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Abstract— The forecast of Internet traffic is an important is-
sue that has received few attention from the computer networks
field. By improving this task, efficient traffic engineering and
anomaly detection tools can be created, resulting in economic
gains from better resource management. This paper presents a
Neural Network Ensemble (NNE) for the prediction of TCP/IP
traffic using a Time Series Forecasting (TSF) point of view.
Several experiments were devised by considering real-world
data from two large Internet Service Providers. In addition,
different time scales (e.g. every five minutes and hourly) and
forecasting horizons were analyzed. Overall, the NNE approach
is competitive when compared with other TSF methods (e.g.
Holt-Winters and ARIMA).

I. INTRODUCTION

TCP/IP traffic forecasting is a crucial task for any
medium/large network provider that has received little atten-
tion from the computer networks community [1]. However,
there is a significant amount of tasks that have to be done by
network administrators that would gain in using forecasting
methods.

For example, several Internet Service Providers (ISP) use
Multiprotocol Label Switching (MPLS) to implement traffic
engineering by establishing a full mesh of MPLS virtual
circuits between all pairs of routers in the network [2].
In theory, this would optimize the bandwidth resources in
the network, allowing for better quality of service overall.
Even if MPLS is not used, traditional allocation of the
routing protocol weights can be done much more efficiently
with the knowledge of the future demand traffic matrix
between all end-points of the network. Hence, it is easy
to envision automatic traffic engineering tools that adapt to
future conditions of the network based on accurate traffic
forecasting algorithms. Although not a direct concern of
this work, long-term traffic forecasting can also be used
for network planning and provision and as an input to the
business/management departments.

Traffic forecasting can also help to detect anomalies in
the networks [3][4]. Security attacks like Denial-of-Service,
viruses, or even an irregular amount of SPAM can in theory
be detected by comparing the real traffic with the values
predicted by forecasting algorithms. This can result in an
earlier detection of problems which will conduct to a more
reliable service. It is also easy to envision automatic traffic
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engineering fall-back procedures that react instantaneously to
anomalies and reduce the probability of service disruption.

Nowadays, this task is often done intuitively by experi-
enced network administrators with the help of marketing
information on the future number of costumers and their
usual behaviors [1]. This produces only a rough idea of
what the traffic will look like with little use for serious day-
to-day network administration. On the other hand, contri-
butions from the areas of Operational Research, Statistics,
and Computer Science as lead to solid forecasting methods
that replaced intuition based ones. In particular, the field
of Time Series Forecasting (TSF), also termed univariate
forecasting, deals with the prediction of a chronologically
ordered variable [5][6]. The goal of TSF is to model a
complex system as a black-box, predicting its behavior based
in historical data, and not how it works.

Due to its importance, several TSF methods have been pro-
posed, such as the Holt-Winters [7], the ARIMA methodol-
ogy [8] and Neural Networks (NN) [9][10][11]. Holt-Winters
was devised for series with trended and seasonal factors.
More recently, a double seasonal version has been proposed
[12]. The ARIMA is a more complex approach, requiring
steps such as model identification, estimation and validation.
Each ARIMA model is based on a linear combination of past
values and/or errors. NNs are connectionist models inspired
in the behavior of central nervous system, and in contrast
with the previous methods, they can predict nonlinear series.
In the past, several studies have proved the predictability
of network traffic by using similar methods, such as Holt-
Winters [3][13] and ARIMA [3][14][1]. Following the evi-
dence of nonlinear network traffic [15], NNs have also been
proposed [16][4].

Our approach uses already available information provided
by Simple Network Management Protocol (SNMP) that quan-
tifies the traffic passing through every network interface with
reasonable accuracy [17]. SNMP is widely deployed by every
ISP/network so the collection of this data does not induce any
extra traffic on the network.

