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Abstract—In view of the emergence and rapid development of
the Internet of Vehicles (IoV) and cloud computing, intelligent
transport systems (ITS) are beneficial in terms of enhancing
the quality and interactivity of urban transportation services, of
reducing costs and resource wastage, as well as of improving the
traffic management capability. Efficient traffic management relies
on the accurate and prompt acquisition as well as diffusion of
traffic information. To achieve this, research is mostly focused on
optimizing the mobility models and communication performance.
However, considering the escalating scale of IoV networks, the
interconnection of heterogeneous smart vehicles plays a critical
role in enhancing the efficiency of traffic information collection
and diffusion. In this paper, we commence by establishing a
weighted and undirected graph model for IoV sensing networks
and verify its time-invariant complex characteristics relying on
a real-world taxi-GPS dataset. Moreover, we propose an IoV
aided local traffic information collection architecture, a sink node
selection scheme for the information influx as well as an optimal
traffic information transmission model. Our simulation results
and theoretical analysis show the efficiency and feasibility of our
proposed models.

Index Terms—Internet of Vehicles (IoV); intelligent transport
systems (ITS); traffic information collection; information diffu-
sion.

I. INTRODUCTION

With the emergence of intelligent transport systems (ITS),

travellers are better informed and use the ever-smarter trans-

port networks more safely [1] [2]. The Internet of Vehicles

(IoV) paradigm [3] [4] assists in connecting the vehicles to the

Internet, which are well-endowed with communication units

and new sensors, in order to support information-exchange,

identification, localization, monitoring and managing [5]. Dur-

ing the last decades, the total number of vehicles in some parts

of the world increased faster than the population [6]. Hence,

relying on frequent information exchange as well as other in-

teractions and advanced computing capabilities, the IoV aided
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vehicular network is beneficial both in terms of increasing

the efficiency of traffic management, as well as providing

compelling services for ITS, such as traffic management, smart

warning, multimedia access, environmental monitoring, etc.

Based on the maturing vehicular ad hoc networks (VANETs),

IoV aided traffic information collection and diffusion may be

invoked both for vehicle-to-vehicle (V2V) communications

and vehicle-to-infrastructure (V2I) interactions, as well as

for the sensing, transmission and integration of important

information related to a city’s traffic-flow for preventing traffic

jams.

From a macroscopic perspective, the IoV aided ITS can

be deemed to be a complex system [7] [8]. First of all, the

IoV aided ITS is associated with a tremendous network size.

Specifically, tens of thousands of vehicles are on the road

every day, communicating with the road-side infrastructure,

especially in metropoles, such as Beijing and New York City.

Hence, we need the statistical analysis to characterize and

model the behaviour of these smarts units. Secondly, the

heterogeneous and hierarchical network structures and node

types relying on the IoV technologies result in more complex

interactions. Vehicular networks, the Internet, infrastructural

networks, traditional terrestrial telecommunication networks

and even the satellite networks are increasingly capable of

communicating with each other anytime and anywhere, which

requires that the ITS is suitably equipped for handling a

diverse variety of communication entities. Finally, the IoV

based ITS has a complex time-space structure. The mobility

of the vehicles on the road leads to a dynamically evolving

topology. Moreover, both their movement trajectory and po-

sition distribution are affected by the terrain and population

distribution in the city.

Due to the cooperation among vehicles, diverse sources

of information may be sensed, transmitted and integrated

in the context of IoV aided ITS. However, in view of the

aforementioned complex time-space characteristics, the IoV

aided ITS has irregularly fluctuating dynamic topological

structures, which gives rise to grave challenges. Although

cellular communication and networking technologies support

convenient communications as well as some entertainment

services for drivers and passengers, they are not well-suited for

some of the sensing aided traffic information collection and

diffusion services in V2V or V2I communications [9] [10].

In the literature of the traffic information collection and

diffusion, Palazzi et al. [11] proposed an inter-vehicular com-

munication architecture capable of promptly propagating their

messages over a vehicular network. Specifically, relying both
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on the features of device-to-device (D2D) and on vehicular

networks, Cheng et al. [12] presented a reliable and efficient

D2D-aided vehicular communications framework for ITS.

Furthermore, relying on an ad hoc inter-vehicle network,

a decentralized traffic information dissemination mechanism

was conceived by Wischhof et al. [13]. By exploiting the

moderately delay-tolerant nature of traffic message propaga-

tion, an analytical model based on a traditional bidirectional

highway scene was presented by Agarwal et al. [14]. Further-

more, Chaqfeh et al. [15], surveyed the family of information

broadcasting techniques relying both on data caching and on

redundancy reduction. In [16], Panichpapiboon et al. reduced

the delivery overhead by selecting only a subset of relay

nodes for rebroadcasting information based on positioning

information. Recently, Zhu et al. [17] proposed a mobile data

offloading system that integrated the classic cellular network

and opportunistic vehicular communications. In [18], Zhang et

al. proposed a rapid traffic information dissemination model

for a large-scale urban road network, which had a degree

of autonomy and a high traffic information dissemination

efficiency. Moreover, Kim et al. [19] maximized the data

dissemination success probability under the practical condition

that the size of local data storage was limited and that the

wireless connectivity table was unknown. This was achieved

by a greedy online learning algorithm. Furthermore, a novel

framework was proposed by Rémy et al. in [20] [21] for

a centralized vehicular network organization based on a 4G

Long Term Evolution (LTE) network. However, these con-

tributions primarily focused their attention on the topology

characteristics and on the communication performance of

vehicular networks instead of considering the quantity, density

and heterogeneity of smart nodes in an IoV sensing aided

network [22] [23] [24] [25]. These challenges inspired us to

conceive this article on the architecture and key technologies

of IoV sensing aided traffic information collection and diffu-

sion [26]. In this paper, considering the complex characteristics

of IoV networks, relying on a real-world dataset, we studied

the IoV aided traffic information collection and diffusion by

providing the following original contributions.

