on behalf of the households. Agents can monitor and perform data mining to

establish adaptive models for the household they represent, as well as use techniques from

Game Theory to efficiently share energy when a household’s energy demand is high at spe-

cific times (e.g., to perform household activities, such as running a washing machine, ironing,

lawn cutting, etc.). Intelligent agents play important role in sustaining the community self-

regulation by monitoring users, activates or situations to prevent selfish behaviour, when a

household asks for more energy than is actually needed or consumes more energy without

being considerate to the entire community. The job of these intelligent agents is to acquire

just enough resources for their household. If household agents are energy literate and decide

to save energy from their daily allowance, then they can feed this saved energy back to the

community grid, or sell it to a house with higher energy demand. Hence, virtual money can

be generated and spent in energy form or other forms of community related activities. This

management system uses storage facilities at household level to store and distribute energy

efficiently without the need for a central storage system that is expensive to maintain and

prone to single point of failure problem.

Despite many benefits, such IoT-based smart grid also raises concerns that were not

present in the classical power grid. Smart grid can be subject to spoofing attacks. This

is when an identity of occupant’s smart meter is stolen and used to pay for the attacker

energy consumption. Data exchanged between a smart meter and energy supplier is subject

to tampering attacks, where an attacker sends wrong information about its tariff or by

pretending that most energy has been consumed during off peak periods. Such attacks

increase household consumptions and overload the grid. Since smart grids are connectivity-

enabled, they are at risk of cyber-attacks, but unlike software attacks that normally damage

users software or data, cyber-attacks against smart grids can also cause physical damage to
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Figure 1: Using IoT and data mining, energy generated from renewable sources can be

distributed fairly; energy can be stored and shared through utilisation of private energy

storage systems (batteries) in houses

users, as grids are connected to transformers, circuit breakers, cables and smart meters. The

second challenge concerns with interoperability between IoT devices and legacy devices that

are not compatible with standard TCP/IP (e.g., Zigbee v1 and HART) that allow IP-based

devices to communicate (E.-K. Lee, 2016).

In the UK, the interoperability issue is extended by adoption of modern smart meters

for gas and electricity. In an attempt to reduce energy consumption from buildings, the

UK government has introduced legislation that requires all energy suppliers to install smart

meters in every home in England, Wales and Scotland by 2020 (Department for Business,

prices, & bills, 2013), so that meter reads could be sent to suppliers for more accurate energy

billing. Such smart meters provide consumers with more control of their energy use, allowing

to adopt energy efficiency measures that can help the users to save money. The interoper-

ability issue resides in the fact that smart meters use various communication mediums and

protocols to communicate only with their suppliers (Erlinghagen, Lichtensteiger, & Markard,
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2015). Hence, the absence of a standard communication platform for smart meters makes

it difficult to maintain a comprehensive view required by smart grids to predict operational

problems. Consequently, common IoT solutions can also offer a cheap and rapid solution

to the interoperability issues between meters and smart grids (Bekara, 2014; Erlinghagen et

al., 2015).

Smart Cities Applications

IoT-based Smart Buildings

40% of the total energy consumption is related to residential and commercial buildings.

This has led many governments to introduce new policies in order to improve energy ef-

ficiency in buildings. For example, the directive 2010/31/EU of the European Parliament

and of the Council was first introduced in May 2010 on the energy performance of build-

ings (Commission, 2010). This directive proposed measures to improve the performance of

lighting, heating and ventilation systems in an attempt to reduce the carbon footprint at a

global scale.

With the increasing demand for occupants’ thermal comfort in the form of heating and

cooling, growth in population, expansion of building sector and increase of time spent inside

buildings, building energy consumption will continue to increase by 0.5% - 1.5% per annum

in the UK and Europe (Prez-Lombard, Ortiz, & Pout, 2008) and by 7.80% in China (Zhang,

He, Tang, & Wei, 2015). Personal initiatives together with technological solutions can be

used to decrease energy consumption in buildings. Various measurements are already used

to increase energy efficiency in buildings:

1. The use of renewable energy from wind and solar power via the use of solar

panels and wind turbines. These technologies can be deployed at a large-scale in

the form of wind farms that generate energy to cover entire cities, or at a small-scale,

when households install standalone renewable energy systems that can cover some of

their energy needs (M. A. Ahmed, Kang, & Kim, 2015). This is normally accompanied

with energy storage batteries and energy management systems. These systems are

designed to allow customers to feedback unused energy into the grid or store it to
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be used when needed (Figure 1). However, managing and controlling the operation

of small-scale energy systems raise various challenges (Bouhafs, Mackay, & Merabti,

2012); to achieve reliable and cost efficient operations in small-scale energy systems,

IoT and communication infrastructure are necessary to make smart grids a reality.

For example, it is important to first analyse how energy is currently consumed in

buildings. If the use of renewable energy is desirable, then IoT sensor data regarding

weather condition, including average wind speeds and sunlight peaks, would enable

determining the size and number of wind turbines, number of solar panels and size of

battery required to store energy for a house (M. A. Ahmed et al., 2015).

2. Retrofitting of buildings. This involves the retrofit of old inefficient buildings

that experience heat loss due to air leakage, aging of windows and wall degradation.

Retrofitting of such buildings includes putting external and internal insulation panels,

fixing double glazed windows and sealing any damage to floor, roof or walls to prevent

any air leaks. To identify the best retrofit package for any house, various parameter

values need to be identified to allow the highest possible performance of a building in

terms of energy consumption, cost and thermal comfort, as well as how such packages

would cope with various weather conditions. These parameters can include the depth

and type of insulation panels, for example. Rapid deployment of sensor networks is

needed to collect the necessary data that help to identify these parameters. Building

simulation can then enable comparison of various energy conservation measures in a

form of theoretical extensions or refinements to the input model to reduce energy con-

sumption in a building, as well as assess various performance optimisation measures

during the operational stage (Basurra & Jankovic, 2016).

All the aforementioned approaches that aim to reduce energy consumption in houses

share a common challenge that makes energy efficiency hard to achieve, and this is largely

due to behaviour of the occupants and their poor energy awareness and training, especially,

in the context of increased demands by occupants on heating, ventilation and air condition-

ing to provide the highest thermal comfort. The findings in (Zhao, McCoy, Du, Agee, &

Lu, 2017) suggest that even owners of new buildings, which are built in accordance with the
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energy efficiency requirements and standards and are usually equipped with energy efficient

appliances and modern thermostatic controls for heating and cooling, are still responsible

for high energy wastage. Hence, ongoing monitoring of home appliances, users’ locations,

motion and habits using a large number of sensors may help predict human behaviour in

the house resulting in better energy management via predictive control and providing hu-

mans with actionable messages to better inform individuals about their consumptions and

behaviour (Abdallah, Basurra, & Gaber, 2017).