Based on recent data provided by two distinct ISPs, several
experiments will be carried out in order to provide network
engineers with useful feedback regarding the effectiveness
of such techniques. The main contributions of this work are:
i) Internet traffic is predicted using a pure TSF approach
(i.e., only past values are used as inputs), in opposition
to [1][3][13] and allowing its use in wider contexts; ii) in
contrast with previous studies [1][15][16][4], the predictions
are analyzed at different time scales (e.g. five minutes and
hourly), and considering distinct lookahead horizons; iii) sev-
eral forecasting methods are tested and compared, including
the Holt-Winters (both traditional and recent double seasonal
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versions), the ARIMA methodology and a NN ensemble
based approach. As a result, the research work presented
in this paper is expected to be an effective contribution
for the development of intelligent network traffic forecasting
engines.

The paper is organized as follows. Firstly, the Internet
traffic data is presented and analyzed in Section II. The
adopted forecasting methods are given in Section III, while
the results are presented and discussed in the Section IV.
Finally, closing conclusions are drawn (Section V).

II. TIME SERIES ANALYSIS

A time series is a collection of time ordered observations
(y1, y2, . . . , yt), each one being recorded at a specific time t
(period), appearing in a wide set of domains such as Finance,
Production and Control [6]. A time series model (ŷt) assumes
that past patterns will occur in the future. Another relevant
concept is the horizon or lead time (h), which is defined by
the time in advance that a forecast is issued.

The overall performance of a forecasting model is evalu-
ated by an accuracy measure, namely the Sum Squared Error
(SSE) and Mean Absolute Percentage Error (MAPE), given
in the form [5]:

et = yt − ŷt,t−h

SSEh =
∑P+N

i=P+1
e2

i

MAPEh =
∑P+N

i=P+1

|yi−byi,i−h|
yi×N

× 100%

(1)

where et denotes the forecasting error at time t; yt the
desired value; ŷt,p the predicted value for period t and
computed at period p; P is the present time and N the
number of forecasts. [18]. The MAPE is a common metric
in forecasting applications, such as electricity demand [18],
and it measures the proportionality between the forecasting
error and the actual value. This metric will be adopted in this
work, since it is easier to interpret by the TCP/IP network
administrators. In addition, it presents the advantage of being
scale independent. It should be noted that the SSE values
were also calculated but the results will not be reported here
since the relative forecasting performances are similar to the
ones obtained by the MAPE.

This work will analyze traffic data (in bits) from two
different ISPs, denoted here as A and B. The A dataset
belongs to a private ISP with centres in 11 European cities.
The data corresponds to a transatlantic link and was collected
from 6:57 AM on 7th June 2005. Dataset B comes from
UKERNA1 and represents aggregated traffic in the Janet2 (the
UK academic network) backbone. It was collected between
19th November 2004, at 9:30 AM, and 27th January 2005,
at 11:11 AM. The A time series was registered every 30
seconds, while the B data was recorded at a five minute
period. The first series (A) included 8 missing values, which
were replaced by using a regression imputation (e.g. linear
interpolation) [19]. The missing data is explained by the fact
that the SNMP scripts are not 100% reliable, since the SNMP

1United Kingdom Education and Research Networking Association
2http://www.ja.net

messages may be lost or the router may not reply on time.
Yet, this occurs very rarely and it is statistically insignificant.

Within the forecasting community, the following forecast-
ing types can be defined, depending on the time scale [10]:

• Real-time, which concerns samples not exceeding a few
minutes and requires an on-line forecasting system;

• Short-term, from one to several hours, crucial for opti-
mal control or detection of abnormal situations;

• Middle-term, typically from one to several days, used
to plan resources; and

• Long-term, often issued several months/years in advance
and needed for strategic decisions, such as investments.

Due to the characteristics of the Internet traffic collected,
this study will only consider the first two types. Therefore,
two new time series were created for each ISP by aggregating
the original values; i.e. summing all data samples within a
given period of time. The selected time scales were (Figure
1): every five minutes (series A5M and B5M) and every
hour (A1H and B1H). For each series, the first 2/3 of the
data will be used to create (train) the forecasting models
and the remaining last 1/3 to evaluate (test) the forecasting
accuracies (Table I). Under this scheme, the number of
forecasts is equal to N = NT − h + 1, where h is the
lead time period and NT is the number of samples used for
testing.