• This is the first treatise establishing a weighted and undi-

rected graph model of IoV sensing networks. Moreover,

we define the communication impedance of both the

nodes and of the links based on their communication

performances and network parameters.

• We invoke complex network based techniques for ana-

lyzing the topology of the IoV network constructed by

the taxi-GPS database of Beijing city [27]. Based on

these parameters, we characterize the time-invariance of

the IoV network and study the relationship between their

topology and communication performance, which plays

a vital role in urban traffic control and management.

• We propose an IoV aided local traffic information col-

lection architecture, and an efficient sink node selection

scheme for supporting information influx as well as an

optimal traffic information transmission model relying

on the defined communication impedance in order to

improve the information transfer efficiency.

 

Sink Vehicle

Sensing Vehicle

Control Center

Sensing vehicle to sink vehicle

Sink vehicle to control center

Control center to sink vehicle

Sink vehicle  to sensing vehicle

GPS

Control 

Center

ontrrooll

enterrrrrr

•  Integrating traffic information

•  Forwarding command 

messages

 

Control Center

•  Sensors: GPS, radar, cameras

•  Control and management units

•  Communication unis: IEEE 802.11, LTE 

 

Sensing Vehicle

•  Gathering traffic information

•  Forwarding information to 

control center

 

Sink Vehicle

Fig. 1. The scenario of IoV aided traffic information collection and diffusion.

The remainder of the article is outlined as follows. In

Section II, we present the system model of the IoV sensing

aided traffic information collection and diffusion. Section III

establishes a weighted and undirected graph model of the

IoV network and identifies its key parameters as well as their

characteristics. In Section IV, we propose an IoV aided traf-

fic information collection architecture, a sink-node selection

scheme for information influx as well as an information flow

control algorithm. Section V characterizes the performance

of the proposed algorithms, followed by our conclusions in

Section VI.

II. SYSTEM MODEL

Traditional traffic management policies, such as odd-even

day vehicle bans, license plate quota, etc., which may relieve

the traffic congestions to some extent are unable to take into

account the road-network’s conditions, nor do they consider

the urban population distribution and the peak/off-peak time

factor. More efficient traffic management can be established

by exploiting seamless information exchange and coordination

across the entire IoV network. Specifically, with the aid of

an IoV network, the traffic flow prediction mechanism is

capable of relieving roads from heavy traffic and/or predict-

ing the peak-traffic times and locations relying on historical

observation data and real-time GPS location information.

Moreover, traffic light scheduling management may be invoked

to control traffic flow in order to approach the maximum

network throughput. The vehicle speed management system

broadcasts the notification of speed limits, which is intended

to both ensure traffic safety and to beneficially exploit the road

conditions. This is achieved by planning and recommending
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optimal driving routes for maintaining a smooth traffic flow,

as well as providing constructive feedback for future road-

network design. In this section we propose an IoV assisted

network architecture for improving the efficiency of both

collecting and diffusing traffic information.

As for top-level urban traffic management, we need global

information for making final decisions. As shown in Fig. 1,

the vehicles should be equipped with sensors, control and

management units, and communication units in order to fulfil

certain tasks. In addition to the wide-spread classic sensors,

such as GPS, radar, cameras, and so on, the vehicles may

also be equipped with specific sensors depending on their

missions. Moreover, the control and management units are

responsible for the collaboration of each part. The communica-

tion units are composed of multiple modules obeying various

protocols, such as IEEE 802.11, LTE, and so on, in order

to support different communication purposes. The control

center has a powerful data fusion, information processing and

communication capability for integrating traffic information

and for forwarding command messages. Since each vehicle

has a limited sensing scope and computational capability, the

information collected from each sensing vehicle has to be

aggregated by sink vehicles (gateways), whose responsibility

is to gather the information from the other nodes in the ITS

and to forward the traffic information to the control center.

Then, these sink vehicles can take charge of broadcasting the

traffic control messages from the control center to the other

vehicles.

The IoV-aided traffic management relies on three stages.

First, we determine the IoV-aided sensing architecture, where

the vehicles are classified into several subdomains in terms

of their geographic location as well as their communication

environment. The vehicles equipped with specific sensors

collect the relevant traffic information within each subdomain.

Secondly, in each subdomain, one of the sink vehicles (the red

one in Fig. 1) is selected as the gateway, and the remaining

sensing vehicles transmit their traffic information to the sink

vehicle. Moreover, all the gateways forward the aggregated

traffic information to the traffic control center. Thirdly, upon

receiving the traffic control messages from the control center,

the sink vehicles broadcast the relevant information to the

remaining vehicles.

In the following, we first embark on modeling the IoV-aided

vehicular network relying on complex network theory [7] [8],

and then study the relevant techniques of the aforementioned

three stages invoked for efficient traffic management.

III. A WEIGHTED AND UNDIRECTED GRAPH MODEL FOR

IOV NETWORKS

Let us now construct a weighted and undirected graph

model of the IoV-based traffic information collection and

diffusion, where each interaction represents some traffic in-

formation transmission between a pair of vehicles. We rely

on a specific weighting of the nodes for indicating the traffic

information collection and distribution capability of each smart

unit. Moreover, the weighting quantifies the performance of

each information diffusion link, which are related to the fading,

to the environmental impairments, to the cellular handover,

etc. The following assumptions are stipulated to simplify our

weighting process:

• All the vehicles or road-side infrastructure elements have

an identical communication capability. A pair of nodes

are only capable of communicating with each other,

provided that they are within a specified maximum in-

formation transmission range r. Based on the idealized

simplifying assumption of having instantaneous wireless

information transmission, the main communication delay

depends on the store-and-forward process of each node.

