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Abstract: In this work, a Hardware-In-the-Loop (HIL) framework is introduced for the implemen-
tation and the assessment of predictive control approaches in smart buildings. The framework
combines recent Internet of Things (IoT) and big data platforms together with machine-learning
algorithms and MATLAB-based Model Predictive Control (MPC) programs in order to enable HIL
simulations. As a case study, the MPC algorithm was deployed for control of a standalone ventilation
system (VS). The objective is to maintain the indoor Carbon Dioxide (CO2) concentration at the
standard comfort range while enhancing energy efficiency in the building. The proposed framework
has been tested and deployed in a real-case scenario of the EEBLab test site. The MPC controller
has been implemented on MATLAB/Simulink and deployed in a Raspberry Pi (RPi) hardware.
Contextual data are collected using the deployed IoT/big data platform and injected into the MPC
and LSTM machine learning models. Occupants’ numbers were first forecasted and then sent to the
MPC to predict the optimal ventilation flow rates. The performance of the MPC control over the HIL
framework has been assessed and compared to an ON/OFF strategy. Results show the usefulness of
the proposed approach and its effectiveness in reducing energy consumption by approximately 16%,
while maintaining good indoor air quality.

Keywords: Internet of Things; model predictive control; hardware in the loop; machine learning;
energy efficiency; smart buildings

1. Introduction

Heating, ventilation, and air-conditioning (HVAC) systems are considered among
the main building’s energy consumers. They account for approximately 50% of the global
energy usage in buildings and 36% of all energy-related CO2 emissions worldwide [1,2].
Therefore, HVAC systems need to be efficiently designed and controlled, in reference to
international standards, to ensure optimal trade-off between the occupants’ comfort and
energy efficiency in buildings [3,4]. On the other hand, to assess the energy performance in
the design of HVAC management services in buildings, four main comfort metrics need to
be considered, which are the visual comfort, acoustic comfort, thermal comfort, and the
Indoor Air Quality (IAQ) [5]. This latter has been identified as one of the most important
metrics influencing the indoor environmental comfort of the occupants as well as one of
the main sources of energy consumption in buildings [4,6], which depends mainly on
standalone ventilation management systems.

On the other hand, the indoor concentration of CO2 is considered among the most
important parameters for developing efficient control strategies of VSs [7]. The aim is to
minimize their electrical energy consumption, while providing good IAQ to the occupants.
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The objective is to keep the CO2 concentrations within the comfort range by providing
the required fresh air from outside to the inside of the building using optimal ventilation
flow rates. Basically, the majority of conventional building’s VSs are operated by simple
rules-based controllers (e.g., intuitive ON/OFF controllers or simple PID controllers). Most
of them are based on predefined operating parameters, which use normal ventilation
rates, to provide the amount of outside air demanded by the building. However, their
control mechanism is still inefficient regarding the performance decrease in frequent system
context changes as well as dealing with the time-delay [8]. Typically, the ventilators
acts automatically on behalf of many buildings’ context-awareness parameters, such as
the indoor temperature (based on the envelope characteristics), control modes of the
VSs, and occupants’ presence [9]. This can affect the energy operation flexibility, indoor
environmental comfort, and occupants’ productivity due to uncontrollable ventilation rates,
resulting in wasted energy [10].

Recent studies highlighted that weather conditions and occupants’ behavior are the
most important information that can help to improve a building’s services (e.g., VSs) [7].
Occupancy detection systems in buildings are mostly involved in extracting meaningful
occupancy information, which could be used for setting up different control strategies.
Different occupancy parameters can be collected from the building’s environment including
occupants’ presence, number, activity, identity, location, and tracks. All of these metrics
can be integrated in Building Energy Management Systems (BEMS) as a primary input
for controlling active/passive systems, such as HVAC, standalone ventilation, and light-
ing [11–14]. Most recent research work investigated the development of intelligent methods
by integrating machine learning, deep learning, and reinforcement learning [15,16]. In
addition, advanced techniques from automation, system modeling and optimization, Inter-
net of Things (IoT) for real-time systems monitoring, data processing and context-aware
computing techniques could be combined for the development of BEMS [17].

