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Abstract—The Internet of Medical Things (IoMT) aims to
exploit the Internet of Things (IoT) techniques to provide better
medical treatment scheme for patients with smart, automatic,
timely, and emotion-aware clinical services. One of the IoMT
instances is applying IoT techniques to sleep-aware smartphones
or wearable devices’ applications to provide better sleep health-
care services. As we all know, sleep is vital to our daily
health. What’s more, studies have shown a strong relationship
between sleep difficulties and various diseases like COVID-19.
Therefore, leveraging IoT techniques to develop a longer lifetime
sleep healthcare IoMT system, with a trade-off between data
transferring/processing speed and battery energy efficiency, to
provide longer time services for bad sleep condition persons,
especially the COVID-19 patients or survivors, is a meaningful
research topic. In this study, we propose an IoT enabled Sleep
Data Fusion Networks (SDFN) module with a star topology
Bluetooth network to fuse data of sleep-aware applications. A
machine learning model is built to detect sleep events through
an audio signal. We design two data reprocessing mechanisms
running on our IoT devices to alleviate the data jam problem
and save the IoT devices’ battery energy. Experiments manifest
that the presented module and mechanisms can save the energy
of the system and alleviate the data jam problem of the device.

Index Terms—Sleep Healthcare, Bluetooth, Sleep-aware Mo-
bile Application, Data Fusion, COVID-19, Internet of Medical
Things (IoMT).

I. INTRODUCTION

The quality of people’s life is increasingly improved and the

demand for medical resources is increasing day by day, which

stand out the prominent disadvantages of the traditional med-

ical pattern. At present, the main contradiction of traditional

pattern focuses on the following aspects: intensive medical

resources, escalating conflicts between doctors and patients,

unequal distribution of medical resources, etc. The Internet
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of Medical Things (loMT) emerges with the constant renewal

and the development of a large number of portable sensors

and integrated circuit processing units [1]. It provides a new

way for the healthcare industry and eases the problems, such

as the intensive medical resources and unequal distribution of

medical resources. Besides, the IoMT dramatically reduces the

impact of artificial errors and medical errors on patients, ac-

cording to a study at Johns Hopkins University [2]. Therefore,

the research on IoMT is rather significant.

Defined as S. Vishnu et al [3], IoMT platform is an

intelligent system, mainly obtaining the biomedical signal’s

sensor and the electronic circuits of patients, dealing with the

processing units of biomedical signal, and storing the units

through the network devices which transfer the biochemical

data through the Internet. It is also convenient for doctors to

make decisions according to the specific conditions of patients

as an artificially intelligent visualization platform. Following

are its four main applications:

• Diagnosis: The IoMT devices track a growing number of

physical indicators that can indicate some medical conditions

such as diabetes and atrial fibrillation, etc. Besides, it can be

used to detect early signs of diseases or activities to discover

possible diseases in time [4].

• Convalescence: Postoperative recovery time is an impor-

tant part of the operation cost, while minimizing the operation

time is an important factor to reduce the cost. The sensor

can track various key indicators and remind the nursing staff

to react timely. Combining with the remote medical system

makes it easier to accelerate the recovery [5].

• Long-term nurse: With the development of blood pressure,

glucose levels, sweat and even tear analysis, sensors that

track body parameters are becoming more and more sophisti-

cated. Therefore, in the process of the chronic nurse, adverse

outcomes and prolonged recovery period can be avoided by

ideally applying the measurement and monitor for Internet of

Things (IoT) devices to it [6].

• Precaution: Let patients take the initiative to use IoMT

equipment when participating in guided exercises, to avoid

physical health problems caused by bad habits [7].

To sum up, IoMT is a product that combines the IoT and

healthcare field [8]. It can be used to track key medical

parameters such as blood chemistry, blood pressure, brain

activity, and pain levels, etc. It can also help detect the early

signs of some diseases or activities to further improve the body

conditions [9].

According to the definition of health from the World Health
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Organization (WHO), owning a good sleep quality is one of

the most important signs of a healthy body. The total sleep

time accounts for about a third of one’s life, so high quality

sleep is very important to maintain one’s best health condition.

Another survey from the WHO said, 27% people in the world

have sleep problems. So it is necessary to study how to monitor

and evaluate the sleep quality and improve sleep problems.

COVID-19 disease [10], whose virus name is Severe Res-

piratory Syndrome Coronavirus 2 (SARS-COV-2), is now

ravaging greatly. Relevant studies have shown that one of the

common squealea of COVID-19 is the sleep difficulties [11],

[12].

Many non-invasive sleep monitoring devices equipped with

sleep-aware applications, such as smartphones or wearable

devices, are beginning to emerge. These non-invasive sleep

monitoring devices may provide possible help for COVID-19

sequelae patients with potential sleep problems in the future.

Sleep-aware applications like EAST [13] and Smart Alarm

[14] use the accelerometer sensor and audio recorder in the

smartphone to sample the acceleration and voice data of sleep

users in a bedroom.

Sampled data will be sent to remote servers via IEEE 802.11

WLAN [15], for further analysis and services providing. How-

ever, Wi-Fi’s working nominal range is about 100 meters [16],

which is unnecessary since the smartphones are in the same

bedroom. In contrast, IEEE 802.15 [17], that is Bluetooth,

has 10 meters working nominal range [16] and is more

battery energy efficient [18] than Wi-Fi [16] in our situation.