• Additive White Gaussian Noise (AWGN) is assumed,

which is wide-sense stationary (WSS). Furthermore, a

low-complexity empirical model is invoked for charac-

terizing the urban wireless communication channel [28].

Additionally, we neglect the cellular coverage gaps.

Relying on the aforementioned assumptions, we propose the

concept of node/link communication impedance quantifying

the above-mentioned weighting, in order to characterize the

node/link performance. Sommer et al. [28] proposed a compu-

tationally efficient empirical obstacle model for characterizing

the radio propagation in urban environments, which considered

the large-scale path loss, deterministic small-scale fading as

well as the probabilistic attenuation effects. The total path loss

is given by Lx = Lfreespace + Lobs, where Lfreespace rep-

resents the best-case Line-of-Sight (LOS) propagation model

between transmitters and receivers, and Lobs represents the

additional attenuation imposed by obstacles, which are given

by:

Lfreespace[dB]= 10 lg

(

16π2

λ2
dκ

)

, (1)

as well as

Lobs[dB]= β1n+ β2dm, (2)

where λ is the wavelength and d represents the distance be-

tween the source node and the destination node. Furthermore,

n denotes the number of occurrences that the obstacle is

intersected by the LOS and dm is the total length of the

obstacles’ intersection. We assume that the path loss exponent

is κ = 2.2 and the associated calibration factors in Eq. (2) are

β1 = 9dB per wall and β2 = 0.4dB per meter, respectively.

The reduction of the cellular radius is also beneficial in

terms of increasing the system’s achievable capacity. We

assume that the cell is a circle with radius rc and we assume

having no coverage dead zones. The number of handovers is

denoted by nij .

When relying on the urban wireless channel model and ultra

dense cellular scenarios resulting in numerous handovers, as

well as on the concepts of node degrees and betweenness

centralities1 of the complex network [29], we define the

weighting of the communication links connecting node i and

node j under the condition of dij ≤ r, which may be termed

1The betweenness centrality of a node is a measure of centrality in a graph
based on shortest paths. It is defined by the number of shortest paths that
pass through the node quantified in terms of the number of nodes rather than
distance.
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as the link’s communication impedance Rij , as follows:

Rij = α1(kiBi+kjBj)
ψ1+α2Lij

ψ2−α3(ENR/dij)
ψ3+α4nij .

(3)

For dij > r, we have Rij = ∞, while ki represents the node

degree of vehicle i and Bi denotes its betweenness centrality.

The energy per bit to noise power spectral density ratio is

given by ENR2 [30]. Furthermore, α1, α2, α3 and α4 are

additional characteristic parameters, which vary as a function

of the network’s topology, and ψ1, ψ2, ψ3 are nonlinear control

parameters. Lij denotes the pass loss between vehicle i and

vehicle j. Physically, the communication impedance takes into

account the node’s between centrality, transmission distance,

unit energy to noise ratio as well as the number of cellular

handovers. First of all, a vehicle having a high node-degree and

a high betweenness centrality plays a much more important

role in the communication missions, since they potentially

contribute to a long store-and-forward delay and to a high

probability of blocking. Secondly, a high transmission distance

between a pair of nodes results in a high path loss and a high

power consumption but a potentially reduced delay, since less

store-and-forward processes are involved. Furthermore, a small

cellular radius leads to a high number of handovers nij , which

further increases the transmission delay and degrades the com-

munication performance attained. Finally, a high average ENR

per unit distance contributes to high-quality communication,

which corresponds to a low communication link impedance.

In a nutshell, we have constructed a weighted and undi-

rected complex network graph model G = (V,E,R) for the

vehicular network considered in Fig. 2, where V represents

the set of smart units and E denotes the set of graph-edges

representing the interactions amongst the nodes. Moreover, the

set of weights, namely the communication link impedances R,

quantifies the traffic information diffusion performance. In the

following, relying on the proposed graph model, we will focus

our attention on the IoV aided traffic information collection

and diffusion process.

IV. IOV AIDED TRAFFIC INFORMATION COLLECTION AND

DIFFUSION

A. IoV aided Traffic Information Collection Architecture

Having a well-designed IoV-aided sensing architecture criti-

cally hinges on the traffic information diffusion coverage range

of Fig. 2. In [31], Yang et al. derived the achievable rate Λ of

the uplink transmission of user k, which is given by:

Λ , (1− τ − ς) E[log(1 + γ)], (4)

where γ represents the signal-to-interference-plus-noise-ratio

(SINR), which is characterized by the channel model param-

eters and antenna parameters. Furthermore, τ is the channel

estimation duration and ς denotes the propagation delay, but

we only consider the value of Λ, rather than its individ-

ual parameters. Hence, we define the node’s communication

impedance Ri as follows:

Ri = ξ1(kiBi)
ω1 + ξ2Λ

ω2 , i = 1, 2, ..., N, (5)

2ENR is a normalized signal-to-noise ratio (SNR) measure, which is defined
as the SNR per bit.

Gateway vehicles

Other vehicles

Base Station

r

dij

Vehicle  j

Rij

(ki , Bi)

(kj , Bj)

Cluster I

Cluster II Cluster III

Vehicle  i

Fig. 2. The IoV aided traffic information collection architecture.

Algorithm 1 IoV Aided Spectral Clustering

• Initialization

Calculate the Euclidean distance dij of each pair of vehicles;

Generate the adjacency matrix relying on the maximum

communication range of r = 1000m;

Calculate ki, Bi, Λ and Ri in Eq. (5);

Determine the generalized distance matrix Dij .

• Spectral Clustering

Generate the Laplacian matrix LM , i.e., LM = dM −Dij ,

where dM is the degree matrix;

Calculate the normalized Laplacian matrix LM ;

Find its N smallest eigenvectors to construct a vector;

Use the K-means algorithm to cluster the new vector space.