Figure 2 depicts a typical household with a family of five members, where various IoT

sensors are placed around the house to measure thermal comfort of the individuals. The term

thermal comfort defines a persons state of mind of whether they feel too hot or too cold.

If thermal comfort is quantified in real time, the thermostat system can be automatically

adjusted to constantly produce the heating/cooling that suits most occupants in a building,

while also focusing on effective use of energy to reduce electricity waste. To achieve this,

various IoT sensors can be used to measure the external temperature, internal temperatures

in separate rooms, as well as motion to identify occupants location (i.e., which rooms are

occupied, and whether the house is empty or not). Thermal cameras can be fitted to mea-

sure the thickness of the clothing occupants are wearing while indoors. Furthermore, body

temperature and levels of activity (e.g., sleeping, sitting or moving around) can be measured

using personal activity trackers such as Fitbit and internal tracking systems. These mea-

surements can be used to calculate the metabolic heat generated by occupants, which is an

important factor of the thermal comfort.

Generating models based on a combination of real IoT data and predictive patterns

identified using data mining techniques that represent evolution of the parameters affecting

energy consumption, can help to develop intelligent building management systems. For

example, research in (Hagras, Callaghan, Colley, & Clarke, 2003), demonstrates a smart

system capable of managing the main comfort services provided in the context of a smart

building, i.e., HVAC and lighting, while user preferences concerning comfort conditions are

established according to the occupants’ locations. In (Moreno, beda, Skarmeta, & Zamora,

2014), the authors studied the main parameters affecting energy consumption of buildings

considering different contexts. Such analysis permits to propose an optimum prediction
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Figure 2: Using IoT to predict human behaviour in buildings for optimal energy management

control leading to energy savings in buildings

concerning the daily energy consumption in buildings by integrating the most relevant input

data into such models. Once energy usage profiles have been extracted, actions can be

designed to save energy, by proposing strategies to adjust operation times and configuration

of the involved appliances or devices, selecting the optimal distribution of energy to maximise

the use of alternative renewable energies, etc.

IoT for Smart Traffic

Traffic congestion is a major problem in many developing cities. According to TomTom traffic

index (TomTom Traffic Index 2017 , 2017) – which is a global leader in navigation, traffic

and map production – the major cities, such as Bangkok, Moscow, Jakarta and London,
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experienced an increase in traffic by an average of 5% in the year 2016-2017. One of the

contributors to congestions is the behaviour of people in cities and their way of life. According

to (Isa, Yusoff, & Mohamed, 2014), traffic congestions are caused by people travelling to and

from work at the same time each day, which introduces delays, impacts motorists productivity

(as a result of arriving late), and consequently, affects the city economic health. Traffic

congestions also increase fuel consumption due to vehicle frequent acceleration and breaking,

resulting in increased air pollution and more repairs due to rapid wear and tear. Moreover,

congested traffic can increase the response time of emergency vehicles, and may even increase

their chances of being involved in an accident (Nellore & Hancke, 2016).

In addition to human behaviour, congestions are caused by the increasing population

of vehicles and poor road management (Bretzke, 2013). Constructing alternative routes

in big cities to ease congestion is not possible due to the following (Zavitsas, Kaparias,

& Bell, 2010): 1) planning restriction in constructing newer roads on green belt, existing

infrastructure, historical buildings; 2) lack of funding; and 3) that the land value is extremely

high in big cities, hence, local authorities would rather use these lands to build new houses to

accommodate the rapid population growth, rather than using them for constructing roads.

Therefore, many major cities have no option but to work with the existing roads.

One solution to improving management of road capacities is to use IoT technology via

installation of fixed road sensors and vehicle to vehicle sensors to obtain live traffic data (e.g.,

wireless sensor networks (WSN), Radio Frequency Identification (RFID), vehicular ad hoc

network (VANET) and GPS data from drivers and passengers mobile phones). IoT can help

optimising live traffic using load balancing mechanisms to reduce travel time and ensure the

steady traffic flow to prevent the frequent acceleration and breaking in vehicles (Jabbarpour,

Nabaei, & Zarrabi, 2016). In addition, historical traffic data obtained from IoT devices can

be used to predict the locations of traffic congestions and their density, so that vehicles

nearby can be rerouted towards less congested roads while maintaining reasonable traffic

delays (Masek et al., 2016). In (Mittal & Bhandari, 2013), a green wave system is proposed

that uses IoT devices to provide traffic clearance to emergency vehicles. Green wave works

by turning all red lights into green along the path of the emergency vehicle. The system

proposed by (Sundar, Hebbar, & Golla, 2015) uses IoT devices at traffic lights to track
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stolen vehicles and slow the flow down by turning traffic lights along their mobility route

into red. (Arfat et al., 2017) propose to use IoT, social media, and other data sources for a

more accurate awareness of the road conditions along the route for all the users, including

vehicles, bicycles, scooters and pedestrians crossing streets.

Optimising traffic can also lead to challenges. Providing priority measures for emergency

vehicles and public transport can make the situation drastically worse to other vehicles.

Linking all traffic lights into the cloud, which can be configured and controlled in real time,

introduces vulnerability of the system against cyber attacks that could direct traffic with

the purpose of harming the users, or shut down the traffic system for the entire city (Jin,

Zhang, Walton, Jiang, & Singh, 2013).

Challenges/Issues with Current Solutions

From the above overview, it is clear that while applications of IoT in healthcare, energy

management and smart cities can provide many benefits, realisation of such applications is

faced by many challenges. Issues associated with privacy, communication and edge comput-

ing in particular are discussed in this section, along with some of the current solutions to

these issues.

Privacy Issues in IoT

IoT is a promising paradigm, with expected applications in different domains, as discussed in

the previous section. However, this new paradigm faces a new kind of security and privacy

challenges in addition to those inherited from the traditional Internet and have not yet

been properly addressed so far. IoT systems spanning across many vertical domains, with

applications in areas such as remote patient monitoring, smart meters, waste management,

smart cities, intelligent surveillance, and remote and industrial controllers. Most of these

applications demand the privacy preservation of the end-users data, which is something

intuitive, with the current spread of privacy violations (Martin & Palmatier, 2017). Privacy

is an essential requirement for users’ personal data that may contain their preferences, habits,

living patterns, movements, and social relationships. Some research that has been carried
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out to address the issues associated with user privacy in the context of IoT applications is

outlined below.