What’s more, wireless devices like smartphones or wearable

devices bear the battery energy exhaustion problem in multiple

situations. Therefore these devices can hardly afford the high

battery energy cost of most sleep-aware applications.

To address the above problems, we propose an IoT enabled

Sleep Data Fusion Networks (SDFN) module with a star topol-

ogy Bluetooth network to fuse data of sleep-aware applications

based on our devised application protocol. In the star topology

network, a center Bluetooth IoT device fuses sleep data

generated from every IoT device node in a room. The center

will send the fused data to the remote server through Ethernet

cable. We design two data preprocessing mechanisms, SPL-

Based Audio Data Reducing Mechanism and Signal-Power-

Based Audio Data Selection Mechanism, running on our IoT

devices to alleviate the data jam problem and save the IoT

devices’ battery energy. Proposed methods and mechanisms

can help to save the energy of sleep monitoring devices,

therefore it can provide longer sleep healthcare services for

people with sleep problems especially the COVID-19 patients

or survivors. Our six contributions are summarized as follow:

• We propose a new model called Data Fusion Enabled

Multi-modal Sleep-Data Analysis System (DF-MSAS). Basing

on iSmile platform, this new model can analyse sleep data and

provide sleep services in a more battery energy efficient way.

• A new module called Sleep Data Fusion Networks

(SDFN) is designed to replace the original Wi-Fi wireless

communication way with Bluetooth way for battery energy

efficiency.

• We build a machine learning model, called SleepDetCNN,

to detect the sleep event like snoring and coughing through the

audio data. This model runs on the center and provides higher-

level information that serves our proposed data preprocessing

mechanism.

• Although the Sleep Data Fusion Networks (SDFN) mod-

ule can save node’ energy, this approach may reduce the data

transfer speed which may cause serious data jam. In order to

deal with this problem, we design a SPL-Based Audio Data

Reducing Mechanism.

• Internet network condition is hard to control. A bad

network condition may cause data jam at the star center

device. Therefore, we design a Signal-Power-Based Audio

Data Selection Mechanism to solve this problem, releasing

the center device’s data uploading burden.

• In the experiment part, we study the relation between

Received Signal Strength Indication (RSSI) and Energy Con-

suming Speed and find the region of RSSI in which the

Bluetooth one is more battery energy efficient than the Wi-Fi

one. What’s more, we exhibit our proposed data preprocessing

mechanisms’ effects on devices’ energy saving and data jam

alleviating.

The remained parts of this paper are organized as follows.

Section II concludes related research studies about IoMT, sleep

healthcare, and COVID-19. Section III proposes our new sys-

tem model DF-MSAS as well as our new module SDFN and

describes their primary functions. Section IV describes several

techniques and algorithms to implement our model. Section

V describes our sleep event detection model’s architecture.

Section VI proposes several data preprocessing mechanisms to

alleviate the data jam problem and further improve the devices’

battery energy efficiency. Section VII conducts experiments

to show that our model is more battery energy efficient than

the original one and exhibit 2 mechanisms’ effects on our

model. Finally, experiment results are concluded and analysed

in section VIII.

II. RELATED WORK

IoMT has experienced several stages. Initially, IoMT is

the information management system to meet daily operation

of medical institutions. Then IoMT extends to the medical

management and monitoring field [19], such as combining the

bar code technology with the medical management system,

realizing the medical equipment’s dynamic management, fur-

ther optimizing the scientific allocation of medical resources

[20]. The problems of equipment maintenance caused by the

traditional monitoring system also can be avoided by IoMT.

Applying IoMT technology and developing the lightweight,

ultra-low energy consumption sensor equipment alleviate the

discomfort to patients caused by traditional wearable monitor-

ing equipment and avoids battery replacement and charging

problems from happening.

A. Internet of Medical Things

1) Medical Cloud Architecture: In recent years, the fea-

sibility of the combination of the cloud computing platform

and intelligent medical system has been widely discussed [21].

Medical cloud architecture initially formed, and centralized
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medical cloud storage has much more mature solutions. How-

ever, medical imaging resources storage systems still rely on

local data center, and investment in a complex local platform

will significantly increase medical care costs [22]. To solve

these limitations, the medical cloud platform is born. But at

present, most of the cloud platforms are unit architectures.

When the platform encounters a resource bottleneck, medical

institutions can only build a professional cloud platform or

use online storage services to store medical data. However,

these methods not only fail to effectively solve the problem

of efficient storage, but also create other security problems.

Therefore, Cao et al. [23] proposed an extensible multi-stream

storage architecture based on the medical cloud and designed

a system called Tri-SFRS to improve the traditional IoMT

architecture. The system can adapt to different storage environ-

ments and different access modes of medical data. It provides

the fault recovery service of medical storage resources with

the minimum communication costs and monitors medical

resources changes in real-time. At the same time, it is of higher

security and stability and reduces the processing delay of the

resource request.

2) IoMT Security System: Improving the IoMT system’s

security is an important research topic. Every IoMT system’s

inspector faces various risks, from the theft of private data

to life-threatening security vulnerabilities [24]. Therefore, it is

very important to identify and solve these security problems in

time. At present, there is still a lack of architecture analysis in

IoT planning research. Therefore, Julia Rauscher et al. [25]

developed a security analysis approach to identify security

vulnerabilities in the IoMT architecture, which consists of

a standardized meta model and an IoT security framework.