As is commonly known, new innovative designs of equipment and system compo-
nents need to be tested while going through extensive essays [18]. The aim is to validate
and properly ensure their reliability before deploying them in real-sitting scenarios. The
tests can either be run in a laboratory (small scale), using only pure simulations, or by
combining both ways, resulting in HIL simulations [19]. Unlike conventional simulations,
concrete testing in laboratories may be seen as the most accurate and is a sure indicator
of performance. However, it has some limitations. First, it can generate high costs and
is subject to many constraints. For instance, the number of tests that can be run over a
period of time and under the same conditions are very limited. Hence, comparing different
control approaches or different products providing the same function becomes challenging.
On the other hand, numerical simulation is another used method among engineers and
researchers to properly evaluate the performances of control methods of many applications,
which can be deployed in buildings or other sectors. Numerical models could capture the
dynamic of the equipment and the building while considering real weather conditions (if
available), the combined internal loads (gains, lighting, occupancy, etc.), and other stimuli.
Furthermore, once the numerical model is mature enough, it can be used repetitively to
evaluate equipment’s control at lower costs. For this, the model should prove its fidelity
and accuracy in mimicking the real system’s behavior and the related building. As can be
noticed, a variety of validated models and toolkits are available for a variety of domains
using different simulation tools [20]. It is worth mentioning that, during the recent decades,
co-simulation capabilities expanded the modeling scope further to other domain systems
at a very precise resolution [21]. However, some problems cannot be tackled easily through
simulations, especially if numerical models cannot capture all necessary details [22].

In parallel, recent advances in IoT and big data technologies allow for real time data
monitoring and processing, while enabling predictive analytics and advanced systems’
control. In fact, IoT is considered the most important emerging technology, allowing
for the development of advanced and smart connected solutions varying from eHealth,
industry and transportation to energy management and smart control [23–31]. Any system
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or device having the capability to connect to a network and communicate over the Internet
is considered a thing in an IoT infrastructure [32]. This latter provides required tools to
manage, control, monitor, visualize and process the things’ data (e.g., embedded devices,
smartphones, smart actuator, sensors). In parallel to this progress, the integration of smart
energy grids with IoT and big data techniques has recently emerged into what is named the
Internet of Energy or Energy Internet [19,20]. In fact, with the emergence of smart power
meters and smart electrical appliances, it is now possible for users to closely monitor energy
consumption while having the ability to plan and manage their consumption. The IoT
infrastructure makes it possible to capture and analyze sensor data in real time, allowing
consumers to interact with data and decision making [33].

The main aim behind the framework proposed in this paper is to fill the gap between
simulations and real case experimental validation of control approaches and mechanisms.
The framework could be used not only to control buildings systems but also for other use
cases in which the experimental validation of a developed control model is needed. A
flexible architecture of the platform has been introduced and its components are detailed
to provide an easy to implement solution for similar applications. The work presented
in this paper focuses on the integration of IoT/big data techniques with simulation tools
in order to enable HILS. The aim is to join both field testing and numerical modeling by
combining hardware and software to form HILS frameworks. These latter make it easy
to assess multiple tests under the same conditions and, eventually, to accommodate for
dangerous operations. As a case study, to show the usefulness of the HILS framework, a
Model Predictive Control approach (MPC) was deployed on standalone VS. The framework
integrates recent IoT and big data platforms together with machine-learning algorithms
and MATLAB-based MPC model.

In summary, the objective of the work is twofold, first to show the usefulness of the
proposed IoT based HIL framework together with the integrated machine learning model
and smart control technique of MPC, and second, to study the performance of the MPC
model combined with forecasted occupancy number and real-time test site’s contextual
data. The goal of the experimentation is to maintain the indoor CO2 concentration at the
standard comfort range while enhancing the energy efficiency. Setting up a field operational
testing predictive control techniques is a very challenging and time consuming task. This
work could leverage the gap between simulations and real application of predictive control
in smart buildings.

The remainder of this paper is structured as follows. Section 2 presents recent
work related to advanced strategies for smart control and IoT-HIL based approaches.
In Sections 3 and 4, the description of the used materials as well as the architectures of the
proposed control strategies and the IoT-HIL platform will be presented. In Section 5, results
are presented to demonstrate the accuracy of the proposed models as well as the developed
framework. Conclusions and perspectives are presented in Section 6.

2. Related Work

Recent research work showed that reducing energy consumption in buildings, es-
pecially those related to HVAC systems, can be attained through the usage of advanced
control strategies. In this regard, two main approaches of rule-based control algorithms
have recently emerged in the field of advanced HVAC control: Learning based approaches
(e.g., fuzzy logic, Artificial Neural Networks (ANNs), fuzzy and adaptive fuzzy neural
networks and genetic algorithms) and MPC [34]. Among these control algorithms, MPC
has been introduced as one of the most powerful control techniques used to manage com-
plex processes, such as in HVAC systems [35] studies. This control technique can handle
nonlinear processes and their dynamics according to different objectives functions, such as
those related to indoor air quality and thermal comfort improvement [36,37].