In (Rutledge & Swire, 2014), the authors provide an abstract framework for analysing

security and privacy concerns for IoT devices.This framework can aid in providing guidance

for where security and privacy analysis may need to be supplemented with other research

fields. In this framework, the authors examined IoT devices that accept inputs for security

concerns and IoT devices that produce outputs for privacy concerns. Using a five-stage

general policy framework for evaluating privacy and security, concerns raised from IoT de-

vices were differentiated from concerns of other contexts such as Big Data, cloud computing,

robotics, and ubiquitous computing. Understanding these contexts is essential to resolve

or mitigate various security and privacy concerns for deployed systems. The research work

in (Evans & Eyers, 2012) suggested the utilisation of data tagging to enhance data pri-

vacy in IoT devices. Various techniques based on information flow control were presented

to assign privacy properties as tags to the data representing network events. These tags

can enable the IoT system to preserve privacy of individuals and to better understand data

flows. However, this solution may not fit all types of IoT devices, since the utilisation of tags

in a resource-constrained IoT devices is an expensive solution in terms of storage, process-

ing and communication. The inserted tags can be too large in comparison with originally

collected data, which can generate an additional overhead in processing and handling such

data. Consequently, this solution may not be appropriate for the IoT domain.

In (Appavoo & Chang, 2016), a lightweight functional encryption for privacy-preservation

based on trust model was proposed. The proposed approach aims to minimise privacy loss

and secondary uses in the presence of untrusted parties. A uniformisation solution was pro-

jected, which utilises device aliasing to conceal the identity of the sensing-source and a pre-

computation initialisation vector that is provided to extract trigger information only to the

relevant services of the appropriate trusted parties. Untrusted parties would not gain any ad-

ditional information about the end-users when the published sensor readings and the trigger

information are not known. Through the use of aliases, the service provider cannot identify

the sensor from which it receives data, and through the uniformisation scheme, it cannot

deduce whether the trigger has been activated or not. Finally, the authors implemented the
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proposed scheme to demonstrate feasibility of the proposed scheme on resource-constrained

IoT devices.

In (Otgonbayar & Dahal, 2016), the authors proposed an anonymisation algorithm for

publishing data streams generated from various IoT devices using the k-anonymity privacy

model. The proposed scheme examines the similarity of the input tuples when performing

a clustering process, then uses a time-based sliding window technique to anonymise tuples

with similar description into a single cluster under a specific delay constraint. Later, it

has to check if the cluster has enough tuples satisfying the k-anonymity requirement. This

preliminary step facilitates rapid construction of clusters by localising tuples and supports

the cluster merging process. Various clusters can be merged based on their similarity that

is being measured using Jaccards similarity coefficients. Additionally, the proposed scheme

implements resolutions to anonymise tuples with missing values by utilising their represen-

tative values. Finally, the authors presented experimental results on a real dataset, which

indicate that the proposed scheme can successfully publish data streams with less informa-

tion loss and attains faster execution time when compared to conventional anonymisation

approaches.

The authors in (Tso & Hossain, 2017) studied the use of public key cryptographic

techniques to preclude data leakage in healthcare systems. The expensive nature of these

techniques makes them impractical for a real implementation in the domain of web-enabled

medical IoT systems. Their research proposed a practical approach based on a secure multi-

party framework fairplay to inhibit data disclosure from insider attacks. Their proposed

solution enables software developers to easily implement security protocols in a distributed

IoT systems with multiple participants. Within this approach, the initial setup demands

each IoT node to store only one secret key before communicating with external data servers,

which is appropriate for a small memory size of IoT nodes. This approach is an improved

version of the previously proposed scheme in (J. W. Yi Xun & Nait-Abdesselam, 2013),

which demands each sensor node to store three secret keys before connecting with three data

servers.

The research work in (Prez & Gigante., 2017) studied the need for ensuring privacy of

sensitive and private information in healthcare and automation systems. A solution was
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presented to deal with these issues and to promote acceptance of IoT services to the end-

users. Attribute-based cryptography techniques and AES symmetric encryption scheme

were utilised to construct a novel architecture combining flexibility and expressiveness of

the first techniques with the efficiency of the second scheme. The usage of this architecture

facilitates the execution of secure data exchange and preservation of privacy of participat-

ing parties, since it satisfies security and privacy requirements during the full lifecycle of

sensitive information. Within this solution, data sources delegate the execution of attribute-

based cryptography operations to a trusted proxy, the IoT cloud platform is responsible for

managing encryption keys and handling of protected data.

A framework for modelling and assessing security of IoT systems was recently proposed

in (Ge & Kim., 2017), which addresses new security issues emerging from this new paradigm.

The framework incorporates five different phases: 1) data processing, 2) security model

generation, 3) security visualisation, 4) security analysis, and 5) model updates. The authors

presented a prototype for three nodes in their framework, an IoT generator, a security

model generator and a security evaluator. The IoT generator assembles an IoT network

from different subnets based on the information gathered from network reachability options

and node vulnerability; the security model generator forms an extended hierarchical attack

representation model (Hong & Kim, 2016) based on the previously assembled IoT network;

the security evaluator inspects security of the IoT network using various security metrics,

which later can be used as an input to the security analysis phase. The presented framework

can be utilised to discover potential attack scenarios in the IoT network, to measure the

overall security of IoT network using purpose-specific security metrics, and to evaluate the

impact of various defense procedures. The authors concluded their paper by evaluating the

proposed framework in three different scenarios to show the capabilities of their framework

in predicting and mapping different attack paths and the suggested strategies to mitigate

their impacts.

A privacy protection mechanism for computerised numerical control information in IoT

was proposed in (Li & Li, 2017) that incorporates a lightweight authentication method for

wireless sensor networks and an Internet data privacy protection strategy based on organisa-

tional characteristics of numerical control information in IoT. The numerical control machine
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tool can be envisioned as a complex network system that consolidates sensor networks, Inter-

net, and mobile communication networks. The lightweight authentication protocol consists

of five parts, namely, system setup phase, sensor node registration phase, user node registra-

tion phase, login phase, and authentication and session key agreement phases. The Internet

data privacy protection strategy involves central controllers, computerised numerical control

machines, local monitoring centres, cloud server, and the end-user. The authors have per-

formed a series of analysis to demonstrate the efficiency and safety of the proposed solution.

The results presented illustrate that utilising the proposed solution in the cloud computing

setting can guarantee security of control information and privacy of the numerical control

machine tool. However, employing double encryption in the Internet data privacy protection

strategy increases the length of the key, which poses certain restrictions on data transmission

and storage.