TABLE I
THE SCALE AND LENGTH OF INTERNET TRAFFIC TIME SERIES

Series Time Scale Train Size Test Size Total Size
A5M 5 minutes 9848 4924 14772
A1H 1 hour 821 410 1231
B5M 5 minutes 13259 6629 19888
B1H 1 hour 1105 552 1657

The autocorrelation coefficient, a statistical measure of the
correlation between a series and itself, lagged of k periods,
is a powerful tool for time series analysis [8]:

rk =

∑P−k

t=1
(yt − y)(yt+k − y)

∑P

t=1
(yt − y)

(2)

where y1, y2, ..., yP stands for the time series and y for
the series’ average. Autocorrelations are an efficient way
to perform decomposition, in particular for the detection of
seasonal components [5]. As an example, the autocorrelations
for the A data are plotted (Figure 2), which shows two
seasonal effects in the five minute and hourly data, due to the
intraday (K1 = 288/24) and intraweek cycles (K2 = 168).

III. FORECASTING METHODS

In the following subsections, the adopted forecasting meth-
ods will be explained in detail, including a description of the
model selection steps and implementation details.

A. Naive Benchmark Method
The most commonly used naive forecasting method is to

predict the future as the present value. Yet, this method will
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Fig. 1. The Internet traffic time series considered in this study (A5M, B5M, A1H and B1H)

perform poorly in seasonal data. Thus, a better and more
natural alternative is to use a seasonal version, where a
forecast will be given by the observed value for the same
period related to the previous seasonal cycle [18]:

ŷt+h,t = yt+h−K (3)

where K is the seasonal period. In this work, K will be
set to the weekly cycle. This Naive method, which can be
easily adopted by the network administrators, will be used
as a benchmark for the comparison with other forecasting
approaches.

B. Holt-Winters

The Holt-Winters is an important forecasting technique
from the family of Exponential Smoothing methods. The
predictive model is based on some underlying patterns (e.g.,
trended and seasonable) that are distinguished from random
noise by averaging the historical values [7]. Its popularity is
due to advantages such as the simplicity of use, the reduced
computational demand and the accuracy of the forecasts,
specially with seasonal series. The general model is defined

by the equations [6]:

Level St = α yt

Dt−K1

+ (1 − α)(St−1 + Tt−1)

Trend Tt = β(St − St−1) + (1 − β)Tt−1

Seasonality Dt = γ yt

St
+ (1 − γ)Dt−K1

ŷt+h,t = (St + hTt) × Dt−K1+h

(4)
where St, Tt and Dt stand for the level, trend and seasonal
estimates, K1 for the seasonal period, and α, β and γ for the
model parameters. When there is no seasonal component, the
γ is discarded and the Dt−K1+h factor in the last equation
is replaced by the unity.

More recently, this method has been extended to encom-
pass two seasonal cycles, by using the expressions [12]:

Level St = α yt

Dt−K1
Wt−K2

+ (1 − α)(St−1 + Tt−1)

Trend Tt = β(St − St−1) + (1 − β)Tt−1

Season. 1 Dt = γ yt

StWt−K2

+ (1 − γ)Dt−K1

Season. 2 Wt = ω yt

StDt−K1

+ (1 − ω)Wt−K2

ŷt+h,t = (St + hTt) × Dt−K1+hWt−K2+h

(5)
where Wt is the second seasonal estimate, K1 and K2 are
the first and second seasonal periods; and ω is the second
seasonal parameter.
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Fig. 2. The autocorrelations for the series A5M (top) and A1H (bottom)

The initial values for the level, trend and seasonal es-
timates will be set by averaging the early observations,
as defined in [12]. The Holt-Winters parameters will be
optimized using a grid search for the best training error
(SSE1), which is a common procedure within the forecasting
field.

C. ARIMA Methodology
The Box-Jenkins methodology is another important fore-

casting approach, going over model identification, parameter
estimation, and model validation [8]. The main advantage
of this method relies on the accuracy over a wider domain
of series, despite being more complex, in terms of usability
and computational effort, than Holt-Winters. The global
model is based on a linear combination of past values (AR
components) and errors (MA components), being named
AutoRegressive Integrated Moving-Average (ARIMA).