On the other hand, one of the most efficient ways of conducting field operational
testing appears to be the HIL simulations seeing its various advantages (low cost, accurate
results, etc.) [38]. This new concept is becoming widely used in developing and testing
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complex real-time embedded systems [39]. This is mainly done by adding, through mathe-
matical representations (also referred to as “plant simulation”), the complexity of the plant
to be controlled into the test bed [40]. To perform HIL simulations, electrical emulation of
sensors and actuators is used to interface between the “plant simulation” and the “system
under test”. In fact, the plant simulation controls the value of the emulated sensor, which is
then read by the embedded system under test. In HIL simulations for system synthesis,
major physical equipment and their associated controllers are integrated with simulated
devices or building spaces to investigate behaviors under realistic dynamic conditions.

In the last decade, researchers focused their interest on the HIL approach and used
it not only in automotive and spatial systems but also in buildings’ equipment testing
and control. For instance, Missaoui et al. [41] proposed new BEMS strategies to support
demand side management and to validate them using a Power-Hardware-in-the Loop
(PHIL) test bench. However, the proposed solution can be used to validate control algo-
rithms in a reasonable time. Schneider et al. in [42] focused their work on investigating
the interaction of a real circulating pump with the hydronic network of a virtual building
energy and control system. The presented model, using Modelica for building simulation,
is used to bridge the gap between the design and commissioning stage of a control algo-
rithm for HVAC components. The used model is a single-family dwelling with limited
complexity. The comparison between simulation results and measured data proved the
accuracy of the model with a mean relative error less than 4%. De la Cruz et al. in [43]
presented, in their paper, the implementation of an HIL real time simulation test bunch for
Air-to-Water-Heat-Pumps (AWHP). This will allow HVAC manufacturers to optimize the
control of their systems and to improve their efficiency. A real AWHP was tested under real
climate conditions, as for the thermal loads, they were calculated through the connection of
the AWHP and a virtual building, simulated using Modelica software, via HIL real time
simulation. Seifried et al. in [44] proposed a new model, based on the interconnection of a
prominent building automation protocol, namely BACnet, and the PowerDEVS simulator
to facilitate HIL testability of new and existing building automation system components.
Huang et al. in [22] presented an agent-based framework for HIL simulations, which could
either be used for investigating the controller performance or HIL for system synthesis. In
other words, it is possible to involve controllers as well as other major equipment in the
test to ensure that their dynamic behavior is being correctly captured. Zahari et al. [45]
developed a control algorithm to bring the HIBORO helicopter prototype into equilibrium.
The developed algorithm is a combination of the MPC and the black box nonlinear autore-
gressive model. Using the Xpc Target rapid prototype under Simulink, HIL simulations
have been run for different set points to evaluate the performances of the proposed model.
This latter contains inertial measurement unit sensor software, the MPC, and C/T blocks for
capturing and generating Pulse Width Modulation (PWM) signals. The controller proved
its efficiency in terms of stabilizing the prototype under all disturbances.

Samano-Ortega et al. [46] developed a platform for the validation of photovoltaics
(PVs) system controllers using IoT and HIL concept. The platform englobes five main parts:
(i) a control emulator based on HIL, producing the behavior of PVs’ arrays, a converter, and
Alternating-Current (AC) loads, (ii) Cloud database, (iii) smart sensors for load monitoring,
(iv) residential PVs (RPVs) connected to the Internet, and (v) a mobile application for
tracking and monitoring. The main principle is that measured voltage and current of the
AC loads (using smart sensors) and the production of RPVs are downloaded to the HIL,
which reproduces the behavior of the PVs and loads in real-time. The platform proved
its efficiency in emulating the behavior of the installed PVs with a mean relative error
of 0.42% and the AC load with a mean absolute error of 10 mA. Conti et al. [47] showed
the relevance of the dynamic coupling between an air-source heat pump and a building
apartment, located in Pisa (Italy), in winter in terms of energy performances under three
different operational modes. The adopted HIL extensive experimental campaign proved its
potential in properly estimating the energy consumption as well as developing advanced
operational strategies. Frison et al. [48] developed a simple low cost MPC controller, which
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has been evaluated using HIL experiments, for assessing, under realistic conditions, the
energy performances of a heat pump system.

Furthermore, due to the large availability of smart low-cost embedded devices (e.g., Ar-
duinos, Raspberry pi, NVidia Nano, actuators, and distributed sensors), and data streaming
processing tools, such as Storm/SAMOA and Kaa applications [49], and generally, the
advances of information and communication of IoT technologies [50], the implementa-
tion of optimal control strategies for improving the energy efficiency as well as indoor
air quality and thermal comfort is becoming immediate and more viable [51]. Their ap-
plication has been widely studied for the development and deployment of intelligent
context-aware services and applications, such as occupancy prediction [52], healthcare [31],
transportation and logistics [53], smart grids [54,55], and smart homes [56]. For example,
Huchuk et al. [16] evaluated numerous classification machine learning algorithms and
models for predicting occupants’ presence in smart buildings using thermal data. Further,
Zhang et al. [57] presented a literature review about the integration of machine learning
for predicting occupancy patterns to improve indoor air quality, while optimizing energy
use. In addition, online machine learning techniques (e.g., vertical Hoeffding tree and
self-adjusting memory for KNN) can be included for predicting occupants’ number and
presence using environmental data, such as CO2 temperature and humidity [58,59]. IoT
and HIL concepts could provide an integrated solution to cover the important aspects
of BEMS by enabling the collection, monitoring, and processing of stream data together
with machine-learning techniques. These latter are, for instance, used to compute accurate
forecasts, which are required for the MPC to compute accurate predictions, i.e., forecast
optimal actions for real-time control of a building’s services.