This security analysis approach bridges the gaps between the

relevant sensors and IoT, further improving the security of

IoMT security.

3) Specific applications of IoMT: This section summarizes

the application of IoMT on vocal cord diseases and sleep

problems.

• Vocal Cord Diseases:

According to a survey, the prevalence of vocal cord disease

among teachers in their life time in the United States is 57.7

percent, while other professions which is only 28.8 percent

[26]. There are lots of intelligent systems developed to detect

vocal cord disease. These systems can only determine whether

vocal cord disease exists or not without identifying the type of

the disease [27]. Zulfiqar Ali et al. [28] proposed a vocal cord

detection medical system based on band-pass filters to simulate

the human hearing mechanism. Then deployed the system into

the IoT-based smart cities and smart homes to detect and

classify various kinds of vocal cord diseases. According to

the experimental results, the system is accurate and reliable in

assessing vocal cord diseases. The accuracy of classifying the

types of vocal cord diseases is higher than 95%.

• Sleep Healthcare:

Except for the applications in vocal cord diseases, IoMT

technology has many applications in monitoring, evaluating,

and improving sleep quality. For example, Yangjie Cao et

al. [29] proposed a contactless body movement recognition

(CBMR) method to collect the channel state information data

of body movement. CBMR method utilizes two types of IoT

devices, which act as the Wi-Fi signal source and receiver’s

roles, respectively. By sliding a window to segment the channel

state information data, and then use Recurrent Neural Network

(RNN) [30], [31] to learn the context information of segmented

channel state information data. Finally, use Softmax function

[32] to classify the types of human body movements that

occurred during sleep. This method can effectively reduce

the time consuming caused by data preprocessing and manual

extraction of features and has an average classifying accuracy

of over 93.5% on the complex human movement dataset.

Therefore, compared with other traditional methods, it can bet-

ter identify human movement types during sleep and achieve

higher accuracy in evaluating sleep quality.

B. Sleep-aware Applications

There are lots of studies on the sleep pattern in order to

better analyse and evaluate the quality of sleep. Based on

these researches, various kinds of sleep assisting applications

[13], [14], [33], [34] for smartphones were developed. The

application iSleep [34] makes use of the smartphone’s built-in

microphone to record the sound of the user during their sleep.

Then non-noise frames’ features will be extracted and sent to a

lightweight decision-tree-based algorithm to classify the events

that are closely related to sleep quality, such as body move-

ment, couch and snore, and infers quantitative measures of

sleep quality according to the Pittsburgh Sleep Quality Index

(PSQI) based questionnaire [35]. Based on iSmile Platform

[33], the application EAST [13] extracts the sound features

and classify the corresponding events into cough, snore and

sleep talk as iSleep does. What’s more, it records the 3D

accelerator data of the user by accelerometer sensor. After

noise elimination and sleep features extraction, a multivariate

neural random forest model is used to predict the valence-

arousal value [36] of the user for sleep tips recommendation.

In the Smart Alarm application [14], a k-NN based method is

designed to receive a vector of user context model (UCM) as

input and predict the corresponding arousal–valence values.

According to the predicted arousal-valence values of UCM,

the closet alarm sound in the arousal-valence plane is regard

as the recommended one.

III. SYSTEM MODEL

A. Data Fusion Enabled Multi-modal Sleep-Data Analysis

System

Our works base on iSmile Platform [33] and add a new

module called SDFN obtaining a new model called DF-MSAS

whose framework is shown in the Fig.1. The DF-MSAS makes

use of built-in audio recorder and accelerometer sensor of the

smartphone to sample users’ sleep data then sleep data will be

sent to the remote server directly from sampling smartphones

for further function services. The main three functions of

this application are sleep tips recommendation, smart alarm

recommendation and sleep quality scoring. We now explain

how we model, process and analyse raw sleep data to enable

these functions.
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Fig. 1. DF-MSAS’s framework.

1) Mood Prediction and Tips Recommendation: The ac-

celerometer sensor in the smartphone samples data in 3 direc-

tions x,y,z of Cartesian coordinates for detecting tiny vibration

of bed during users’ sleep time. The whole night acceleration

data will be sent to remote server for moods prediction and

tips recommendation. Data will be firstly segmented into

frames for sleep features extraction. Then the algorithm will

separate the movement events from the noise according to

the noise threshold. After that, the algorithm will extract

the statistical features of acceleration data like root mean

square (rms), variance (var), and mean (avg) and send these

features to a lower-pass filter to detect the movement events.

The algorithm computes sleep features of movement events

like total sleep time (TST), movement rate (MR), average

movement amplitude (AMA), and average movement interval

(AMI) which can be used to measure the quality of sleep

through the night. A multivariate neural random forest model

which takes sleep features as inputs is built to predict the

moods in the form of arousal and valence coordinates of the

arousal-valence model. Finally, we generate suggestion tips for

users to have a better sleep quality according to sleep features

and moods.