The non seasonal model is denoted by the form
ARIMA(p, d, q) and is defined by the equation:

φp(L)(1 − L)dyt = θq(L)et (6)

where yt is the series; et is the error; L is the lag or backshift
operator (e.g. L3yt = yt−3); φp = 1 − φ1L − φ2L

2 − . . . −
φpL

p is the AR polynomial of order p; d is the differencing

order; and θp = 1 − θ1L − θ2L
2 − . . . − θqL

q is the MA
polynomial of order q. When the series has a non zero
average through time, the model may also contemplate a
constant term µ in the right side of the equation. For demon-
strative purposes, the full time series model is presented for
ARIMA(1, 1, 1): ŷt,t−1 = µ + (1 + φ1)yt−1 − φ1yt−2 −
θ1et−1. To create multi-step predictions, the one step-ahead
forecasts are used iteratively as inputs [18].

There is also a multiplicative seasonal version,
often called SARIMA and denoted by the term
ARIMA(p, d, q)(P1, D1, Q1). It can be written as:

φp(L)ΦP1
(LK1)(1 − L)d(1 − L)D1yt = θq(L)ΘQ1

(LK1)et

(7)
where K1 is the seasonal period; ΦP1

and ΘQ1
are polyno-

mial functions of orders P1 and Q1. Finally, the double sea-
sonal ARIMA(p, d, q)(P1, D1, Q1)(P2, D2, Q2) is defined
by [18]:

φp(L)ΦP1
(LK1)ΩP2

(LK2)(1 − L)d(1 − L)D1(1 − L)D2yt

= θq(L)ΘQ1
(LK1)ΨQ2

(LK2)et

(8)
where K2 is the second seasonal period; ΩP2

and ΨQ2
are

the polynomials of orders P2 and Q2.
The constant and the coefficients of the model are usually

estimated by using statistical approaches (e.g., least squares
methods). It was decided to use the forecasting package X-
12-ARIMA [20] (from the U.S. Bureau of the Census) for
the parameter estimation of a given model. For each series,
several ARIMA models will be tested and the BIC statistic,
which penalizes model complexity and is evaluated over the
training data, will be the criterion for the model selection, as
advised by the X-12-ARIMA manual [21].

D. Artificial Neural Networks
Neural models are innate candidates for forecasting due

to their nonlinear and noise tolerance capabilities. The basic
idea is to train a NN with past data and then use this network
to predict future values. The use of NNs for TSF began in
the late eighties with encouraging results and the field has
been consistently growing since [9][10][22][11].

i
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Input Layer Hidden Layer Output Layer
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t−k2
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Fig. 3. The Multilayer Perceptron architecture

Although different types of NNs have been applied in
the forecasting literature (e.g. Recurrent Networks [22]),
the majority of the studies uses the Multilayer Perceptron
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network [9][23][10][16][11]. When adopting this architec-
ture, TSF is achieved by using a sliding time window, in a
combination also named Time Lagged Feedforward Network
in the literature. A sliding window is defined by the set
of time lags {k1, k2, . . . , kI} used to build a forecast, for
a network with I inputs. In this work, fully connected
multilayer perceptrons, with one hidden layer of H hidden
nodes, bias and direct shortcut connections will be adopted
(Figure 3). To enhance nonlinearity, the logistic activation
function was applied on the hidden nodes, while in the output
node, the linear function was used instead, to scale the range
of the outputs (the logistic function has a [0,1] co-domain)
[11]. The overall model is given in the form:

ŷt,t−1 = wo,0 +
∑I

i=1
yt−ki

wo,i

+
∑o−1

j=I+1
f(

∑I

i=1
yt−ki

wj,i + wj,0)woj

(9)
where wi,j denotes the weight of the connection from node
j to i (if j = 0 then it is a bias connection), o denotes the
output node and f the logistic function ( 1

1+e−x ). Similar to
the ARIMA methodology, multi-step forecasts are built by
iteratively using 1-ahead predictions as inputs [18].