In this work, a case study that focuses on a standalone VS, is worked out to assess the
usefulness and effectiveness of the proposed HIL framework. In fact, data that has been
collected from a set of sensors, such as temperature, motion, and CO2 concentration, is
used to predict occupancy patterns [30]. These latter are then fed to the MPC to control
indoor CO2 dynamics by forecasting the optimal ventilation rates.

3. Materials and Methods

In this section, an HIL experiment of a closed-loop VS driven by the MPC is performed.
The MPC ventilation controller model, which has been previously designed, developed,
and validated using simulations [28,29], has been physically deployed to the Raspberry Pi
(RPi) located at the EEBLab test site. The RPi-in-the-loop experiment has been run under
realistic conditions to dynamically actuate the fans of the VS and to assess the controller’s
performance in terms of energy efficiency and indoor CO2 improvement. In fact, the
deployed VS is made of two standalone controlled fans, which are respectively responsible
for bringing the fresh outdoor air to the indoor and draining the CO2 out of the building.
More precisely, these two fans are installed in both side walls and operate instantaneously
under the same control signals. The VS can provide a maximum airflow rate of 440 m3/h,
which is equivalent to a rated speed of 3800 rpm and is powered by a photovoltaic solar
system. The occupancy information was used as a disturbance as well as a forecast input
for the MPC.

3.1. Description of the Case Study Building: EEBLab

The considered specimen, named Energy Efficient Building Laboratory (EEBLab), is a
rectangular cavity, which is part of a set of two identical prefabricated structures (Figure 1),
located at the International University of Rabat. Each test bed is 12 m2 of occupied surface
and 30 m3 of volume. Additionally, each prefabricated has one single glazed window on
its south façade. The laboratory has been made essentially for implementing and testing
different scenarios related to eHealth, Energy efficiency, ICT, and renewable energies
integration and control. The main aim is to investigate the integration of recent IoT, big
Data technologies, and advance real-time machine learning algorithms for developing
context-aware services and applications.
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Figure 1. (a) Energy Efficient Building Lab (EEBLab) test site; (b) Interior side wall of EEBLab with
ventilation fan and a set of sensors and other equipment.

3.2. The HOLSYS Internet of Things Platform Setup

The HOLSYS platform has been in development and passed from many stages namely,
the use of Kaa project IoT platform and the upgrade to the ThingsBoard open source
IoT platform. It allows configuring, supervising, and acquiring connected sensing and
actuating nodes. Its aim is to allow the development and deployment of IoT based scenarios
related to smart energy efficient buildings as well as eHealth and Smart Mobility. The
HOLSYS platform follows the general architecture presented in Figure 2. The four layers
define the different general sections/aspects of an IoT platform, namely, Sensing/actuating,
Data Acquisition, Processing, and Visualization.

Figure 2. General architecture of an Internet of Things platform.

3.2.1. Sensing and Actuation Layer

Sensors and actuators represent all embedded sensors and actuators together with
control units considered as one device and presented to the platform as an IoT node. This
latter is capable of receiving and sending stream data while ensuring the execution of all
control strategies sent by the platform. The communication between deployed nodes and
the HOLSYS platform may pass through wired or wireless protocols. In this paper, only
MQTT, REQUEST and REST have been used as the EEBLab is accessible in the campus
network either wirelessly or through an ethernet connection.
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The deployed IoT devices (nodes) are built using low-cost microcontrollers (e.g.,
NodeMCU, Arduino, STM32S) and presented to the platform using Raspberry Pi 3 and 4 B+
(RPi). A set of nodes can be connected in serial mode (USB), Serial Peripheral Interface (SPI),
Inter-Integrated Circuit (I2C) or Bluetooth to the RPi gateway where NodeRed controls the
inputs and the outputs of the set. NodeRed is a flow-based platform, developed originally
by IBM, for facilitating the process of wiring hardware devices together with Application
Programming Interfaces (APIs) and online services as part of the Internet of Things. A
NodeRed flow is a set of connected logical NodeRed nodes linked together to form a
processing logic with inputs and outputs. The resulting logic flow ensures gathering input
data from wired or wireless IoT nodes, pre-processing and aggregating them to finally
output structured data into local or remote storage systems.