The authors in (Elmisery & Aborizka, 2017) proposed a new framework for collective

privacy protection, which utilises the personal gateways at the end-users side to act as in-

termediate nodes between the IoT devices and cloud services. A lightweight middleware is

envisioned to be hosted on these intermediate nodes for an efficient aggregation of end-users

data while maintaining privacy and confidentiality of their collective profiles. The proposed

middleware executes a two-stage concealment process that utilises the hierarchical nature of

the IoT devices. The concealment process utilises a hierarchical topology for data collection,

where different IoT devices and their corresponding intermediate nodes are organised into

a coalition for aggregating their data in specific profiles. This could help to unburden the

constrained IoT devices by performing computationally intensive privacy-preserving oper-

ations. The end-users are empowered with a tool to control privacy of their health data

by enabling them to release their data only in a concealed form. Further processing of the

cloud service continues over the concealed version of the data by applying customized secure

multiparty computation protocols. Additionally, the cloud service uses privacy policies for

specifying their data usage practices. The end-users can describe their privacy constraints

in a dynamically updateable fashion using privacy preferences specification language. Trust-

based concealment mechanism was also utilised in the course of producing different copies of

data based on the various trust levels with different cloud services. The proposed solution
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was integrated into a scenario related to preserving privacy of patients health data when

utilised by a cloud healthcare recommender service to generate health insights. The authors

tested the performance of the proposed solution on a real dataset to measure the overall

accuracy of the results based on various parameters of the two-stage concealment process.

The experimental and analytical results show that privacy increases under the proposed so-

lution without hampering the accuracy of the results. The proposed approach presents a

straightforward solution with accurate results, which are beneficial to both the end-users

and service providers.

Finally, the authors in (Elmisery & Botvich, 2016) presented an attempt to develop an

innovative approach for handling privacy in the current service oriented model. The holistic

privacy framework was developed in complying with the OECD privacy principle. The

proposed framework was implemented as a middleware that was entitled EMCP “enhanced

middleware for collaborative privacy”. The authors presented a novel concealment process,

which provides a complete privacy control to the end-users when sharing their data with

external third-party services. The proposed framework permits a fine-grained enforcement

of privacy policies by allowing the end-users to ensure extracted data for specific queries

do not violate their privacy. This is automatically done by checking whether there is an

APPEL preference corresponding to any given P3P policy. The Fog nodes were utilised to

aggregate multiple end-users’ data obtained from the underlying IoT devices, to encapsulate

them in a group profile, and then to send to an external recommender service. Performance

of the proposed framework was measured by the authors on a case study for a healthcare

recommender service using a real dataset. The presented results depict that privacy increases

under the proposed framework based on off-the-shelf recommendation techniques without

hampering the accuracy of results.

Networking Issues in IoT

This section will address the issue of connectivity and how data are delivered from the source

to their final destination in the context of IoT domain. IoT connectivity is a key element in

the entire IoT ecosystem (Bröring et al., 2017) and it is responsible to link up the physical

and digital world together.
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Providing the fact that different devices with different capabilities are responsible for

creating data in different ways, sensing for example, this heterogeneity requires different

connectivity capabilities in order to achieve the interoperability factor which is a major

component of any distributed system, such as smart city systems. There are many commu-

nication technologies that are in use to meet these requirements. Selecting which commu-

nication technologies (wired and wireless) are appropriate depends on many factors such as

interoperability, availability, cost, reliability, scalability, coverage, power consumption, data

rate, and range (Al-Sarawi, Anbar, Alieyan, & Alzubaidi, 2017). A combination of wired

and wireless connection is the way forward for many scenarios and configurations. Periph-

eral devices are normally connected via wireless technologies that are used for short range

data communications, then collected data can be aggregated and delivered by long range

wireless communications, such as Cellular and LPWAN networks (Bardyn, Melly, Seller, &

Sornin, 2016; Margelis, Piechocki, Kaleshi, & Thomas, 2015). Creating a scalable and ro-

bust communication system for loT is essential for its success (Gubbi, Buyya, Marusic, &

Palaniswami, 2013; Marchiori, 2017).

The diversity of applications that demand use of the IoT communication infrastructure,

make the selection of the appropriate wireless technology option a big challenge (Battle &

Gaster, 2017). Across the entire IoT stack, there are several communication links to be

established and maintained. However, in order to establish a link, many wireless and wired

technologies can be adopted, depending on the IoT network segments requirements. For

example, there are three major segments (Smart Things Devices, Last Mile Connectivity

Technologies and Backhaul Links Technologies) in IoT connectivity systems available to IoT

developers to select when developing IoT solutions, as shown in Figure 3.

At segment one, where things (these can be anything from machine to appliance or ve-

hicle) can be connected to the gateway in many different ways using long or short range,

licensed or unlicensed wireless technologies. Gateway devices can be smart phones, sta-

tionary WiFi access points (AP), LPWAN gateway (e.g., LoRa Gateway) or even cellular

networks. Low-power communication between the IoT device and gateway device using sev-

eral standards such as Bluetooth, Zigbee, IEEE 802.15.4, or IEEE 802.11 (WiFi) achieves a

maximum communication range typically less than 100 meters. However, wide area networks
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Figure 3: IoT Networks Connectivity Options

tend to be less complex than mesh networks since the endpoints can be connected directly to

a gateway or a base station, rather than relying on a relay system to transmit messages ‘last

mile’ connectivity for the IoT connected objects as seen in segment two. At segment three,

which connects the gateway to the backend systems, many backhaul connectivity options

can be used from wireless cellular networks to high speed wired connectivity, such as fibre

optic links.

Unlicensed Short Range Communication Protocols

These protocols are mainly used to connect sensors with IoT boards (sensor nodes) or con-

necting these sensor nodes directly to the gateway; it all depends on the given scenario and

topology. However, these wireless technologies have low power and can be utilised for short

range connectivity scenarios. The choice of a particular technology for a particular applica-

tion can be made by examining required data rates, power consumption, range and sensor
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nodes communication capability, according to a recent whitepaper by Ericsson 1. The ma-

jority of these communication technologies use licensed free ISM bands with different radio

frequency rates.

One of the most common short-range wireless technologies with less power consumption

compared to others including the basic Bluetooth is Bluetooth Low Energy (BLE). Bluetooth

and BLE are used for different purposes (Noreen, Bounceur, & Clavier, 2017). Conventional

Bluetooth can handle almost all the variety of data, but it consumes more power and cost.