In the training stage, the NN initial weights are randomly
set within the range [−1.0; 1.0]. Then, the RPROP algo-
rithm [24] was adopted, since it presents a faster training
when compared with other algorithms (e.g. backpropagation)
[24][25]. The training is stopped when the error slope ap-
proaches zero or after a maximum of 1000 epochs.

The quality of the trained network will depend on the
choice of the starting weights, since the error function is
non convex and the training may fall into local minima. To
solve this issue, the solution adopted is to use an Neural
Network Ensemble (NNE) where R different networks are
trained (here set to R = 5) and the final prediction is given
by the average of the individual predictions [26]. In the
literature, this ensemble construction method is known by
the term Injecting Randomness. In general, ensembles are
better than individual learners, provided that the errors made
by the individual models are uncorrelated, a condition easily
met with NNs, since the training algorithms are stochastic in
nature [27].

Under this setup, the NNE based forecasting method will
depend solely on two parameters: the choice of the input
time lags and number of hidden nodes (H). Both parameters
have a crucial effect in the forecasting performance. A
small time window will provide insufficient information,
while a high number of lags will increase the probability
of having irrelevant inputs. On the other hand, a network
with few hidden nodes will have limited learning capabilities,
while an excess of hidden nodes will lead to overfitting or
generalization loss.

Guided by the experience obtained in previous work
[23][28][11], both parameters will be set by a heuristic
model selection step, where several configurations are tested.
Therefore, the training data (2/3 of the series’ length) will
be divided into training and validation sets. The former, with
2/3 of the training data, will be used to train the NNE.

The latter, with the remaining 1/3, will be used to estimate
the network generalization capabilities. Hence, the neural
configuration with the lowest validation error (average of all
MAPEh values) will be selected. After this model selection
phase, the final NNE is retrained using all training data.

IV. EXPERIMENTS AND RESULTS

The Holt-Winters and NNs were implemented in an object
oriented programming environment developed in the Java
language by the authors. Regarding the ARIMA methodol-
ogy, the different models will be estimated using the X-12-
ARIMA package [21]. The best model (with the lowest BIC
values) will be selected and then the forecasts are produced
in the Java environment.

The Holt-Winters (HW) models were adapted to the series
characteristics. The double seasonal variant (K1 = 24 and
K2 = 168) was applied on the hourly series. Both seasonal
(K1 = 288) and non seasonal versions were tested for the
five minute scale data, since it was suspected that the seasonal
effect could be less relevant in this case. Indeed, SSE errors
obtained in the training data backed this claim. To optimize
the parameters of the selected models (results are shown in
Table II), the grid-search used a step of 0.01 for the five
minute data. The grid step was increased to 0.05 in the hourly
series, due to the higher computational effort required by
double seasonal models.

TABLE II
THE HOLT-WINTERS FORECASTING MODELS

Series K1 K2 α β γ ω

A5M – – 0.76 0.09 – –
A1H 24 168 0.70 0.00 1.00 1.00
B5M – – 1.00 0.07 – –
B1H 24 1105 0.95 0.00 0.75 1.00

Regarding the ARIMA methodology, an extensive range
of different ARIMA models were tested for each series. In
all cases, the µ constant was set to zero by the X-12-ARIMA
package, used for model selection. In case of the hourly
data, no differencing factors were used, since the series seem
stationary and the Holt-Winters models provided no evidence
for trended factors (with very low β values). A total of
eight double seasonal ARIMA models were tested, by using
combinations of the p, P1, P2, q, Q1 and Q2 values up to a
maximum order of 2. Finally, for the five minute datasets, 3
single seasonal (maximum order of 1) and 25 non seasonal
(maximum order of 5) models were explored. Similar to the
Holt-Winters case, for these series only non seasonal ARIMA
models were selected. The best ARIMA models are shown
in Table III.