2) Alarm Recommendation: Fig.2 shows an overview of the

smart alarm sound recommendation system. We now briefly

describe the alarms recommendation approach used in the DF-

MSAS. Every alarm sound is represented in a 6-dimensional

feature space with a well-defined similarity function defined

by formula 1. The components of this feature space are

zero-crossing rate (ZCR), tonal type (TT), tempo (TP), low

energy rate (LER), spectral centroid (SC) and unit power (UP)

which can well describe the properties of the alarm sounds

[37]. Therefore every sound can be represented as a vector

AFV = (ZCR, TT, TP, LER, SC,UP ).

sim (AFVi, AFVj) =

1−
|TTi − TTj |

6max (TTi, TTj)
−

|TPi − TPj |

6max (TPi, TPj)

−
|ZCRi − ZCRj |

6max (ZCRi, ZCRj)
−

|LERi − LERj |

6max (LERi, LERj)

−
|SCi − SCj |

6max (SCi, SCj)
−

|UPi − UPj |

6max (UPi, UPj)

(1)

We first manually map four alarm sounds to the

Arousal–Valence model space by assign arousal–valence val-

ues, then the algorithm will map other alarm sounds in the

alarm sound library according to the similarity of the feature

space among all the already mapped alarm sounds.

We define the User context model (UCM), which combines

Feature Vector (FV ), Context Vector (CV ) and Social Vector

(SV ) to represent different users in different situations. In our

situation, the Feature Vector is set to be the sleep features

of users. The Context vector contains users’ emotional states

that are the arousal–valence values, and the realtime weather.

And the Social vector mainly considers the users’ social

information like Age, Occupation and Academic Degree.

sim (UCMi, UCMj) =

Wf × sim (FVi, FVj) +Wc × sim (CVi, CVj)+

Ws × sim (SVi, SVj)

(2)

sim (FVi, FVj) =

1−

√

∑

s

(FVis − FVjs) (FVis − FVjs)
(3)

sim (CVi, CVj) =

1−

√

∑

s

(CVis − CVjs) (CVis − CVjs)
(4)

sim (SVi, SVj) =

Wage ×

(

1−
|agei − agej |

max (agei, agej)

)

+Wdegree ×

(

1−
|degreei − degreej |

max (degreei, degreej)

)

+Wnationality × sim (Nationalityi, Nationalityj)

+Wgender × (1− (genderi ⊕ genderj))

+Wocupation × sim (Occupationi, Occupationj)

(5)

The similarity function between 2 UCMs are described by

formula 2-5 where Wage, Wdegree, Wnationality, Wgender

and Woccupation can be defined by surveys or initial exper-

iments for different situations. The only constraint here is

Wage+Wdegree+Wnationality+Wgender+Woccupation = 1.
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Now we can compute every UCM’s corresponding arousal-

valence values according to the predicted alarm sounds’

arousal-valence values of top k similar users’ history UCM.

In other words, we map every UCM to the Arousal–Valence

model space according to the history of UCM.

During the alarm sound prediction phase, the algorithm

regards the alarm sound with the closest arousal–valence

values to the current user’s UCM’s arousal–valence values as

the predict recommendation result for the user.
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Fig. 2. Smart Alarm sound recommendation module.

3) Sleep Audio Scoring: This function takes sleep audio as

input and detects as well as scores the sleep talks, snoring and

coughing during night time. Same as the process of dealing

with the accelerator data, we first frame data and separate

events from noise then extract events’ features to predict

its classification. Finally, the algorithm counts each kind of

event’s appear times as well as computes their intensity to

score each event type and gives the total score of sleep basing

the PSQI.

B. Sleep Data Fusion Networks’s Framework

As mentioned in section III-A, after sampling the sleep

data, the smartphone will directly send the data to the remote

server through the Wi-Fi. However, compared to the Wi-Fi,

Bluetooth is much more battery energy efficient. In order

to improve the life time of every sampling smartphone, we

first use a Bluetooth device center, which is connected to

the power supply, to fuse the sleep data sampled by every

sampling smartphone, then this device center will send fused

data to the remote server. Our modification part in the iSmile

framework, that is SDFN, is shown in Fig.1. The abridged

general view of devices layout is shown in Fig.3, nodes in

a star topology network are placed in the same bedroom for

sampling sleep data of users via sleep application. The center

Legend
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Bluetooth Device

(Node)
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Fig. 3. Topology of Bluetooth network.

actively connects to every node one by one through Bluetooth.

Once build connection, the node will send sampled data to
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Fig. 4. Application layer protocol.

center or receive commands for setting configures as well

as operating node basing on the protocol shown in Fig.4.

If wflag = 1, the center calls readUTF() function which

blocks the center thread until node calls function writeUTF()

to send filename string to center. Same as how center obtains

filename string, center blocks until it has received file length.

Then the center receives the file itself and saves the file to

disk according to filename string. Finally, node calls flush()

to write the data to center from buffer. Shown as Fig.3, the

center connects to Internet through cable linking to gateway.
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Fused data in the center will be sent to the remote server via

the Http protocol. If wflag = 0, the center will send the

command string to the node using writeUTF(), and the node

will parse the command string and set configures subsequently.

After setting configures, the node will call writeUTF() to send

the feedback string to the center.

IV. DATA FUSION APPROACH

A. Bluetooth Center

This section introduces the center’s algorithms. As Algo-

rithm 1 shows, center verifies every Bluetooth device in Device

List L, which is obtained by Bluetooth Discovery Android

API, whether it is target device or not by Algorithm 2. If it

is the target device, then connect this node and asks for data

or sends command to node for setting configures as well as

operating node basing on the protocol in III. In the protocol,

there is a wflag to differentiate between the data sending

mode and command sending mode. The wflag is set by

another GUI thread. When finish scanning L, the center will

sleep T seconds before the next turn.