Figure 3 presents the deployed sensors and actuators used in this study. (a) represents
the Indoor air quality node connected to an RPi via a USB cable. It gathers the indoor CO2
concentration in Part Per Million (PPM) using an MH-Z14A sensor with an accuracy of
±50 PPM +3% reading value; (b) shows the control node of both inlet and outlet fans used
to ventilate the EEBLab. The 12 V and 440 m3/h fans are controlled with PWM generated
from an Arduino nano. Speed can be controlled from 0, for OFF mode, to 255 PWM for
max speed (ON mode). However, a relay has been added to completely turn OFF the fans
if 0 PWM has been triggered to save energy; (c) presents the deployed RPi based weather
station with wind speed and direction, solar irradiance, ambient temperature and relative
humidity sensors for outdoor environmental data. Used sensors are, respectively, an analog
anemometer and magnetic direction sensors, SR20 pyranometer and DHT22 together with
DS18B20; (d) depicts gate door motion sensors to determine the true occupants’ number
inside the EEBLab. They are based on infrared emitters and receivers, which are aligned
together at the door entrance, to detect the exact occupants’ number.

Figure 3. The deployed IoT devices; (a) Indoor CO2, temperature and humidity node; (b) Inlet and
outlet ventilator speed control node; (c) Weather station node for outdoor air quality; (d) Occupants’
number node.

3.2.2. Data Acquisition Layer

Data collected at the first layer (Sensing and Actuation), using the deployed sensors,
are sent via HTTP requests and MQTT by the RPi gateways to the HOLSYS platform, which
is deployed in the remote server, as depicted in Figure 4. The HOLSYS platform is based on
the open source Thingsboard IoT platform in its community edition. Services and packages
together with all connectors enabling the acquisition of all the deployed IoT devices are
installed and configured in the cluster composed of one performant master and three slaves.
They are HP computers with Intel core i3 and i5 with 4 Gbytes of RAM and 500 Gbytes of
storage each.
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Figure 4. Data transfer from IoT nodes to the HOLSYS platform via RPi gateways over MQTT
and HTTP.

The HOLSYS acquisition layer is a set of RPis representing the deployed nodes to the
platform. A RPi is a tiny credit-card sized computer using the Raspbian operating system, a
free version based on Debian and optimized for its limited power. The three gateways that
have been deployed are a 4 Gbyte RAM RPi 4 B+ and two 1 Gbyte RAM RPi 3 B+. NodeRed
is used in these RPis to acquire data from the serial connected nodes to pre-process and
store them locally in files for a backup. Each node is represented to the platform by a
unique token and identifier, which is used to secure the communication and to identify
the streamed data. HTTP requests have been used as a backup transfer protocol in case
the MQTT broker becomes unfunctional. However, the HTTP protocol is not suitable for
IoT architectures as it is more energy consuming and has a bigger data packet size. On
the other hand, MQTT has been designed to provide a lightweight messaging technique
enabling small packet size for faster transfer. The MQTT is an IoT data transfer protocol
having publish/subscribe architecture. It is based on a broker to which all clients, either
subscribers, publishers, or both at the same time, should be connected to (see Figure 5).

Figure 5. MQTT stream data flow from/to sensor/actuator/controller.

The installed broker is the central communication point where data is exchanged
between clients based on a topic. This latter is a category in which a given client has
published data. From the other side, the subscriber will get the data from the given topic.

3.2.3. Data Processing Layer

The processing of data can be performed in real-time or batch manners in the HOLSYS
platform servers or by third-party applications deployed elsewhere. The local processing
can be a simple aggregation of each received tuple of data or a complex processing using
the rule-based engine. It is a customizable and configurable system for complex event
processing. It allows for filtering, enriching, and transforming incoming data and triggering
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various actions, for example, notifications or communication with external systems. In the
current study, a rule chain has been implemented to save received data to the HOLSYS
database (NoSQL Cassandra) after applying filters on them according to each data source
(e.g., Temperatures, Humidity and CO2 ranges; null values, missing data) and forward,
via MQTT and Kafka, the filtered data to external sources for other applications. This
latter plays a key role for integrating machine learning applications. For instance, the
occupancy forecast, an important input to the MPC algorithm, is performed as an external
application while using the filtered data coming from the platform. In fact, Apache Kafka, a
high-performance real-time data streaming technology capable of handling large amounts
of events, is used as a pipeline to transmit stream data between the platform and other
applications (e.g., machine learning algorithms). This part shall be detailed in the next
section. Furthermore, MQTT has been used to send data to the consumers in the MATLAB
MPC control as it is supported by default as a communication method implemented by
MATLAB. Figure 6 depicts the communication between the platform and the processing
layer. Kafka and MQTT are the main tools used to allow the processing layer to receive
data for occupancy forecasts and MPC control. For instance, the forecast model receives
the indoor CO2 concentration and the real occupancy number, respectively over MQTT
and Kafka, to forecast 10 steps ahead. Real-time forecasted values are fed as an input to the
MPC controller in order to predict the required control actions, which are sent back to the
HOLSYS platform for execution.