For the NNE, the number of tested hidden nodes (H) was
within the range {0,2,4,6,8}, since in previous work [11] it
has been shown that even complex series can be modeled by
small neural structures. Based on the series autocorrelations
and seasonal traits, three different sets of time lags were
explored for each time scale:
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TABLE III
THE ARIMA FORECASTING MODELS

Series Model Parameters
A5M (5 0 5) φ1 = 2.81, φ2 = −3.49, φ3 = 2.40, φ4 = −0.58, φ5 = −0.13

θ1 = 1.98, θ2 = −1.91, θ3 = 0.75, θ4 = −0.26, θ5 = −0.20
A1H (2 0 0)(2 0 0)(2 0 0) φ1 = 1.70, φ2 = −0.74, Φ1 = 0.60, Φ2 = 0.06

Ω1 = −0.08, Ω2 = 0.28
B5M (5 0 5) φ1 = 1.58, φ2 = −0.59, φ3 = 1.00, φ4 = −1.58, φ5 = 0.59

θ1 = 0.74, θ2 = −0.08, θ3 = 0.97, θ4 = −0.77, θ5 = 0.06
B1H (2 0 1)(1 0 1)(1 0 1) φ1 = 1.59, φ2 = −0.62, Φ1 = 0.93, Ω1 = 0.82,

θ1 = 0.36, Θ1 = 0.72, Ψ1 = 0.44

• {1,2,3,24,25,26,168,167,169},
{1,2,3,11,12,13,24,25,26} and {1,2,3,24,25,26} for the
hourly data; and

• {1,2,3,5,6,7,287,288,289}, {1,2,3,5,6,7,11,12,13} and
{1,2,3,4,5,6,7} for the five minute scale series.

The best forecasting neural models appear in Table IV. The
number of hidden nodes suggest that the A datasets are
nonlinear while the data from the ISP B are linear. Regarding
the selected time lags, it is interesting to notice that there are
two models that contrast with the previous methods: the B5M
model includes seasonal information (K1 = 288), while the
A1H does not use the second seasonal factor (K2 = 168).

TABLE IV
THE NEURAL NETWORK ENSEMBLE FORECASTING MODELS

Series Hidden Nodes (H) Input Time Lags
A5M 6 {1,2,3,5,6,7,11,12,13}
A1H 8 {1,2,3,24,25,26}
B5M 0 {1,2,3,5,6,7,287,288,289}
B1H 0 {1,2,3,24,25,26,168,167,169}

After the model selection stage, the forecasts were per-
formed for each method, testing a lead time from h =1
to 24. In case of the NNE, 20 runs were applied to each
configuration in order to present the results in terms of the
average and respective t-student 95% confidence intervals
[29]. Table V shows the forecasting errors (over the test data)
for each method and lookaheads of h ∈ {1, 12, 24}. The
global performance is presented in terms of the average error
of all h ∈ {1, . . . , 24} values (h). In addition, the MAPE
values for all forecasting lookaheads are plotted in Figure 4
(the NNE curves plot the average of the 20 runs).

As expected, the Naive benchmark reveals a constant
performance at all lead times for the five minute series
and it was greatly outperformed by the other forecasting
approaches. Indeed, the remaining three methods obtain quite
similar and very good forecasts (MAPE values ranging
from 1.4% to 3%) for a 5 minute lead. As the horizon is
increased, the results decay slowly and in a linear fashion,
although the Holt-Winters method presents a higher slope for
both ISPs. At this time scale, the best approach is given by
the NNE (Table V).

TABLE V
COMPARISON OF THE FORECASTING ERRORS (MAPEh VALUES, IN

PERCENTAGE) FOR A LEAD TIME OF h = 1, 12, 24 AND h (AVERAGE FOR

ALL h ∈ {1, . . . , 24} VALUES)

Series h Naive Holt-Winters ARIMA NNE

A5M
1 34.79 2.98 2.95 2.91±0.00?

12 34.79 10.99 10.06 8.99±0.06?

24 34.83 21.65 18.08 16.30±0.21?

h 34.80 11.98 10.68 9.59±0.08?

B5M
1 20.10 1.44 1.74 1.43±0.01

12 20.05 7.07 6.22 6.09±0.10?

24 19.99 14.36 11.32 10.92±0.24?

h 20.05 7.65 6.60 6.34±0.11?

A1H
1 65.19 12.96 7.37 5.23±0.03?

12 65.54 70.71 30.51 28.37±0.80?

24 65.89 33.95 28.18 25.11±0.59?

h 65.67 50.60 26.96 23.48±0.49?