• Output

Plot the clustering results.

where ki represents the degree of node i and Bi denotes its

betweenness centrality. Moreover, Λ represents the throughput

of a certain V2V or V2I link, as defined in Eq. (4). Fur-

thermore, ξ1 and ξ2 represents the characteristic parameters,

which depend on the network topology, while ω1 and ω2 are

nonlinear control parameters invoked for the sake of flexibility.

Thus, relying on the concept of the node’s communica-

tion impedance, we formulate the generalized distance Dij

between vehicle i and vehicle j as:

Dij = ǫ(Ri +Rj) + (1− ǫ)dij , (6)

where Ri and Rj represent the communication impedance

of vehicle i and vehicle j, respectively. Furthermore, dij is

the distance between the two vehicles, while ǫ denotes the

weighting coefficient.

Based on the definition of the node’s communication

impedance, we propose a clustering-style subdomain partition-

ing algorithm, namely IoV aided spectral clustering, to con-

ceive our IoV aided traffic information collection architecture

of Algorithm 1.
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B. Gateway Selection for Traffic Information Collection

In each IoV subdomain, the vehicles collect the surround-

ing traffic information and transmit it to the gateway nodes

for further processing. The location of the gateway nodes

determines both the attainable communication efficiency and

the associated overhead. In this subsection, the criterion of

selecting the gateway nodes is that of maximizing the network

capacity quantified in terms of the node’s peak-load capacity,

which can be formulated as:

Θ =
M

maxi{Riq(i)}
, (7)

where we denote the delivery capacity of each vehicle by M ,

while Ri is node i’s communication impedance. Moreover,

q(i) represents the probability of any packet passing through

node i.

In the IoV based vehicular network, the specific choice

of the gateway, which is usually characterized by carrying

a heavy tele-traffic load, has a substantial influence on the

network’s capacity. Therefore, it is of vital importance to

study the optimal gateway selection strategy by formulating

a network capacity optimization model.

In our model, Dijkstra’s classic routing strategy is used

for forwarding packets and each node has a first-in-first-out

(FIFO) packet queue. Moreover, once a packet reaches its

destination gateway, it is removed from the network.

Let gst represent the number of the shortest paths emerging

from the source node s to the gateway t, and nist denotes the

number of the shortest paths via node i from s to t. Then we

have:

q(i) =
∑

s(s 6=i)

∑

t(t 6=i)

p(s, t)
nist
gst

, (8)

where p(s, t) is the probability of a packet being selected for

routing from the source node s to the gateway t. If both the

sources and gateway destinations are chosen uniformly for

routing, Θ of Eq. (7) can be rewritten as:

Θ =
M(N − 1)(N − 2)

maxi{Ri
∑

s(s 6=i)

∑

t(t 6=i)

ni

st

gst
}
. (9)

However, in our model, we specifically select the gateway

node in order to maximize the network capacity Θ of Eq. (7)

instead of using a uniform-selection strategy. The selection

of the gateway is given by the probability p(t), but we still

assume that the source nodes are uniformly distributed and are

independently selected. Hence, we have:

p(s, t) = p(s)p(t) =
p(t)

N − 1
. (10)

Then, the probability of any packet passing through node i
during routing can be calculated as follows:

q(i) =
∑

s(s 6=i)

∑

t(t 6=i)

p(s, t)
nist
gst

=
1

N − 1

∑

s 6=i

∑

t 6=i

p(t)
nist
gst

.

(11)

Moreover, we define q(i|t) to represent the probability of a

packet passing through node i conditioned on its arrival at the

gateway t, which is formulated as:

q(i|t) =
1

N − 1

∑

s(s 6=t,s 6=i)

nist
gst

. (12)

Hence, Θ of Eq. (7) can be reformulated as:

Θ =
M

maxi{Riq(i)}

=
M

maxi{Ri
∑

t p(t)q(i|t)}
.

(13)

Therefore, the optimal gateway selection is formulated as

the following optimization problem:

max Θ

s.t. 0 ≤ p(t) ≤ 1,
∑

t

p(t) = 1.
(14)

Hence, to maximize the capacity Θ of the vehicular network

having N nodes is equivalent to solving the following min-

max problem:

min maxi{Ri
∑

t
p(t)q(i|t)}

s.t. 0 ≤ p(t) ≤ 1,
∑

t

p(t) = 1.

(15)

After introducing the auxiliary variable of

Ω = maxi{Ri
∑

t
p(t)q(i|t)} (i = 1, 2, ..., N), (16)

the optimization problem of Eq. (15) can be cast as the

following linear programming problem:

min Ω

s.t. RAp− Ω1 ≤ 0,

pT1 = 1,

p ≥ 0,

(17)

where A = [q(i|t)], p = [p(t), t = 1, 2, ..., N ]T and 1 =
[1, 1, ..., 1]. Moreover, R is defined as:

R =













R1 0 · · · 0

0 R2

...
...

. . . 0
0 · · · 0 RN













. (18)

Thus, we can readily find the minimum of Ω with the aid of

linear programming algorithms. Furthermore, we can rewrite

the linear programming problem of Eq. (17) relying on a slack

variable y, yielding

min Ω

s.t. RAp− Ω1+ y = 0,

pT1 = 1,

y ≥ 0,

p ≥ 0.

(19)
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Here, the new linear programming problem has (2N + 1)
variables, such as p, y and Λ. Upon taking into account the

constraints, we arrive at (N + 1) equalities, i.e., pT1 = 1
as well as RAp−Ω1+ y = 0. Therefore, based on simplex

theory applied to our linear programming problem of Eq. (19),

we can infer that at least N of these (2N + 1) variables are

0. Given that Ω > 0, we have:

Np(t)>0 = N − χ(p=0) ≤ χ(y=0), (20)

where χ(• = 0) represents the number of 0 values in the

vector “•”.

