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Abstract

Diverse interneuron subtypes determine how cortical circuits process sensory information depending

on their connectivity. Sensory deprivation experiments are ideally suited to unravel the plasticity mecha-

nisms which shape circuit connectivity, but have yet to consider the role of different inhibitory subtypes.

We investigate how synaptic changes due to monocular deprivation affect the firing rate dynamics

in a microcircuit network model of the visual cortex. We demonstrate that, in highly recurrent net-

works, deprivation-induced plasticity generates fundamentally different activity changes depending on

interneuron composition. Considering parvalbumin-positive (PV +) and somatostatin-positive (SST+)

interneuron subtypes can capture the experimentally observed independent modulation of excitatory

and inhibitory activity during sensory deprivation when SST+ feedback is sufficiently strong. Our model

also applies to whisker deprivation in the somatosensory cortex revealing that these mechanisms are

general across sensory cortices. Therefore, we provide a mechanistic explanation for the differential

role of interneuron subtypes in regulating cortical dynamics during deprivation-induced plasticity.

Introduction

Cortical interneurons are a diverse set of cell types that serve multiple cell-type-specific functions in

neural computations (Tremblay et al., 2016; Wood et al., 2017). The connectivity among excitatory

pyramidal neurons and different subtypes of interneurons in feedforward and recurrent neural circuits

plays a key role in establishing these functions. In mature cortical circuits, these interneuron subtypes

are involved in disinhibition during locomotion and learning (Abs et al., 2018; Adler et al., 2019; Fu et al.,

2014; Letzkus et al., 2011; Niell and Stryker, 2010), response reversal during top-down modulation

(Dipoppa et al., 2018; Fu et al., 2014; Garcia del Molino et al., 2017; Keller et al., 2020; Pakan et al.,

2016), and shown to affect surround suppression (Adesnik et al., 2012; Ayaz et al., 2013; Litwin-Kumar

et al., 2016; Ozeki et al., 2009) and excitatory tuning (Atallah et al., 2012; Lee et al., 2012; Wilson et al.,

2018). Inhibitory synapses are plastic (D’amour and Froemke, 2015; Field et al., 2020); however, we

still do not understand how the plasticity of connections among the different interneuron subtypes and

excitatory neurons shapes circuit dynamics and computations.

Synaptic plasticity in cortical circuits is particularly prominent in development and young adulthood

during so-called critical periods (Hensch, 2005). Experiments have used the sensitivity of cortical cir-

cuits to perturbations during the critical period to unravel the plasticity mechanisms which shape circuit
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connectivity and resulting activity (Espinosa and Stryker, 2012; Gainey and Feldman, 2017; Turrigiano,

2011; Wiesel, 1982). An important paradigm to investigate these mechanisms is monocular deprivation

(MD), the sustained closure of one eye (Kuhlman et al., 2013; Maffei et al., 2006, 2004; Miska et al.,

2018; Wang et al., 2013; Wiesel and Hubel, 1963). This sustained closure causes a biphasic response

in the monocular region of primary visual cortex (V1m), driven exclusively by the contralateral eye, that

first reduces and then restores excitability (Hengen et al., 2013, 2016; Kaneko et al., 2008). The plas-

ticity of inhibitory synapses has been shown to regulate these processes (Kannan et al., 2016; Maffei

et al., 2010, 2006; Miska et al., 2018; Nahmani and Turrigiano, 2014). However, it primarily pertains

to fast-spiking interneurons, which most likely correspond to parvalbumin-positive (PV +) interneurons,

the most abundant and best-studied subtype of interneurons in the cortex (Hu et al., 2014; Tremblay

et al., 2016).

Experimental and modeling work has found that the plasticity of recurrent connectivity, and espe-

cially the potentiation of intracortical inhibition, dominates over the depression of feedforward connec-

tivity to explain the initial decrease of excitatory and inhibitory activity after MD (Miska et al., 2018).

In turn, homeostatic mechanisms involving both excitatory and inhibitory circuit components recover

different aspects of network dynamics after deprivation (Ma et al., 2019; Wu et al., 2020). However,

recent experiments show that the network behavior might be more complex. Namely, while inhibitory

neurons decrease their firing rates one day after MD induction, excitatory neurons are delayed by an

additional day. What mechanism lies behind this independent modulation of excitatory and inhibitory

firing rates remains unclear.