B1H
1 34.82 3.30 3.13 3.25±0.01

12 35.12 15.11 14.18 14.88±0.06
24 35.54 17.31 15.15 12.20±0.07?

h 35.18 13.69 12.69 12.26±0.03?

? - Statistically significant when compared with other methods

Turning to the hourly scale, the Naive method keeps
the expected low forecasting performance. As before, the
other methods present the lowest errors for the 1-ahead
forecasts. However, the error curves are not linear and after
a given horizon, the error decreases, in a behavior that
may be explained by the seasonal effects (Figure 4). The
differences between the methods are higher for the first
provider (A) than the second one. Nevertheless, in both cases
the ARIMA and NNE outperform the Holt-Winters method.
Overall, the neural approach is the best model with a 3.5%
global difference to ARIMA in dataset A1H and a 0.4%
improvement in the second series (B1H). The higher relative
NNE performance for the A ISP may be explained by the
presence of nonlinear effects (as suggested in Table IV).

For demonstrative purposes, Figure 5 presents an example
of 100 forecasts given by the NNE method for the series A1H
and horizons of 1 and 24. The figure shows a good fit by the
forecasts, which follow the series. Another relevant issue is
related with the computational complexity. With a Pentium
IV 1.6GHz processor, the NNE training (including the 5
different RPROP trainings) and testing for this series required
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Fig. 4. The forecasting error results (MAPE) plotted against lead time (h) for the Internet Traffic series (A5M, B5M, A1H and B1H)

only 41 seconds. In this case, the computational demand
for Holt-Winters increases around a factor of three, since
the 0.05 grid-search required 137 seconds. For the double
seasonal series, the highest effort is given by the ARIMA
model, where the estimation of the parameters by the X12-
ARIMA program, which was written in Fortran, took more
than two hours of processing time.

V. CONCLUSIONS

In this work we analyzed the efficiency of several fore-
casting approaches when applied to TCP/IP traffic. These in-
clude three different Time Series Forecasting (TSF) methods:
the Holt-Winters, the ARIMA methodology and a Neural
Network Ensemble (NNE) approach. Recent data, collected
from two large Internet Source Providers (ISP), was analyzed
using different forecasting types (or scales): real-time (every
five minutes) and short-term (hourly aggregated values). Fur-
thermore, each method was tested under several forecasting
horizons, from one to twenty four periods ahead.

A comparison among the TSF methods shows that in gen-
eral the NNE produces the lowest errors. When forecasting
real-time or short-term data, the computational effort also
needs to be considered. As shown in the previous section, and
also argued by Taylor et al. [18], the ARIMA methodology
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Fig. 5. Example of the Neural Network Ensemble forecasts for series A1H
and lead times of h = 1 and h = 24

is rather impractical for on-line forecasting systems. Under
this factor, the NNE is also the advised method, since it can
be used in real-time.

The NNE results reveal promising performances. For the
real-time forecasts, only a 1-3% error was obtained for the
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five minute lookahead forecasts, a value that increases to
11–17% when the forecasts are issued two hours in advance
(Table 4). Turning to the short-term predictions, the error
goes from 3–5% (one hour ahead) to 12–23% (24 hour
lookahead). Thus, the proposed approach opens room for
producing better traffic engineering tools and methods to
detect anomalies in the traffic patterns. This can be achieved
without producing any extra traffic in the network and with
minimal use of computation resources, since this work was
designed assuming a passive monitoring system.

We plan, as future work, to apply similar methods to
active measurement scenarios in which real-time packet
level information is fed into the forecasting engine. We
also intend to apply the forecasting techniques to traffic
demands associated with specific Internet applications since
this might benefit some management operations performed
by ISPs such as traffic prioritization and network resource
allocation. Moreover, a number of optimization methods can
be used to improve the model selection step in the tested
TSF models. For example, Evolutionary Computation can be
used to to set the values of the ARIMA parameters [30] or to
optimize both the weights and the topologies of the Neural
Networks [11]. In this case, the model optimization can be
conducted in parallel with the real-time use of the forecasting
model, performing a model substitution when better results
are expected.
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