Based on the above optimization framework, we can find our

numerical solution relying on numerous iterative algorithms.

The specific numerical solution algorithm we opted for is

based on the obstacle function method [32], which is detailed

in Section IV-C.

C. IoV-Aided Information Flow Optimization

Upon receiving any traffic control information, the gateways

of each IoV subdomain broadcast the messages to the other

vehicles. In order to support near-real-time traffic information

broadcasting, a combination of multiple techniques will be

considered.

The optimal user equilibrium (EU) is defined as the specific

system state, in which any unilateral change degrades the

objective function’s (OF) value in our communication system.

Under the assumption that the impedances of all the links

are known at a given time, we seek the optimal solution. For

simplicity, we assume that there are certain packets that have

to be transmitted from a source node to several gateways and

vice versa. The total number of packets to be transmitted

is denoted by Q. Moreover, X = x1, x2, ..., xn represents

the total tele-traffic allocation set, where xi has to be routed

through the ith communication link. Again, Dijkstra’s classic

routing mechanism is considered [33], which finds the shortest

path from a source vertex to a destination vertex, in a graph

having weighted undirectional links. Hence, we define the OF

C(x) as:

C(x) =
n
∑

i=1

Ci(xi)

=

n
∑

i=1

∑

u,v

xiR
i
uv,

(21)

where Riuv is the communication impedance between node u
and v along Dijkstra’s path, when conveying the tele-traffic

xi. Let c represent the maximum communication capacity

of each communication link, which indicates the maximum

number of communication tasks and muv denotes the total

communication tasks on the communication link between

nodes u and v, i.e., we have muv ≤ c. Thus, we construct

the following optimization problem:

min C(x) =

n
∑

i=1

∑

u,v

xiR
i
uv

s.t. xi ≥ 0, ∀i = 1, 2, ..., n,
n
∑

i=1

xi ≥ Q,

muv =

n
∑

i=1

xia
i
uv ≤ c, ∀u, v ∈ V,

(22)

where x = [x1, x2, ..., xn]
T

. Specifically, we have aiuv = 1,

when the traffic xi is conveyed through the link connecting

nodes u and v, otherwise aiuv = 0. The OF C(x) has a linear

form and the constraints are generalized inequalities. Then,

the network’s traffic allocation optimization problem can be

deemed to be the convex optimization problem of Eq. (23),

min C(x)

s.t. x ≥ 0,

xT1 ≥ Q,

Ax ≤ c1,

(23)

with the definition of the traffic-edge incidence matrix A ∈
RE×n given by:

Aij =

{

1, traffic j passing the edge i,
0, otherwise,

(24)

where E represents the total number of edges in the graph,

x = [x1, x2, ..., xn]
T

, and 1 = [1, 1, ..., 1] T .

Due to the “small-world nature” of the links, the traffic-edge

incidence matrix A is usually a sparse matrix. As a convex

optimization problem, its standard form is given by:

min xTRw

s.t. − x ≤ 0,

Q− xT1 ≤ 0,

Ax− c1 ≤ 0,

(25)

where Rw represents the sum of the communication

impedances along each traffic allocation path. It is a vector

optimization problem, which is subjected to generalized in-

equality constraints. Hence, a closed-form expression solution

is difficult to obtain. Nevertheless, we incorporate an eigen-

function I−(u) to rewrite this linear programming problem,

yielding:

min xTRw +
n+E+1
∑

i=1

I−[fi(x)]

s.t. fi(x) = −xi, i = 1, 2, ..., n,

fi(x) = Q− xT1, i = n+ 1,

fi(x) = Aix− c, i = n+ 2, n+ 3, ..., n+ E + 1,
(26)

where I−(u) = −(1/t) log(−u), and Ai represents the row

vector of the matrix A, while the auxiliary variable of t > 0
controls the computational accuracy. Then, we have the fol-
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lowing expression:

min xTRw +
n+E+1
∑

i=1

−
1

t
log[−fi(x)]

s.t. fi(x) = −xi, i = 1, 2, ..., n,

fi(x) = Q− xT1, i = n+ 1,

fi(x) = Aix− c, i = n+ 2, n+ 3, ..., n+ E + 1.
(27)

Naturally, the logarithmic barrier function is defined as:

Φ(x) = −

m
∑

i=1

log[−fi(x)], (28)

and the domain of Φ(x) is {x ∈ Rn|fi(x) < 0, i=1,...,m}.

In [32], Boyd et al. have derived the gradient and Hessian

matrix of the logarithmic barrier functions of:

∇Φ(x) =

m
∑

i=1

1

−fi(x)
∇fi(x), (29)

as well as

∇2Φ(x) =

m
∑

i=1

1

fi(x)
∇fi(x)∇fi(x)

T
+

m
∑

i=1

1

−fi(x)
∇2fi(x).

(30)

Considering the equivalence form of (27), we have:

min txTRw +
n+E+1
∑

i=1

− log[−fi(x)]

s.t. fi(x) = −xi, i = 1, 2, ..., n,

fi(x) = Q− xT1, i = n+ 1,

fi(x) = Aix− c, i = n+ 2, n+ 3, ..., n+ E + 1.
(31)

The solution of the optimization problem Eq. (31) is marked

as x∗(t). Now we are in the position of proving that the

deviation between x∗(t) and the optimal solution of the primal

problem Eq. (25) is less than (n+E+1)/t. Therefore, we have

to sequentially solve a series of convex optimization problems,

and regard the present optimal solution as the initial point of

the next-round of the optimization problem. Upon increasing

t, the suboptimal solution is gradually approaching the primal

problem’s optimal solution. Furthermore, x∗(t) satisfies the

Karush-Kuhn-Tucker condition [32], and we have:

tRw −
1

x
+

1

Q− xT1
· 1+AT 1

c1−Ax
= 0, (32)

where 1
x
=[ 1

x1

, 1
x2

, ..., 1
xn

]
T

, ∀x∈Rn. At the time of writing,

it remains an open challenge to derive an analytical solution

of the problem in Eq. (32). Hence, in Algorithm 2 we propose

a solution relying on the classic Newton method of [34].