Algorithm 1 Data Fusing

Input: Bluetooth Devices List L

Device token string S

Fusing time interval T seconds

1: loop

2: tmpFlag =wflag

3: wflag = 1

4: for node in L do

5: if TargetDev(S,node.name) then {Only consider tar-

get device.}
6: node.connect() {Connect Bluetooth device.}
7: while not node.isConnected() do

8: {Wait until connection is built.}
9: end while

10: if tmpFlag==1 then

11: SaveFile() {Block until finishing receiving file.}
12: else

13: SendCMD()

14: end if

15: end if

16: end for

17: sleep(T ) {Block thread T seconds before next turn.}
18: end loop

Algorithm 2 tells how to verify whether a device is a target

device or not. Firstly, decrypt the Bluetooth device’s name

string by swap the adjacent odd position and even position

character. If the device token string S, which is set manually

by developers in advance, is the substring of decrypted name

string, it is the target device.

B. Bluetooth Node

This section introduces the working flow of three sub-

threads in Bluetooth node. As shown in Fig. 5, Saving thread

notifies the sampling thread to start sensors’ sampling then

blocks for ∆ seconds before stops the Sampling thread.

Algorithm 2 TargetDev(S,N )

Input: Device token string S

Device name N

Output: Target Device Boolean Flag

1: for i = 0 to length(N ) do {Decrypt device name.}
2: if i is odd then

3: swap(N [i − 1], N [i]) {Swap adjacent odd position

character and even position character in string N }
4: end if

5: end for

6: if isSubstring(S,N ) then {Target device’s real name string

must contain S substring.}
7: return true

8: else

9: return false

10: end if
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N Parse 

Commands

Set Configures

Fig. 5. Node’s flow chart.

This way generates ∆ seconds of sensor data. Saving thread

generates filename according to MAC address of node as well

as sampling time and enqueue this filename with absolute

folder path into a queue termed FileQ. Finally, saving thread

saves sleep data as file with the generated filename to disk

according to the absolute folder path.

Algorithm 3 Parse(S)

Input: Command String S

Output: Command List L

1: tmp = S.split(”/”) {Split the string to a list by character

”/”.}
2: L = {Initialize an empty list.}
3: for i = 0 to length(tmp) do {Generate Command List

L.}
4: L.append(tmp[i].split(”#”))

5: end for

6: return L

The Data Sending and Configures Setting thread will firstly

judge the wflag. If wflag = 1, dequeue FileQ obtaining

the filename from FileQ. After that, the thread will send
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the corresponding file in the disk to the center basing on the

protocol mentioned aforehand. Finally, the file will be deleted

from the disk when the center has received it. If wflag = 0,

the thread will parse commands with following coding form

by Algorithm 3:

”/command1#paramter1#paramter2/command2#paramter1...”

V. CONVOLUTIONAL NEURAL NETWORKS FOR SLEEP

EVENTS DETECTION

We utilize a convolutional neural network (CNN) [32] based

sleep events detection model, called SleepDetCNN, to classify

every time frame audio signal into three classes, Snoring,

Coughing, and Other. SleepDetCNN can provide higher than

feature-level information [38] for advanced data preprocessing

in subsection VI-B.

Fig. 6 is the architecture of SleepDetCNN. In the inference

phase of SleepDetCNN, a one second audio signal is firstly

converted to spectrogram by using Short-time Fourier Trans-

form (STFT) [39].

The STFT is a Fourier-related transform applied to a win-

dowed time signal x(n), n ∈ [−∞,∞]. The formula 6 defines

the STFT, where W (n) is the window function, commonly a

Hann window or Gaussian window centered around zero.

STFT{x(n)}(t, ω) =
∞
∑

n=−∞

x(n)W (n− t)e−jωn
(6)

The spectrogram of signal x(n) is the magnitude squared

of the signal’s STFT. Because the spectrogram is a order 2

tensor representation of the signal, it can be directly fed into

a 2-dimensional CNN model consisting of a 2-dimensional

convolutional layer, max-pooling layer, fully connected layer,

and dropout layer [32].

The last fully connected layer’s output will send to the

Softmax function, which is defined by formula 7, to generate a

3-dimensional probability distribution vector of three classes.

The first, second, and third vector components refer to Other,

Snoring, and Coughing, respectively. The class whose related

vector component has the highest probability is the final

classification result.

Softmax(z)i =
ezi

∑K

j=1
ezj

for i = 1, . . . ,K

and z = (z1, . . . , zK) ∈ R
K

(7)

In the CNN training phase, we prepare 798 audio files, each

audio file with a one-second duration, and each class has 266

audios. Most of the audios are extracted from the videos in

Audio Set [40]. All audios’ spectrograms, together with the

classification label, generate our dataset.

The training target function is the cross-entropy loss func-

tion. We use the Adam optimizer [41] with 200 batch size

each iteration to minimize the target function.

The minimum validation loss is found to determine the best

training epoch, that is 72, and the related validation accuracy

is 79.32%.

We use the Keras deep learning framework to implement

the spectrogram calculation process and the CNN model and
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combine them to generate a whole model. In the SleepDetCNN

model deployment phase, the combined model is converted to

the Tensorflow Lite model for android device deployment.