Figure 6. General architecture platform for controlling ventilation system based on occupancy forecast
and CO2 measurement.

3.2.4. Data Storage, Visualization, and Applications Layer

This layer presents all external services that can be connected to the platform by means
of supported data transfer protocols and technologies. Mainly, Kafka, MQTT, and HTTP
requests are used to allow external third-party applications to connect, produce data, and
consume available resources of the HOLSYS platform. In addition to the local NoSQL
Cassandra database, which is deployed by default for storing data at the platform level,
Mongodb is also used to store backup data for batch processing, serving other applications,
such as training the forecast model of occupancy. The main reason behind using Mongodb
is its architecture based on storing data as JSON format but with a special syntax called
BSON. Each set of data is stored as a document into a collection while its content can
be unstructured and different from other documents, resulting in the NoSQL principle,
which does not need a tabular and relational concept. Furthermore, the collected data
is broadcasted on MQTT using adequate topics for all other applications, mainly those
requiring shared resources, such as weather data. As for data visualization, Grafana tool is
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being integrated with Cassandra and the Mongodb database for real-time visualization of
data streams.

3.3. Data Measurement/Preparation for Occupancy Prediction

Occupancy information, as stated above, is one of the most important inputs to
context-driven control approaches for efficient control of building equipment. Several
studies show the effectiveness of integrating occupancy in MPC for HVAC, ventilation and
lighting systems control [60,61]. In order to collect accurate occupancy prediction, different
techniques can be used, including PIR sensors, cameras, RFID, Wi-Fi, Bluetooth-low-energy
(BLE), and environmental data (e.g., CO2, temperature, and humidity) [62–64].

In this work a data set containing almost 28,000 instances for one day from 8:30 until
19:00 has been used. Data are collected from EEBLab using the occupancy number node
and stored into a Mongodb data (see Figure 7). The occupancy profile varied between one
and seven occupants during the day.

Figure 7. Occupants’ numbers over the day in EEBLab.

Deep learning-based occupancy forecasting techniques have been investigated [65].
The first two recurrent neural network (RNN) based methods, long short-term memory
(LSTM) and gated recurrent unit (GRU), have been evaluated and compared in terms of
accuracy and root mean square error. These algorithms are classified as extensions of RNN
by integrating internal gates which help in deciding whether to keep or throw out the
past relevant information compared to traditional RNN. The idea is to evaluate the first
generated model and then decide which could be deployed in the EEBLab. Therefore,
in this study, LSTM model performs well and has been selected to be exploited in the
experiment, due to its effectiveness in terms of accuracy (LSTM 98.7%, GRU 97.5%) and
root mean square error (RMSE) (LTSM 3.34, GRU 3.73) parameters. In fact, Apache Kafka
has been used, in this case study, to consume the actual number of the occupancy, coming
from the HOLSYS platform, to forecast the next 10 steps ahead, serving as a real time input
for the MPC controller model.

3.4. MPC for Predective Control

The work presented in [29], presents the developed dynamic model for CO2-based
MPC of a building’s VS. The model, describing this system, is a state-space model, which
is based on the relationship between the input/output airflow rates and indoor CO2
concentrations. The MPC controller model was tuned to be deployed in a real case scenario,
considering the real context of the EEBLab, in particular, the building space and occupancy
number profile as well as the characteristics of the VS. Simulations have been conducted to
the following highlights during the tuning of the MPC controller input parameters:

• The controller output provides a slow response to CO2 set point and occupancy
changes if the prediction horizon is short (i.e., 2 ≤ P ≤ 5 steps ahead);

• The output of the controller acts faster on changes, which means that the controller’s
prediction ability increases if the prediction horizon is long (i.e., P ≥ 10 steps ahead);
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• A longer control horizon (i.e., M ≥ 10 steps ahead), the response of the controller
output becomes too aggressive and therefore overshoots, which does not occur when
using a small control horizon.

In fact, the control horizon M and the prediction horizon P inputs are the key design
parameters of the MPC. They have a significant impact on its performance (i.e., settling/rise
time and stability), especially in the presence of disturbances.

In this experimental study, as schematized in Figure 8, the optimal control problem
(OCP) of the MPC is solved for every time interval (30 s) in which its optimal control output
is calculated for the entire horizon P. The inputs to the OCP are the forecasted occupancy
number, the outdoor CO2 concentration, and the previous measurement of indoor CO2
concentration (k−1), along with the system constraints (i.e., indoor CO2 set point and
airflow limits).