V. SIMULATION ANALYSIS

In this section, we investigate the traffic information col-

lection and diffusion over IoV networks relying on their

topological time-invariance. Subsections V-A and V-B validate

the time-invariant characteristics of the IoV network in terms

of their parameters, such as the time-invariant clustering

coefficient and the betweenness centrality. Subsection V-C

Algorithm 2 An Iterative Algorithm for the Solution

• Initialization

Find a strictly feasible interior point x(0);

Set the auxiliary variable t = t(0);
Set the increment µ > 1 and the error threshold ǫ > 0.

• Iteration

while (n+ E + 1)/t ≥ ǫ do

Minimize the objective function under the constraint

conditions in (31), and determine the x∗(t) [32];

Update the x(i) := x∗(t);
Change the step-length ti := µt;

end while

• Output

Output the x∗(t);
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Fig. 3. Snapshot of the taxis’ GPS coordinates in Beijing City (Longitude
[116.25, 116.55], Latitude [39.80, 40.05]). Map layer from Google Maps.

characterizes the gateway selection performance based on our

proposed algorithm.

A. Data-Driven Complex IoV Networks

We construct an IoV network relying on a real-world

dataset, which contains the taxi GPS data of Beijing city

(longitude from 116.25 to 116.55, and latitude from 39.80 to

40.05) obtained from Microsoft Research Asia [27], for exam-

ple. We first introduce the main parameters of the associated

complex network and then discuss the statistical characteristics

of this real-world data-set.

Based on the aforementioned taxi GPS dataset, Fig. 3 shows

a snapshot of the taxis’ position distribution at a certain time

instant, which reflects the layout of Beijing city, including the

roads and the partition of the downtown and suburban areas.

According to the IEEE 802.11p standard [35], the maximum

information transmission range is r = 1000m. Hence, we

construct a distance-based vehicular network topology. In the
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Fig. 4. The complex network based parameters.

following, we verify the “small-world” property and “scale-

free” nature of the IoV aided vehicular network in terms of

the following topological parameters:

Node Degree Distribution: The node degree ki is defined

as the number of other nodes the reference node is capa-

ble of communicating with. Moreover, p(k) represents the

probability that a random node’s degree is k. Usually, the

node distribution p(k) of a real-world network obeys the

Poisson distribution or the power-law distribution. A data-

driven numerical simulation is conducted for our vehicular

network (Longitude [116.25, 116.55], Latitude [39.8, 40.05]),

for example. Fig. 4 (a) shows the node degree distribution of

the network, which follows an approximate Poisson distribu-

tion.

Clustering Coefficients: Vehicle i’s clustering coefficient is

defined as:

oi =
Ei

ki(ki − 1)/2
, (33)

where ki represents the node degree of vehicle i and Ei
denotes the total number of the communication links among

the neighbors of node i. This terminology indicates that

the clustering coefficient characterizes the clustered versus

dispersed nature of the network. Furthermore, the overall

clustering coefficient of the entire network is the average of

oi. The dot symbols in Fig. 4 (b) characterize the clustering

coefficients of all vehicles. Relying on the software Pajek3,

the average network clustering coefficient can be calculated

as o = 1
N

∑N

i=1 oi = 0.6666.

Betweenness Centrality: Relying on the node degree, to a

certain extent, we are capable of measuring the significance

of each node. Specifically, the larger the node’s degree, the

more important role the node plays during the information

transmission process. However, under some circumstances, a

node having a low degree may also play a critical part by

acting as a bridge when connecting two clusters. In order to

accurately quantify the importance of node i, the normalized

3Pajek is an open source Windows program for analysis and visualization
of large networks having some thousands or even millions of vertices.

betweenness centrality Bi is defined as:

Bi =
2

(N − 1)(N − 2)

∑

s 6=i 6=t

nist
gst

, (34)

where gst represents the number of shortest paths leading from

the source node s to the destination node t, while nist denotes

the number of the shortest paths via node i spanning from

s to t. Based on the definition in Eq. (34), we calculate the

betweenness centrality of each node as indicated by Fig. 4 (c).

Average Path Length: The average path length L represents

the average number of hops in terms of the shortest multi-hop

path. It measures the tightness of the vehicular network. Let

hij stand for the number of shortest path based hops between

the communication link spanning from node i to node j, i.e.,

L =
2

N(N − 1)

N
∑

i,j=1;i≥j

hij . (35)

For each region in Fig. 3, we have L1 = 6.3623, L2 = 6.5222,

L3 = 5.4683, L4 = 6.4670, L5 = 5.8115, and L6 = 5.8657.

According to the network clustering coefficient of o =
0.6666 as well as to the network’s average path length L =
6.0828, the IoV based vehicular network is characterized by

a high degree of clustering and a “six-degree”4 average local

path length, which conforms to the “small-world” property.

Hence, the vehicular network can be deemed to be a local

small-world complex network. Relying on dynamic theory and

on synchronous control theory in the WS small-world model

of [7] and in the NW small-world model of [36], we are

now well placed for managing the information diffusion over

vehicular networks. In Fig. 4 (d), the cumulative distribution

function of the betweenness centrality is illustrated in a log-

log coordinate form. The Kolmogorov-Smirnov (K-S) test’s

p-value benchmarked by the fitted power-law distribution

is p = 0.19. As for the scale-free nature of betweenness

centrality based on Fig. 4 (d), we infer the conclusion that

only a few nodes of our vehicular network play a critical role

in the information diffusion process. It is beneficial for us to

focus our attention on the vehicles at crossroad, as well as

transportation hubs, acting as the bridging nodes.