BLE, on the other hand, is used for low data rate applications, and can, therefore, have

longer battery life time. Like classic Bluetooth, BLE also utilises licensed free ISM band and

offers 40 different channels.

Another solution is the IEEE standard 802.15.4 commonly known as ZigBee, which is the

most popular choice in Low Rate Wireless Personal Area Networks (LR-WPAN) and WSNs.

For example, ZigBee has been proposed as the communication solution for a telemonitoring

health care solution in (Corchado, Bajo, Tapia, & Abraham, 2010). The IEEE standard

802.15.4 has only defined the characteristics of physical (PHY) layer and Medium Access

Control (MAC) layer. Although Bluetooth and ZigBee are low power and low complexity

wireless sensor technologies, they have some limitations, such as low data rate, short range,

and less penetration across obstacles (Noreen et al., 2017).

Table 1 shows a comparison of some basic features related to the above mentioned tech-

nologies used in IoT connectivity at segment one. As can be seen from Table 1, Bluetooth

BLE in particular supports much reduced power consumption at a comparable range, but

at a significantly reduced maximum data rate of 1 Mbps, which is well-suited to the most

of the IoT solutions. However, no single technology or solution is perfectly suited to all the

different potential IoT applications. In many cases, Zigbee can be a better choice providing

the underlying scenario. Ideally, the optimal short range IoT connectivity option should

have the right combination of power, coverage, data rate and cost.

1Cellular networks for massive IoT. https://www.ericsson.com/res/docs/whitepapers/wp iot.pdf
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Table 1: Comparison of IoT Sort Range Wireless Communication Protocols

Bluetooth ZigBee Wi-Fi

Max. end-

devices

255 (2 Billion in BLE) more than 64000 Depends on number of

IP addresses

Peak Current

Consumption

10 mA 30 mA 100 mA

Range 10 m 100 m 100 m

Data Rate 1 Mbps up to 250 kbps 11 Mbps and 54 Mbps

Relative Cost Low Low Medium

Topology Star and Mesh Mesh only Star and point to

point Transmission

Technique FHSS (Frequency

Hopping Spread

Spectrum)

DSSS (Direct Spread

Spectrum Sequence)

OFDM (Orthogonal

Frequency Division

Multiplexing)

Unlicensed Long Range Communication Protocols

The wireless network industry is gradually changing their interest from the traditional cel-

lular networks to Low Power Wide Area Networks (LPWAN). There are many LPWAN

technologies on the market today (SigFox, LoRa, Weightless-W, WiSUN, etc.), but the most

common ones are LoRa and SigFox. They successfully propose wide area connectivity from

a few to tens of kilometres for low data rate, low power and low throughput applications

(Noreen et al., 2017). They facilitate a large scale of connectivity, especially in large scale

developments such as smart city applications.

LoRa and SigFox are both long range and provide the ability to connect devices that are

very low-power for longer geographic distance. They operate at different radio frequencies

across the world. For instance, in Europe, they operate between 867-869 MHz, while in the

US – between 902-928 MHz. LoRa, the physical layer of LoRaWAN (Augustin, Yi, Clausen,

& Townsley, 2016) 2, supports very low power devices (aiming for longer battery life) offering

2A technical overview of LoRa R and LoRaWANTM, Published by the LoRa alliance, accessed 2017-03-27.
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a maximum date rate of just 27 kbps in exchange for long range, a 2-5 km range in urban

areas and in excess of 10 km in suburban areas (Battle & Gaster, 2017).

Neither LoRa nor SigFox has good indoor signal penetration, but are well suited to IoT

sensors nodes in outdoor scenarios. A key feature of these standards is that they are low-

bandwidth, often each message is limited to 100 or so bytes, and for SigFox, it is even less.

This suits IoT data requirements. Each standard has its drawbacks, but SigFox requires

more expensive chipsets in its gateways, which is not the case for LoRa. When selecting

hardware, it is important to choose the correct frequency for the required region.

Licensed Long Range Wireless Communication Protocols

To achieve longer range communication in the IoT domain, traditional cellular networks

are a visible option to many mobile operators due to the well-established infrastructure

and coverage. However, this solution is relatively expensive and power hungry as current

cellular networks were not designed to support IoT devices (Flore, 2016). Emerging network

standards such as 3GPP aimed at optimised cellular networks for IoT devices are in various

development stages (e.g., LTE-M, NB-IoT, EC-GSM-IoT, etc.), however, these are not yet

widely deployed (Bardyn et al., 2016).

The NB-IoT in particular is designed to meet the IoT device requirements related with low

cost, low power consumption and long battery life-time. This initiative was taken by 3GPP

after attempting to modify the current cellular infrastructure to meet the IoT requirements

(Marchiori, 2017). However, it did not succeeded due to complexity and cost associated

with the cellular networks, as these networks are not designed to meet the IoT applications

requirements in their initial creation.

After looking at various IoT connectivity options, the essential question that the com-

munity should ask is that, which option should be adopted? The answer really depends on

many factors, as mentioned earlier, such as cost, scalability, power consumption, availability,

interoperability, data rate requirements. LPWA IoT networks in the unlicensed bands are

limited in efficiency due to the fact that current duty cycle regulations limit the downlink

capacity, and hence the network to perform, e.g., power control. On the other hand, LPWAN

[Online]. Available: https://www.lora-alliance.org/portals/0/documents/whitepapers/LoRaWAN101.pdf
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approach and technology is the way forward for many parties due to the fact that it provides

control over the infrastructure such as LoRa. However, if the national coverage is required

and important, then it probably needs to be LTE-M or NB-IoT in the future (Dama, Sathya,

Kuchi, & Pasca, 2017). This recommendation is based on the fact that the Sigfox option

leaves too many aspects outside of the developer control with no back-up plan.

Perhaps the most controversial part of the deployment cost for cellular networks is the

data plan and the cost to transfer data from the IoT device to the cloud. This cost is not

applied to LPWAN networks. Frequently, analysis of the market stops with the modem

cost, but hardware is not the only thing that should be considered. The next element

of deployment cost is the provisioning cost. Technologies like GSM and LTE provide an

enormous range that aims to provide higher and higher network throughput at the cost of

power consumption. On the other hand, LPWAN, such as LoRa, provides lower throughput

at a much lesser level of power consumption compared to its counterpart in licensed bands

(Saravanan, Das, & Iyer, 2017).

Current cellular networks require more planning and optimisation when it comes to han-

dling IoT traffic, as it requires complex protocols to support hand-off from one IoT gateway

to another where things are mobile (Ozyilmaz & Yurdakul, 2017). By comparison, LoRa net-

works can be “chaotic” with minimal planning required. Furthermore, LPWAN networks do

not have to support anything like a phone-call or guarantees about streamed data; messages

are small and intermittent.