Figure 8. The general structure of the MPC framework for the EEBLab ventilation control system.

The prediction and control horizons used in the MPC framework are respectively
P = 10 (i.e., 300 s) and M = 5 (i.e., 150 s) steps ahead. For occupancy, the forecasted
number is used to control the indoor CO2 dynamics, including the CO2 generated by the
occupants over the horizon P. The forecast of the occupants’ number and measurements
of the indoor/outdoor CO2 are forwarded to the OCP. The optimized control output
(i.e., minimal required airflow) is fed back to the dynamic model to calculate the future
predictions of indoor CO2 concentrations for the entire prediction horizon P. This calculation
is repeated every time interval. At each time interval, the future occupancy and prediction
of the indoor CO2 concentrations along with the constraints are updated and passed to
the OCP to plan the next sequence of control inputs to be applied at that time. Only the
first optimal input of the control sequence is implemented, and the remaining input values
are discarded.

To solve the OCP, the following quadratic cost function is used, which reduces the
future error ê between the CO2 set point references yre f and predicted indoor CO2 con-
centration ŷ through the prediction Horizon P. This is mainly achieved by applying the
optimal control increment action ∆û in which the minimum of airflow u is delivered and
the indoor CO2 concentration y is maintained within comfort bounds. Q and R represent
weighting matrices. The set point of indoor CO2 concentration is defined at 550 PPM,
whereas the outdoor CO2 is kept at a constant value of 400 PPM.
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Minimize
∆u

J =
1
2

k=P

∑
K=0

[(
ŷ− yre f

)
Q
(

ŷ− yre f

)T
+ (∆û)R(∆û)T

]
,

Subject to, y < 550 PPM and 0 < u < 440 m3/h
(
∼ 0.12 m3/s ∼ 122.22 L/s ∼ 259 scfm

)
.

4. Real-Time Implementation

This section presents the implementation of the MPC framework for controlling the VS
with the aim to improve both the indoor air quality and energy saving. An HIL experiment
in which the MPC model controller is physically implemented in an RPi development
board is conducted. Figure 9 shows the blocks that have been integrated to enable the
communication between the MPC VS model, which is carried out with the MPC toolbox of
MATLAB/Simulink environment and the HOLSYS platform.

Figure 9. MATLAB/Simulink model for ventilation system’s control using MPC.

To enable the use of MQTT in the MATLAB/Simulink model, the Raspberry Pi support
package for MATLAB and Simulink have been installed using MATLAB Add-ons.

Many blocks are available in the Simulink libraries under “Simulink Support Package
for Raspberry Pi Hardware”. The two used blocks are “MQTT subscribe” and “MQTT
publish”. The former subscribes to the topics “MPC/IN/OCC” and “MPC/IN/CO2” to get,
respectively, the forecasted occupant’s number and CO2 measurements from the forecast
model and the HOLSYS platform. The latter publishes the required flow rate into the
“MPC/OUT” topic to control the ventilation speed. As shown in Figure 3b, the ventilation
control node is wired to the inlet and outlet fans and controls them using PWM. In fact, the
node receives the required flow rate from the platform through MQTT and transforms it to
the corresponding PWM signal. The general architecture of the experimental setup from
sensing till the control execution is illustrated in Figure 10.

The MPC controller, which is run from MATLAB/Simulink simulator, is emulated
and embedded into the RPi as an independent hardware in the network.

However, Simulink is able to keep monitoring the simulation run time as well as the
inputs and outputs of the MPC model. Using an MQTT publisher and subscriber tool,
it is possible to inject test data into the model or monitor any variable from all over the
experimental setup and its system entities.
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Figure 10. The experimental setup architecture of HIL implementation of the MPC for EEBLab
ventilation system control enabled by the HOLSYS IoT platform.

5. Results and Discussions

In this section, the results obtained from the experimental setup of the different de-
ployed systems are presented. In fact, after connecting everything together, the simulations
have been run and data are collected during the experiment’s time. The experimentation
started at 13:36 at the EEBLab test site. All the windows were closed and the only source of
fresh air was the ventilation inlet. The HVAC was set to off. The weather station readings
at the time were 23 ◦C for the ambient temperature and 56% for the relative humidity. The
behavior of two employees at an office of 12 m2 was simulated. Other staff joined the team
from time to time. While the occupants were performing moderate activities (e.g., using
their personal computers and reading several articles while conversing), CO2 was changing
its levels and increasing with more people inside the test site. At each new visit, the door
was opened and closed in approximately 5 to 8 s. However, the influence of the door
openings and the air exchanged during this time has not been taken into consideration. In
fact, the objective behind the experimental setup is to show the usefulness of the proposed
framework with all its components. It is a proof of concept of the intercommunication of
different entities that form the entire concept. The idea is to integrate control strategies
and modern technologies into a holistic framework for enabling real time monitoring and
control of buildings’ systems.