B. Time-Invariance Verification

In the following, we analyze the taxis’ GPS dataset at

recorded at different times and verify the topological time-

invariance of our vehicular network.

Table I shows some of the network’s topological parameters,

such as the number of vehicles on the road, the average

node degree, the node degree correlation5, the average shortest

distance, the betweenness centrality and the clustering coef-

ficient at different moments of the day. We can find that the

number of vehicles and the average node degree varies with

different times in a day. Specifically, given that 8:00 a.m. is

the morning peak-time of Beijing city, numerous taxi drivers

4Six-degree separation is the idea that all living things and everything else
in the world are six or fewer steps away from each other, i.e. two nodes can
be connected via a maximum of six intermediate nodes in a large network.

5Degree correlation is for quantifying the preference of the connection of
nodes.
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TABLE I
TOPOLOGICAL TIME-INVARIANCE VERIFICATION

Time No. of Vehicles 1 Av. Node Deg. 2 Deg. Corr. 3 Av. Dist. (m) 4 Betweenness Clus. Coef. 5

8:00 a.m. 4960 26.4091 0.9043 12844 0.0035 0.6749

10:00 a.m. 6870 34.8094 0.8290 11905 0.0027 0.6631

12:00 noon 7510 49.4798 0.8636 11628 0.0027 0.6666

14:00 p.m. 7475 48.3738 0.8485 11359 0.0028 0.6569

16:00 p.m. 7668 47.6251 0.8493 11305 0.0027 0.6583

18:00 p.m. 7863 47.6692 0.8413 11317 0.0026 0.6572

20:00 p.m. 7869 45.3365 0.8084 11472 0.0025 0.6616

1 Number of Vehicles.
2 Average Node Degree.
3 Degree Correlation.
4 Average Distance.
5 Clustering Coefficient.
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Fig. 5. The time-invariant spatial distribution.

may be unwilling to waste their time on the road because of

the heavy traffic jam. Hence, the number of vehicles arrives its

minimum. After 10:00 a.m., more and more taxies are on the

road, which also results in a substantial increase of the average

node degree. Although the node degree varies with time,

the complex network based parameters remain steady. Based

on considering the betweenness centrality and the clustering

coefficient, we surmise that the vehicular network topology

may be deemed time-invariant as well as exhibiting both

the small-world property and scale-free property. Therefore,

based on the above-mentioned complex network parameters,

the topology of the IoV aided vehicular network may indeed be

time-invariant from a macroscopic perspective. Naturally, the

time-invariance is a statistical feature of the network topology,

while the individual nodes have their own specific movement

trajectory. Hence, we may consider a static topology at a

specific moment for describing the associated dynamic graph.

Both the time-invariant small-world property and scale-free

property are beneficial in terms of managing the information

routing, the optimization of the traffic allocation as well as in

terms of designing the vehicular network structure.

The spatial distribution is a statistical feature, relying on
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Fig. 6. The communication impedance versus the carrier frequency (a) and
ENR (b) parameterized by the maximum coverage range.

the number of vehicles in specific areas. In our work, we

randomly select 50 circular and non-overlapping regions with

the radius of 1000m. Then, we calculate the total number of

vehicles in each region at different moments. Fig. 5 shows

the statistical results in ascending order. We can conclude

that after 12 : 00 noon, the number of taxis on the road

maintains a relatively stable value. Moreover, they follow a

similar spatial distribution. Although the taxi-based vehicular

network has fewer nodes in the morning, the normalized

spatial distribution is similar to that recorded at other times,

which is a manifestation of the spatial time-invariance. If we

increase the number of sampling regions to 80 or more, similar

conclusions will be valid.

C. Traffic Information Collection and Diffusion

Relying on the definition of the communication impedance,

we analyzed the performance of traffic information collection

and diffusion. In this subsection, we use the Matlab to evaluate

our proposed algorithms. Concentrating on the topological

properties of the vehicular network based on the taxis’ GPS

dataset in Beijing city, we provide constructive suggestions on

the traffic management and the network design of ITS. In the
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Fig. 7. Clustering results based on realistic distances (Tested on the subset
with the longitude from 116.31 to 116.38 and the latitude from 39.87 to 39.91
relying on the maximum transmission range r = 1000m).

following, we study the factors influencing the communication

impedance and information diffusion performance.

In our simulations, the wireless communication channel

is modeled by a computationally efficient empirical obstacle

model relying on Lx = Lfreespace + Lobs, where Lfreespace
and Lobs are defined in Eq. (1) and Eq. (2). Fig. 6 reflects the

relationship between the communication impedance versus the

carrier frequency as well as versus the ENR parameterized by

the maximum communication range. We set the characteristic

parameters of Eq. (3) to α1 = 5 × 10−6, α2 = 2.5 × 10−2,

α3 = 5 and α4 = 10−2. Moreover, the nonlinear control

parameters of Eq. (3) are given by ψ1 = 1, ψ2 = 0.8 as

well as ψ3 = 0.1. In Fig. 6 (a), we compare the communi-

cation impedance versus the carrier frequency parameterized

by the maximum communication range, where we assume

ENR = 20dB. Upon increasing the carrier frequency, the

average communication impedance R of each scenario is

also increased correspondingly. Likewise, a large maximum

communication range r contributes to increasing the aver-

age communication impedance owing to having an increased

power loss. According to the IEEE 802.11p standard, in vehic-

ular networks the maximum information transmission range is

r = 1000m and the carrier frequency is f = 5.9GHz, which

jointly determine the average communication impedance. To

elaborate a little further, Fig. 6 (b) shows the relationship

between the communication impedance and the ENR, where

we adopt the standard carrier frequency of f = 5.9GHz. All

other parameters remain unchanged. Naturally, a high ENR

leads to a low communication impedance. Since the ENR

uniquely and unambiguously determines the received signal

quality, the maximum information transmission range r is

expected to have no effect on the impedance.