Many players tend to put the above solutions in competition to LPWAN operated in

unlicensed bands. In fact, the operation in licensed bands is more valuable for selected pro-

fessional services, while unlicensed bands provide generally better coverage, lower power and

lower cost, at the expense of a lower QoS and no guaranteed latency. Most telecommunica-

tion operators understood this complementarity and are taking advantage of the earlier time

to market through existing LPWAN solutions in unlicensed bands (Bardyn et al., 2016).

Table 2 summarises the differences among the most common licensed and unlicensed, low

power and long range wireless communication protocols. Finally, the authors strongly argue

that low-power wide-area (LPWA) technologies like LoRa and cellular-based (NB-IoT) will

be the great enablers for mass deployment of low-power end-devices.
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Table 2: Wireless Communication Protocols

Characteristics SigFox LoRa NB-IoT

Standards SigFox IEEE 802.15.4g 3GPP,

UMTS/HSPA(3G)/

LTE (4G)

Frequency bands 868MHz (EU) 902

MHz (USA)

ISM band 868 MHz

and 915 MHz

Common Cellu-

lar bands

Power 10 mW-100 mW +20 dBm at 100 mW

constant RF output

High Power

Consumption

Data rate 100 bps (UL), 600 bps

(DL)

290 bps-50 Kbps

(DL/UL)

DL:234.7 kbps;

UL:204.8 kbps

Range 10km (Urban) 50km

(Rural)

2-5 Km in dense urban

and 15 Km in subur-

ban areas

Several km

Security Partially addressed Embedded end-to-end

AES128 encryption

RC4

Modulation UNB DBPSK(UL)

GFSK (DL)

spread spectrum BPSK/OFDM

Spreading DSSS Chirp Spread Spec-

trum modulation

(CSS)

DSSS

Features Long battery life Long battery life Long Range
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Edge Computing Constraints

Edge computing refers to bringing the core cloud services, computations, and data at the

close proximity of data sources in IoT, i.e., sensing devices and systems (Mao et al., 2017;

Chiang & Zhang, 2016; Hu, Patel, Sabella, Sprecher, & Young, 2015; Garcia Lopez et al.,

2015). Edge computing benefits by enabling local intelligence and distributed data processing

at the edge of the Internet, hence it reduces backhaul traffic. Since the cost of computing on

the edge is reducing and energy efficiency is increasing, data mining on the edge is a feasible

choice. At the same time, data stream is massively evolving in terms of volume and velocity,

and it contains great value for citizens and organisations.

Data mining applications in IoT devices and systems could be fully deployed on the edge,

but they always require additional support from large-scale cloud infrastructures. The edge

computing network is based on multiple layers including edge devices (i.e., sensors, data gen-

erators, and sensing systems), edge nodes (i.e., smart phones, smart vehicles, or any other

devices or systems having enough computational capabilities to support data processing re-

quirements of edge devices), edge gateway (which provides interface between edge devices and

backend network) (Chiang & Zhang, 2016), and edge computing servers that are based on

micro data centres, cloudlets, edge servers, and RAN servers. Edge computing systems also

encompass SCADA systems, cyber physical systems, software defined networking, network

function virtualisation, and robotic technologies. Edge computing systems enable massively

distributed, resilient, and scalable IoT systems for low latency real-time distributed data

mining systems. In addition, these systems provide access to spatio-temporal data streams,

local and geographically distributed intelligence, and distributed security and privacy con-

trols of data and systems (Montero et al., 2015). Edge computing systems are facilitated

by D2D Communication at the edge, location-awareness, proximal computing, and context-

aware networking (Amento et al., 2016).

Despite immense benefits and high utility, several challenges must be addressed before

full adoption of edge computing technologies. New standards, benchmarks, and market-

places are needed considering the massive heterogeneity in terms of data, devices, com-

munication systems and protocols, computing technologies, and business and application
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models (Dastjerdi, Gupta, Calheiros, Ghosh, & Buyya, 2016; Varghese, Wang, Barbhuiya,

Kilpatrick, & Nikolopoulos, 2016; Garćıa, Fernández, Ruiz-Cortes, Dustdar, & Toro, 2017).

In addition, new frameworks, programming models, and languages are needed (Varghese

et al., 2016). The edge-first approach in edge computing systems require lightweight data

mining libraries, APIs, assemblies, and algorithms (Varghese et al., 2016). Considering the

different features of IoT devices, new micro operating systems and data mining specific

micro-services could be adopted. Also, containerisation and virtualisation technologies can

enable fast data processing across the edge networks (Varghese et al., 2016; Farahmandpour,

Versteeg, Han, & Kameswaran, 2017).

Mobility is the primary characteristic of most of IoT devices, however, inconsistent inter-

mittent Internet connectivity and low bandwidth can easily lead towards application failures

which may degrade the quality of service and quality of experience (Liang, 2017). Therefore,

data management and data governance strategies are needed in order to ensure seamless exe-

cution of data mining applications in edge computing systems (Rehman, Sun, Wah, & Khan,

2016). In addition, the continuous data transfer in cloud servers increases the cost of data

communication, hence application processing within edge computing systems can decrease

this cost. Efficient resource management across edge computing systems and backend cloud

is required in order to maximise the utilisation of IoT systems (L. Wang, Jiao, Kliazovich,

& Bouvry, 2016). Data mining methods can help in monitoring, detection, and predict-

ing resource-intensive operations in IoT applications in order to develop efficient resource

management schemes. IoT devices has bounded computing, networking, and battery power

resources, therefore, it is quite challenging to orchestrate general purpose computing services

on the edge (Rehman, Sun, Wah, & Khan, 2016). Data mining applications are implemented

in the form of complete data pipeline that converts raw data streams into knowledge pat-

terns. The computational complexities and resource consumption of each data conversion

operation vary among different applications, therefore, developing application partitioning

and computation offloading strategies in edge computing systems becomes very hard (Orsini,

Bade, & Lamersdorf, 2015; Rehman, Sun, Wah, & Khan, 2016; Rehman, Sun, Wah, Iqbal,

& Jayaraman, 2016; Samie et al., 2016).