First, advanced methods for forecasting indoor occupancy are implemented. Real
occupancy data is sent to the server to be processed and exploited by the deployed forecast-
ing model. It is implemented to read 10 instances and forecast 10 values ahead. The model
gets new data every 1 min. It means that the model is able to forecast 10 min ahead. the
forecasted occupancy data is sent to the MPC model to measure the flow rate needed to
adjust optimal operation of the VS. The calculated accuracy and root mean square error
(RMSE) parameters of the LSTM forecasting are respectively, 3.34% and 98.7%. Secondly,
an MPC control strategy is integrated for VS’s control. All together, these systems have
been inter-communicated via the deployed IoT platform. The simulation model of the
MPC controller has been compiled via MATLAB/Simulink and embedded into the RPi 4
B+ installed into the test site. Afterwards, the installed sensors began to inject input data to
the forecasting and MPC models and outputs (controls) were executed by the ventilators.

In order to assess the performance of the MPC against the ON/OFF, three metrics
have been generated: (i) the regulation of indoor CO2 concentration, (ii) the ventilation
flow rate evolution, and (iii) the instantaneous power consumption, which are calculated
using the smart metering platform [26]. Experiments have been conducted using the
above-mentioned set-up and the three metrics have been evaluated for the ON/OFF and
MPC controllers during five hours and a half from 13:30 to 19:00. The occupants’ number
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together with the behavior of indoor CO2 concentration, ventilation flow rate, and power
consumption of two controllers can be observed in Figures 11–14.

Figure 11. Occupancy forecasting results using LSTM.

Figure 12. The MPC flow rate output together with the CO2 concentration variation.

Figure 13. The ON/OFF flow rate output together with the CO2 concentration variation.

Figure 14. Energy consumption variation of the ventilation system during control for both ON/OFF
and MPC controllers.

As can be seen from Figure 11, the forecasted occupants’ number seems to be close
and to correlate well with the collected real occupants’ number. A minor difference is seen
at the peak points of the real occupancy.
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The ON/OFF approach has been chosen for comparison as it is the most used control
approach in VSs. It is a simple control mechanism which triggers full On or full Off in case
of CO2 variation from the fixed setpoint. The ON/OFF control was deployed using the
above-mentioned approach the next day.

In terms of CO2 regulation, both controllers provide good performance in maintaining
the CO2 concentration with faster settling/rise responses for the ON/OFF to achieve and
maintain the desired level, which is fixed to 550 PPM setpoint. Unlike the ON/OFF, the
MPC was able to provide a better transient response to refresh the air inside the EEBLab
using the optimal ventilation rate, as can be observed from Figures 12 and 13.

For energy consumption, the obtained results presented in Figure 14, showed that
the MPC outperforms the ON/OFF and allowed higher performance in improving energy
savings. This performance can be explained by the predictive mechanism of the MPC,
which includes the optimized criterion ∆û that predict the effective ventilation flow rate
according to the indoor CO2 dynamics, including the CO2 generated by occupants.

Regarding the total energy consumption of the VS during this experiment time period,
the MPC outperformed the ON/OFF control and allowed a significant energy reduction by
16.44%. It can be noticed from Figure 14, that the peak energy consumed by the ventilators
is reached only a few times by the MPC control unlike the ON/OFF method. The total
energy consumed by MPC control is 119.4 Wh while the ON/OFF consumed a total of
142.88 Wh.

6. Conclusions and Perspectives

In this work, an HIL based framework was introduced for standalone VSs using MPC
control method. The objective was to assess the effectiveness of the proposed framework
in terms of indoor air quality improvement and energy efficiency in real-setting scenario.
In fact, a Simulink based HIL model was proposed and implemented in the EEBLab to
assess the effectiveness of MPC control. Contextual data are collected using the HOLSYS
IoT platform and LSTM machine learning models have been integrated for real time
occupants’ number forecasting. Resulting forecast data have been exploited by the MPC for
optimal regulation of the ventilation flow rate. The performance of the MPC over the HIL
framework has been assessed and compared to the ON/OFF strategy. Experimental results
showed that both controllers provide acceptable performance in regulating the indoor CO2
concentration. However, the MPC allowed significant energy reduction by approximately
16% compared to ON/OFF.

As a perspective of this work, the framework will be applied and experimented
for the HVAC system’s control using MPC. This latter has already been validated by
simulations [66]. Furthermore, additional experiments will be conducted to shed more light
on the integration of IoT and machine learning algorithms for setting up context-driven
control approaches of different building services, including lighting, shading, and HVAC
systems. Additionally, the perspective includes integrating the proposed framework for
developing other buildings services, such as renewable energy production forecasting and
predictive control of power systems [24].
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