Upon considering the subdomain segmentation of the traf-

fic information collection architecture, Fig. 7 portrays our

partitioning relying on realistic distances, where none of the

remaining communication constraints are considered. More-

over, let ξ1 = 2.5, ω1 = 1, ǫ = 0.5 and ξ2Λ
ω2 be

assumed to be constant. The performance of spectral clustering
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Fig. 8. Clustering results based on generalized distances (Tested on the same
subset with the Fig. 7).

116.32 116.33 116.34 116.35 116.36

Longitude

39.88

39.89

39.90

39.91

L
at

it
u

d
e

5

6

9

3

7

4

1

2

8

Index of Selected Gateways

(a) Location of Selected Gateways.

0 20 40 60 80 100

Vehicle Index n

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

S
el

ec
ti

o
n
 P

ro
b
ab

il
it

y
 p

(n
)

Gateway Selection Probability

10
0

10
1

10
2

10
-30

10
-20

10
-10

10
0

Log-Log Coordinate

(b) Gateway Selection Probability.

116.32 116.33 116.34 116.35 116.36

Longitude

39.88

39.89

39.90

39.91

L
at

it
u

d
e 24

29

31

33

50

4349
51 53

54

56

67

66

70

74

77

48

78

81

19

87

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

20

21

22

23

25
26

27

28 30
32

34

35

36

37

38

3940

41

42

44

45

46

47

52

55

57

58

59
60

61

62

63

64

65
68

69
71

72

73

75

76

79

80

82

83
84

85
86
88

89

90
91

92

93

94

95

96

97

Forwarding Load of Each Vehicle

(c) Forwarding Load Distribution.

0 20 40 60 80 100

Vehicle Index n

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

N
o

rm
al

iz
ed

 F
o

rw
ar

d
in

g
 L

o
ad

Normalized Forwarding Load

(d) Normalized Forwarding Load.

Fig. 9. The simulation results of the optimal information gateway selection
model defined in Eq. (14) (Tested on the subset with the longitude from
116.315 to 116.365 and the latitude from 39.88 to 39.91 relying on the
maximum transmission range r = 1000m).

based on the generalized distances of Eq. (6) as described in

Algorithm 1 is shown in Fig. 8. Relying on the clustering

results, the average node’s degree of Fig. 7 is 81.79, while it is

71.30 for Fig. 8. Our proposed IoV aided architecture design

may form irregular cluster shapes, but it has the minimum

communication consumption considering the vehicle’s location

and load, which provides a constructive suggestion on the local

traffic information collection.

As for the traffic information gateway selection model,

Fig. 9 shows the related simulation results, where we also

adopt the standard carrier frequency of f = 5.9GHz and

maximum communication range of r = 1000m. Fig. 9 (a)

portrays the location of each gateway node, where the size of

the dot represents the probability of the node being selected

as a gateway. In Fig. 9 (b), the selection distribution as well

as its log-log coordinate form is shown. We can find that only
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Fig. 10. The simulation results of information flow optimization model
defined in Eq. (22 parameterized by different link’s capacity c of Eq. (21)
(Tested on the subset with the longitude from 116.315 to 116.365 and the
latitude from 39.88 to 39.91 relying on the maximum transmission range
r = 1000m and Q = 1000).

a few vehicles have a relatively high probability of acting as

gateways in our heterogeneous IoV aided vehicular network.

Fig. 9 (c) and (d) record the times of forwarding a packet

of each node, namely the forwarding load, in the context

of a broadcasting scenario from one gateway node selected

according to our proposed gateway selection model to other

vehicles. The size of the dots in Fig. 9 (c) represents the node’s

forwarding load. Moreover, we calculated their normalized

forwarding load, which is shown in Fig. 9 (d). Specifically,

in our paper, the gateway vehicle is responsible for gathering

the information or for broadcasting the information gleaned

from the other nodes to the control center, and vice versa.

Explicitly, the gateways can be viewed as a bridge between

the other vehicles and the command center. Moreover, our

proposed gateway selection algorithm aims for maximizing the

network capacity quantified by the node’s peak-load capacity.

As shown in Fig. 9 (c) and (d), vehicles in the vicinity of

crossroads have a relatively high forwarding load. However,

the internal nodes may be not capable of acting as gateway

nodes. Therefore, the gateways are distributed near the border

of the network, as shown in Fig. 9 (a).

As for our proposed traffic information flow optimization

model of Section IV-C, Fig. 10 shows the planning path

parameterized by the different links’ capacity c of Eq. (21)

considering the communication impedance. The traffic infor-

mation flow on each link is quantified by the width of the line

in Fig. 10 and further characterized in Fig. 11.

VI. CONCLUSIONS

In this paper, we studied the traffic information collection

and diffusion issues of IoV networks. First of all, we analyzed

the characteristics of the GPS dataset of Beijing city taxis

and verified both the time-invariant small-world nature and the

scale-free property of the IoV network. Secondly, we defined
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Fig. 11. Traffic information flow with respect to every link parameterized
by different link’s capacity c.

the link/node communication impedance and quantified the

information collection and dissemination performance. Finally,

we proposed an IoV aided local traffic collection architecture,

a gateway selection scheme for information collection as well

as an optimal traffic information transmission model for urban

traffic control and management. Our simulation results show

that only a few vehicles have a relatively high probability of

acting as gateways and only certain routes should be selected

as the information transmission path in our heterogeneous

IoV aided vehicular network in order to achieve an improved

transmission performance and reduced communication cost.
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