The continuous data transfer in edge servers can quickly overload the MEC systems,
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Figure 4: Categorisation of Data Mining Techniques for IoT

which can significantly impact the quality of experience. Although researchers have pro-

posed different recovery schemes for overloaded MEC servers (Satria, Park, & Jo, 2017), the

schemes work by offloading the workloads to nearest MEC servers. However, efficient and

intelligent recovery schemes are needed in order to execute computation-intensive processes

(such as virtual reality and computer vision applications) in MEC servers. Alternately,

proactive service replications help in handling overloaded servers but the replicated services

increase the resource consumption and bandwidth utilisation across edge computing system.

Having discussed the major issues and solutions for realising IoT applications including

issue pertaining to privacy-preserving, networking and resource constraints at the edge, the

following section discusses data mining methods and systems suited for IoT applications.

Data Mining Methods and Systems in IoT

Methods

Data mining techniques used in IoT applications can be broadly categorised according to

their execution platform into (1) onboard and (2) cloud-based. They can also be categorised

according to the mode of operation to (1) batch and (2) streaming. Figure 4 shows these two

classifications of the adopted data mining techniques in IoT. In the following, we provide a

discussion of each category, and the suitability to various IoT applications.

Onboard data mining methods have the capability to run in resource-constrained envi-

ronments. Onboard data mining algorithms have been developed for wireless sensor networks

and small computational devices over the last two decades (Gama & Gaber, 2007). A number
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of motives make such methods particularly suitable for IoT applications including addressing

privacy issues and networking constraints discussed in the previous section. Early work in

the area of onboard data mining can be traced back to lightweight data mining methods

developed using granularity-based approach (M. Gaber, Krishnaswamy, & Zaslavsky, 2005;

M. M. Gaber & Yu, 2006; M. Gaber, 2009; M. M. Gaber & Philip, 2006). It is worth noting

that the onboard methods may run out of the ‘thing(s)’ at a computational facility closer

to the data source, forming what is usually referred to as fog computing (S. Yi, Li, & Li,

2015). Onboard data mining enables what has been termed as smart objects in (Kortuem,

Kawsar, Sundramoorthy, & Fitton, 2010) to be realised. Smart objects are things that are

not only able to sense the environment they operate in, but also to interpret events and react

to them.

Cloud-based data mining methods are designed for scalability through parallelisation

and distribution of processes and data sets for large volumes of data. These methods are

best fit for IoT applications that run at a national level, or more generally over a large

geographical area. When data are collected and possibly aggregated from various ‘things’,

they can be used for longer term data mining tasks. Examples of such IoT applications can

be weather forecasting, environmental monitoring, and large scale healthcare applications.

A number of platforms have been developed by giant vendors including Google3, IBM4 and

Microsoft5. For example, the authors in (Loai, Mehmood, Benkhlifa, & Song, 2016) discuss

the use of data mining methods in the cloud to enable efficient healthcare services, utilising

advances in networking capabilities. The use of cloudlet as a hardware infrastructure between

the cloud and mobile devices used by patients is proposed to reduce latency.

The aforementioned two categories organise the data mining methods applied to IoT

applications according to the executing location. However, regardless to where the data

mining process is done, there are two modes of operating these methods, namely, batch and

streaming.

Batch data mining methods operate on stored data, as the methods are inherently

iterative. These methods suit IoT applications that operate on historical data at different

3https://cloud.google.com/iot-core/
4https://www.ibm.com/internet-of-things
5https://azure.microsoft.com/en-gb/suites/iot-suite/
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levels of granularity. Thus, such methods are naturally cloud-based. However, in applica-

tions with sufficient storage capacity at the edge, batch methods are still valid solutions,

including healthcare applications for home monitoring of an elderly or a patient with a

chronic condition. Vital signs monitored continuously can be stored locally, and suitable

data mining algorithms can be applied accordingly. A large number of methods lie under

this category, including classification and regression methods for predictive data mining,

and clustering and link/affinity analysis methods for descriptive data mining. More recently,

deep learning methods have been used to mine IoT sourced data (e.g., (Kim & Kim, 2017)

and (Lane, Bhattacharya, Georgiev, Forlivesi, & Kawsar, 2016)). The authors in (Alam,

Mehmood, Katib, & Albeshri, 2016) analysed the use of 8 data mining techniques on IoT

data sets. These techniques include Support Vector Machine, K-Nearest Neighbours, Linear

Discriminant Analysis, Naive Bayes, C4.5 decision trees, C5.0 decision trees, Artificial Neu-

ral Networks, and Deep Neural Networks. The experimental work in this paper concluded

that decision trees are favourable in terms of accuracy and computational overhead.

Streaming data mining methods are applied on live data, and best suit IoT applica-

tions when the data velocity is high, and there is a real-time necessitation in acting to the

modelling process. Streaming methods can be used in the cloud, or more typically at the

edge. A large number of streaming data mining methods have been proposed over the last

couple of decades. In (M. M. Gaber, 2012), these methods are categorised into: (1) two-phase

methods, where an online phase of processing is used to feed in a batch phase; (2) Hoeffding

bound-based methods, where a statistical measure is used to determine a sample size used

in a variety of ways according to the adopted technique; (3) symbolic approximation-based

methods, where a times series is converted to a compact symbolic representation; and (4)

granularity-based techniques, where the techniques adapt to the availability of computational

resources.

Edge Data Mining Systems for IoTs

Edge computing is an alternate solution for data mining targeted for IoT applications

(Salman, Elhajj, Kayssi, & Chehab, 2015; Satyanarayanan et al., 2015). This section will

discuss various systems that adopted edge computing.

33



Data Aggregation on the Edge-servers

Researchers in (Rahmani et al., 2017) developed smart edge servers for full deployment

of healthcare applications. The proposed system (named as UT-GATE) enables multiple

services for local data storage, embedded data mining, and real-time data processing. To

this end, an intermediary layer between edge nodes (i.e., sensors and sensing systems) and

centralised cloud servers was designed to cope with mobility, security, energy-efficiency, re-

liability, and scalability related issues. Local data processing in UT-GATE is performed

using multiple application components for data filtering, data compression, data fusion, and

data analysis. In addition, the UT-GATE provides components to control data rate between

sensors and edge servers and local data stores for intermediate storage.

Data Analytics process in U-GATE is executed by collecting raw data streams from

different biomedical sensors and other relevant IoT devices. U-GATE performs data filtering

and fusion operations followed by execution of data mining and machine learning processes

for data analysis. Considering the outcomes of data analysis, U-GATE notifies users or

instantiates different actuators. Further, the system adjusts the data streams for adaptation

purposes and compresses the knowledge patterns for local storage in edge servers. Finally,

the obtained data patterns are securely and opportunistically transferred in the cloud servers.