The SleepDetCNN model is running on the center, and

whenever the center receives an audio file from the node,

it will firstly pad the audio time duration to an integer by

the node microphone’s noise and then separate the whole

audio into several one-second audio files. After separation of

the padded audio, every audio segment will be fed into the

model to obtain the probability distribution vector. The average

probability distribution vector over all vectors is regarded as

the final result of the SleepDetCNN over the original whole

audio.

VI. DATA PREPROCESSING MECHANISMS OF THE IOT

DEVICES

The computing capability and storage capacity of IoT

devices are critical resources in our system. How to combine

the resources in the IoT devices with that of the remote servers

to reduce the overall battery energy consumption of the IoT

devices, and to alleviate the data jam problem, and as a result,

to provide better sleep health monitoring as well as evaluation

services, is an important research topic [42].

In this section, we propose two mechanisms, the SPL-Based

Audio Data Reducing Mechanism and Signal-Power-Based

Audio Data Selecting Mechanism, to utilize the IoT devices’

resources to preprocess the sleep data. The mechanisms can

dynamically fit the Bluetooth network’s status and the Internet

condition and keep the data transferring path’s unimpeded.

A. SPL-Based Audio Data Reducing Mechanism

The aforementioned proposed approach uses a star topology

Bluetooth network to fuse and upload sleep data generated

from nodes in a room, instead of directly uploading the

data via Wi-Fi. This approach may save every node’s battery

energy, but slows down the data transferring speed, which

would cause data jam. Therefore, we propose the SPL-based

Audio Data Reducing Mechanism to alleviate this problem.

1) Audio Data Compare Function: When the number of

nodes in a room increases, the sleep data amount will largely

increase, which will bring an enormous burden to the star

topology Bluetooth network. In order to increase every center’s

capability of holding the nodes, it is necessary to design

mechanisms to reduce the data amount generated from every

node, especially the amount of audio data. As we all known,

not all the time moment will the room has voices during night

time. Therefore, we can design a mechanism to determine

whether to record the audio data or not according to the Sound

Pressure Level (SPL) [43] defined by formula 8:

SPL(t) = 20 log
10

(

p(t)

pref

)

(8)

where p(t) refers to the actual sound pressure (in Pa) [43] at

time t and pref refers to the reference sound pressure which

is 20µPa [43].

We denote the digital output value of the microphone in the

node device with i ID as Ai(t). According to the sensor theory,

the sound pressure p(t) has a relation to Ai(t) as formula 9

shown [44].

pi(t) = ki ×Ai(t) (9)

, where ki is a parameter larger than 0 and varies with

the hardware device. Different devices will have different

microphones, with different sensitivities and different audio

hardware preamplifier. What’s more, they may apply different

input gain, equalizer, and automatic gain control (AGC) and

noise reduction algorithms, explaining the variation of ki.

Therefore, we have the formula 10 to compute SPL of node

i at time t in the android programs.

SPLi (t) = 20 log
10

(

pi(t)

pref

)

= 20 log
10

[

ki ×Ai(t)

pref

]

= 20
[

log
10

ki + log
10

Ai(t)− log
10

pref

]

(10)

An audio data segment of a discrete time interval Tn from

node i can be defined as a set of SPL at every time moment

in Tn, that is {SPLi(t)|t ∈ Tn}. For convenience, we denote

{SPLi(t)|t ∈ Tn} as W i
Tn

.
Then we can define formula 11 to compare the SPL of two

different audio data segments W i
Tn

and W
j
Tm

at time interval
Tn, Tm and from node i, node j, respectively.

Compare
(

W i
Tn

,W j
Tm

)

=max
(

{SPLi(t)|t ∈ Tn}
)

−max
(

{SPLj(t)|t ∈ Tm}
)

=20
[

log
10

ki +max
(

{Ai(t)|t ∈ Tn}
)

− log
10

pref

]

− 20
[

log
10

kj +max
(

{Aj(t)|t ∈ Tm}
)

− log
10

pref

]

=max
(

{Ai(t)|t ∈ Tn}
)

−max
(

{Aj(t)|t ∈ Tm}
)

+ log
10

ki/kj

(11)

Especially, when node ID i = j, we have formula 12, which

only relates to the digital output value Ai(t).

Compare
(

W i
Tn

,W i
Tm

)

= max
(

{Ai(t)|t ∈ Tn}
)

−max
(

{Ai(t)|t ∈ Tm}
) (12)

2) Audio Data Reducing Mechanism: In the previous sub-

section, we define a Compare
(

W i
Tn

,W
j
Tm

)

function that can

judge which audio data segment contains a louder voice. With

this function’s help, we can design a mechanism for recording

the audio, only when there are voices in the environment.

Before the node starts sampling the sleep data, we first place

the center and node into an environment with a slight white

noise [45]. Then use the center to set node’s SPL threshold

W i
0

by sending the set threshold command from center to

node i.

After setting the threshold W i
0

of node i, when start

sampling, node i will record the audio data ony when

Compare
(

W i
Tn

,W i
0

)

> 0.

If Compare
(

W i
Tn

,W i
0

)

6 0, then the node i will record

the max
(

{Ai(t)|t ∈ Tn}
)

value by saving it to a text file.
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Fig. 7. Data selection mechanism instance.