Trading Timeliness and Accuracy in Geo-distributed Streaming Analytics

Despite massively distributed and availability of onboard computational resources, efficient

bandwidth utilisation is the primary concern in edge analytics systems (Rehman, Batool,

Liew, Teh, et al., 2017). Therefore, data mining algorithms on the edge need to trade-off

accuracy and timeliness in order to be efficiently executed in mobile-edge environments.

Researchers in (Heintz, Chandra, & Sitaraman, 2016) focused on windowed-grouped aggre-

gation method to study the tradeoff between timeliness and accuracy, and proposed a set

of offline optimal algorithms to minimize latency in the case of acceptable accuracies and

vice versa. Additionally, the real implementation of online algorithms was made in order to

find the optimal points on accuracy-timeliness curve. The research outcomes reveal that the

proposed online algorithms outperformed offline optimal algorithms on several datasets.
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Researchers in (Harth, Anagnostopoulos, & Pezaros, 2017) proposed a lightweight and

distributed prediction method for efficient data aggregation on the edge. The scheme also

enables efficient predictive modelling within the distributed edge computing system. The

scheme works by monitoring the changes in data streams and predicts if the collected data

stream should be transferred to edge servers or not. In addition, it reconstructs the remaining

data stream in order to minimise the bandwidth communication. Experimental results reveal

that the proposed prediction schemes reduce the bandwidth utilisation and error rates in

massively distributed edge networks. The authors proposed that communication efficiency

in edge networks could be further increased using intelligent delay-tolerant mechanisms in

edge computing networks.

Edge Data Mining Services for IoTs

Data aggregation in centralised cloud increases privacy concerns and reduce responsiveness

of IoT applications. Researchers in (Xu et al., 2017; Rehman et al., 2018) proposed scalable

approaches for deploying real-time services for IoT analytics. Moreover, a rule-based unified

analytic model was proposed in order to improve responsiveness of IoT applications. The

proposed model was implemented as an extension of IBM Watson and released as part of

IBM Bluemix. The proposed model was tested with an industrial use case and the results

show that the proposed engine works well with edge servers, however, it should be further

improved to be deployed in highly resource-constrained devices and systems.

Large scale enterprises collect high-speed and continuous data streams from geographi-

cally distributed data sources across multiple continents. Researchers proposed WANalytics

which is a highly distributed analytic system and pushes data to edge servers (Vulimiri,

Curino, Godfrey, Karanasos, & Varghese, 2015). Additionally, the system enables optimised

workflow execution and opportunistically replicates data whenever needed at the edge. The

experimental evaluation was performed using Microsoft workloads and the results reveal that

WANalytics reduces bandwidth consumption around 257 times.
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Data Reduction on the Edge

Edge servers can help in reducing data streams from geographically dispersed data sources (Yang,

2017; Rehman, Jayaraman, Medhat Gaber, et al., 2017). Researchers in (Dubey et al., 2015)

proposed an embedded computation server to run data mining and data analytics operations

on raw data streams. The resultant knowledge patterns are stored at edge servers and unique

patterns are transmitted to the cloud. The proposed model was tested with tele-health big

data use-case and the results show the significant data reduction and improvement in overall

system efficiency. Researchers in (Gupta, Vahid Dastjerdi, Ghosh, & Buyya, 2017) proposed

a simulator, named iFogSim, for fog cloud computing environment. iFogSim supports mul-

tiple modules for traditional data processing in cloud and reduces data using edge devices.

The data reduction on the edge is achieved by simulating data mining and machine learning

algorithms inside mobile devices. The experimental evaluation exhibits significant reduction

in data streams and latency on the edge of the network. Considering the mobility and limited

computational resources, the partial execution of dataflow in mobile IoT devices is an alter-

nate approach for data reduction on the edge. Researchers in (Alturki, Reiff-Marganiec, &

Perera, 2017; Rehman, Sun, Wah, Iqbal, & Jayaraman, 2016) created transient datasets by

performing preprocessing, feature extraction, and data fusion operations on the edge while

executing data mining and machine learning operations at cloud data centers. The research

reveals about 98% data reduction on the edge of the network.

Distributed Analytics in Edge Cloud Environments

Event analytics is one of the core functionalities in IoT based data mining systems. Re-

searchers in (Ghosh & Simmhan, 2016) mapped events on direct acyclic graph (DAG)

whereby the data streams were placed on the nodes and the queries were represented on

the vertices. In order to perform event analytics across edge and cloud computing envi-

ronments, the DAG optimisation was performed using optimal brute force algorithms and

Genetic Algorithm meta-heuristics. The proposed scheme was evaluated using 17 use cases

and applied multiple queries in order to find the efficiency and effectiveness. The proposed

scheme returns optimal or near-optimal results as compared to a traditional brute force ap-
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proach. The experiments were performed without considering virtual machine migrations

and device and data level heterogeneities. Therefore, this experimentation may not be gen-

eralised for all types of IoT systems, especially in the case, when IoT devices are deployed

in large scale mobile environments.

Latency-reduction on the Edge Servers

The execution of computation-intensive applications in traditional cloud environments and

even in the highly-dense edge servers increases the latency. Researchers in (S. Yi et al., 2017)

deployed video analytics applications on the edge servers and applied multiple optimisation

methods to offload the workloads in different edge servers. The optimisation methods help

in prioritising the workloads at edge servers in order to minimise the response time. In

addition, a latency-aware inter-edge collaboration scheme was used that would potentially

reduce the latency across edge and cloud computing environments.

Final Remarks

Data mining methods and systems are set to play an important role in realising the full

potential of IoT systems. This advanced review paper has been an application driven that

highlighted main applications of IoT, challenges facing the area, and data mining methods

and systems addressing these challenges. We can identify three advancements that are likely

to shape the future of data mining in IoT as follows.

1. Increasing computational power at the edge: as cloud is still the main source

of computation in the majority of system architectures, the ever increasing power of

small computational devices such as smart phones is set to balance out the reliance

on cloud computing and edge computing in the foreseen future. Consequently, edge

analytics will flourish, and a new breed of distributed data stream mining algorithms

will be developed to serve the variety of IoT applications.

2. The increase in communication capabilities with 5G technologies: this would

enable new system architectures that bring both cloud and edge computing working
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together rather seamlessly. This, in turn, will enable data and models to move at

extremely high speeds between cloud and edge devices.

3. Improvement in battery technologies: the development of long lasting batteries of

IoT devices along with lightweight methods will result in reaching an equilibrium where

nowadays power intense computation becomes much more energy efficient processes.

This will consequently enhance the quality of experience in using IoT applications.
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