B. Signal-Power-Based Audio Data Selection Mechanism

During the uploading of fused sleep data from the center to

the remote server, network problems like network congestion

[46], etc., may occur because a large amount of data will

be uploaded at the same time from the centers in different

geographic regions. When network problems occur, the sleep

data will jam at the center. After the network problems are

solved, and the network recovers to the normal condition, the

center may already accumulate a large amount of sleep data,

so it’s difficult for the center to upload all accumulated sleep

data at once. What’s more, the center device may be a storage

capacity restricted hardware. If the sleep data size exceeds

the center device’s maximum storage capacity, the center may

crash, which is a hazard to our whole system. Therefore, it

is necessary to design a selection mechanism that can retain

more important data in the meaning of the defined indicator

and discard less important data.

In this section, we first define an audio signal’s information

measurement in a finite discrete time interval and then describe

how our proposed Signal-Power-Based Audio Data Selection

Mechanism works in detail.

1) Indicator of Data Selection Mechanism: This subsection

describes the indicator used to measure an audio signal’s

information quantity over a finite discrete time interval. A

indicator consists of two components, the sleep event class

number i∗ and the Relative Average Power p.

Denote the SleepDetCNN computed probability distribution

vector of the audio file as ~v = (~v1, ~v2, ~v3), and the sleep event

class number i∗ of the audio file is defined by formula 13

i∗ = argmax
i

~vi, i = 1, 2, 3 (13)

According to the signal processing theory [47], the average

power over a time interval of a finite length discrete digital

time signal can be defined by formula 14.

1

N

N
∑

n=0

|x(n)|2 (14)

In our case x(n) means the audio signal recorded by

microphone, that is the sound pressure p(t). Therefore, we

have formula 15 to compute the energy of an audio signal set

of discrete time interval Tn from node i. where mathematical

operation card() means the cardinality of a set.

AveragePower ({p(t)|t ∈ Tn})

=
1

card(Tn)

∑

t∈Tn

|p(t)|2

=
1

card(Tn)

∑

t∈Tn

[

ki ×Ai(t)
]2

(15)

Suppose we only compare the audio data from the same

node. In that case, we can directly set the parameter ki to

1 in formula 15, and now we obtain our second indicator

component Relative Average Power p.

The tuple of two components (i∗, p) is regarded as the

indicator which fuses the event-level information i∗ and

feature-level information p for measuring an audio signal’s

information quantity.
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Fig. 8. Center’s flow chart.

2) Data Selection Mechanism: The center’s program im-

plementation uses a producer-consumer multi-threads model

[48]. According to the algorithm 1, the producer thread fuses

the data generated from nodes in a room via the star topology

Bluetooth network, then as the flow chart 8 describes, en-

queues saved files’ path strings to a center file queue, denoted

as centerQ. On the other hand, the consumer thread plays

the role of an HTTP uploader as well as the data selection

mechanism executor. Fig. 8 shows the center’s flow chart. The

consumer thread first judges whether the centerQ’s size is

smaller than the predetermined threshold. If true, the consumer

thread uploads all data in the centerQ and dequeue as well as

delete successfully uploaded data files. If false, the consumer

thread calls the SelectData function defined by the algorithm

4 to enable the data selection mechanism.

The algorithm 4 describes our Signal-Power-Based Audio

Data Selection Mechanism and Fig.7 shows an example of

how the selection mechanism works.
In order to create a dictionary which associates every node’s

ID to every node’s number of files to be deleted, we need
to first compute the reducing proportion Q of the centerQ
according to formula 16. Then every node’s number of files
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Algorithm 4 SelectData(centerQ, T )

Input: files queue on center centerQ

predetermined queue size threshold T

1: Create empty array L and empty queue P .

2: for i = 0 to length(centerQ) do {Compute every audio

files’ average power, and save the power value as well as

it’s index in centerQ to the L.}
3: if centerQ[i] is audio file then

4: p = RelativeAveragePower(centerQ[i]) {Compute

average power of current audio file.}
5: i∗ = SleepDetCNN(centerQ[i])

6: i∗ = argmaxj i
∗

j {Compute the sleep event class

number of current audio file.}
7: L.append( (i, i∗, p) )

8: end if

9: end for

10: Sort(L, ”ascendingly”) {Sort the L ascendingly according

to every element’s class number i∗, then the elements with

the same class number will be further sorted ascendingly

by the p.}
11: Create a dictionary D according to T , which associates

every node’s ID to every node’s number of files to be

deleted.

12: for i = 0 to length(L) do {Delete less important audio

files in centerQ.}
13: j = L[i][0]
14: if centerQ[j] is audio file then

15: ID = NodeID(centerQ[j]) {Get the node ID that the

file belongs to.}
16: if D[ID] > 0 then

17: D[ID] = D[ID]− 1
18: DeleteFile(centerQ[j])
19: else

20: P .append(centerQ[j])
21: end if

22: else

23: P .append(centerQ[j])
24: end if

25: end for

26: centerQ = P

in the centerQ times the proportion Q, we obtain every node’s
number of files to be deleted.

Q =

{

centerQSize−threshold

centerQSize
centerQSize > threshold

0 centerQSize 6 threshold
(16)

VII. EXPERIMENT

A. Experiment for Proposed Module SDFN

In this subsection, we aim at answering the following

questions by conducting experiments.

1) What’s the relation between power-consuming speed and

Received Signal Strength Indication (RSSI)?

2) When is the Bluetooth version app’s power-consuming

speed lower than that of the Wi-Fi one?

We denote the remaining battery percentage of time t as

R(t), then the power-consuming speed K can be defined by

formula (17). Where R̂(t) means the least square regression

line of R(t).

K =

∣

∣

∣

∣

∣

dR̂(t)

dt

∣

∣

∣

∣

∣

(17)

To find the relation between K and RSSI , we ran our

application in Meizu Note 5 and recorded the remaining

battery percentage changing through time in different RSSI

with the unit of dBm. The tools to measure the RSSI of Wi-

Fi and Bluetooth are Ce Wang Su 1 and Bluetooth RSSI App

android applications, respectively. Then we draw the results of

the Wi-Fi version and Bluetooth version in Fig.9 and Fig.10,

respectively.
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As we can see from the Fig.9 and Fig.10, the power-

consuming speed of the Wi-Fi one is much more sensitive

1A Chinese android Wi-Fi RSSI measuring application, whose name is
Measure Network Speed in English.
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to the RSSI than that of Bluetooth one, which means that

there must be a critical point K0, which discriminates the

regions where KBluetooth > KWi−Fi as well as KBluetooth <

KWi−Fi.

To find the K0, we compute the regression line of

KBluetooth and KWi−Fi with respect to RSSI and obtain

Fig.11. We find that K0 = −39.45(dBm), which means that

when RSSI < −39.45(dBm), Bluetooth version is more

battery energy efficient than Wi-Fi version.
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However, the smaller the Bluetooth’s RSSI is, the lower

the transport speed the Bluetooth has. If the transfer speed

is lower than sleep data generating speed, there will be a

time gap between the latest generated data and the latest

transferred data. We term this time gap divided by total

data sampling time as the relative delay time (RDT ). The

quantitative relationship between RDT and RSSI , which

described as a linear regression line, is shown in Fig.12. We

set the RDT threshold to 0.1, which means that supposing the
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Fig. 13. RDT −RSSI curves in different node number.

total sampling time is 10 hours, then the maximum acceptable

time gap is 1 hour. According to the relation between RDT

and RSSI , we have a minimum of RSSI = −59.29.

Finally, we obtain an RSSI interval [−59.29,−39.45].
When the Bluetooth RSSI is in this interval, our new module

SDFN can make our system more battery energy efficient

without exceeding the delay time threshold.

B. Experiment for Proposed Data Preprocessing Mechanisms

In subsection VII-A, the experimental object, smartphone

Meizu Note 5, has both a Wi-Fi module and a Bluetooth

module as the data communication module. In this subsection,

we use our android IoT device instead. The IoT device, which

plays the node’s role, only has a Bluetooth module as the data

communication module for battery energy efficiency.

This subsection aims to show our proposed mechanisms’

effects on our android IoT devices’ battery energy saving

and data consuming speed. We conduct an experiment to

show the effect on reducing audio data in AAC file format

when apply the SPL-Based Data Reducing Mechanism to the

SDFN module. The experiment results are shown in Fig. 13.

According to the figure, almost all RDT results are under

0.010 in different RSSI and different node number settings.

In contrast, as Fig. 12 shows, without applying the SPL-Based

Data Reducing Mechanism, the RDT will larger than 0.10

when RSSI is less than about −60dBm. Therefore, this

mechanism can decrease the RDT . In other words, it can

alleviate the data jam problem during the data transferring via

Bluetooth network.

What’s more, the SPL-Based Data Reducing Mechanism

can help further saving the node’s battery energy. As illustrated

in Fig. 14, the battery consuming speed is faster when center’s

sleep time interval T becomes shorter. Especially, when close

Bluetooth data transferring function, that’s T = ∞, the

IoT device has the longest battery life time. Therefore, the
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Fig. 14. Battery Consuming Speed Comparison Experiment with or without
Bluetooth Data Transferring.

less Bluetooth data transferring time the node has during

the data sampling process, the slower the battery consuming

speed is, which means it’s more battery energy efficient. The

mechanism can significantly reduce the total data size, which

means less data transferring time when the transferring speed

is the same. As the result, this mechanism can save the battery

energy of the node.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we summarize the implementation methods

of iSmile Platform based android sleep-aware applications

EAST and Smart Alarm, then propose a module called SDFN,

which uses the Bluetooth protocol instead of Wi-Fi to fuse

sleep data basing our designed application protocol. Com-

bining this new module with EAST and Smart Alarm, we

obtain our new model DF-MSAS. A CNN based sleep event

detection model, SleepDetNet, is built which makes use of

the spectrogram of audio signal and the machine learning

technique to classify sleep event of every one second audio

signal. We propose the SPL-Based Audio Data Reducing

Mechanism and the Signal-Power-Based Audio Data Selection

Mechanism to alleviate the data jam problem and further save

the IoT devices’ battery energy. We experiment and find that

when RSSI ∈ [−59.29,−39.45], DF-MSAS is more battery

energy efficient with bearable data delay time. What’s more,

further experiments show that the proposed two mechanisms

can alleviate the data jam problem and further save the IoT

devices’ battery energy.

In the future, we plan to design an abstract conception

model and several interfaces to fit different IoT projects

and make use of edge computing techniques and artificial

intelligence algorithms to further reduce data delay time and

improve the IoT device’s battery energy efficiency.
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