We used a recurrent network with balanced excitation and inhibition to study this process in a mi-

crocircuit model of the visual cortex. Theoretical work has shown that the dynamics and computational

properties of these networks are highly dependent on the network’s operating regime, which is deter-

mined by the strength of recurrent coupling (Brunel, 2000; Hennequin et al., 2018; Murphy and Miller,

2009; Renart et al., 2010; van Vreeswijk and Sompolinsky, 1996). Although more relevant experimen-

tally, strong excitatory recurrent coupling needs to be stabilized by sufficiently strong inhibition giving

rise to inhibition stabilized networks (ISNs) (Ozeki et al., 2009; Tsodyks et al., 1997). A strong signature

of inhibition stabilization is the paradoxical effect, which refers to the decrease of inhibitory firing rate in

response to direct excitatory drive to inhibitory interneurons (Tsodyks et al., 1997). Recent experiments

have confirmed the presence of the paradoxical effect in cortical circuits, suggesting they operate in the

ISN regime (Mahrach et al., 2020; Sanzeni et al., 2020). This raises the important question of whether

ISNs can explain the independent modulation of excitatory and inhibitory firing rates after brief MD.

We found that, due to the paradoxical effect, ISNs cannot capture the independent modulation of

excitatory and inhibitory firing rates after brief MD. Inspired by theoretical work that generalizes the

paradoxical effect to networks with multiple inhibitory interneuron subtypes (Garcia del Molino et al.,

2017; Litwin-Kumar et al., 2016; Mahrach et al., 2020), we also modeled somatostatin-positive (SST+)

interneurons, the second most abundant subtype of interneurons in the cortex (Tremblay et al., 2016).

Our results demonstrate that the addition of SST+-interneurons inverts the firing rate response of PV +-

interneurons relative to excitatory neurons in response to MD-induced plasticity by reversing the para-

doxical effect. A key parameter for this effect is the strength of the feedback from SST+-interneurons

to PV +-interneurons and excitatory neurons. Hence, our finding explains the independent modula-
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tion of excitatory and inhibitory firing rates, consistent with their sequential suppression during early

MD with inhibitory preceding excitatory firing rates (Hengen et al., 2013, 2016). We also found similar

activity changes following whisker deprivation in the somatosensory cortex, which affects interneuron

intrinsic excitability rather than synaptic strength onto interneurons, suggesting that similar principles

might be at work in different sensory cortices. Therefore, our work provides a mechanistic explanation

for the experimentally observed temporal modulation of excitatory and inhibitory activity after sensory

deprivation-induced plasticity. It also establishes a more general framework to study how the interaction

of three factors – cortical operating regime, interneuron diversity, and deprivation-induced plasticity –

shapes circuit dynamics and computations.

Results

Changes in network firing rates from MD-induced plasticity

To investigate excitatory and inhibitory activity changes in response to synaptic plasticity after brief

monocular deprivation (MD), we built a network model of the primary visual cortex consisting of exci-

tatory and inhibitory spiking neurons (Fig. 1A and Methods). Following most previous theoretical work,

we initially only modeled a single class of interneurons, which we equated with parvalbumin-positive

(PV +), the largest class of interneurons in the mammalian neocortex (Hu et al., 2014; Pfeffer et al.,

2013; Tremblay et al., 2016). The networks have strong recurrent coupling, denoted by the overall cou-

pling scale J . The coupling scale describes the operating state of the network (Lien and Scanziani,

2013; Ozeki et al., 2009; Sanzeni et al., 2020) and determines the networks’ dynamical and computa-

tional properties (Brunel, 2000; Hennequin et al., 2018; Murphy and Miller, 2009; Renart et al., 2010;

van Vreeswijk and Sompolinsky, 1996). This strong recurrent coupling, however, needs to be stabi-

lized by sufficiently strong inhibition denoted by the scaling parameter grc (Fig. 1A) (Ozeki et al., 2009;

Tsodyks et al., 1997). Such an inhibition-dominated network produces sparse, asynchronous, and

irregular spiking activity (Brunel, 2000; van Vreeswijk and Sompolinsky, 1996; Wolf et al., 2014).

We first modeled synaptic changes measured experimentally in the cortical circuits during brief (1-

2 days of) MD, both along the feedforward pathway from the LGN to the cortex, and in the recurrent

cortical circuit. In particular, feedforward excitatory synaptic inputs from the LGN to both excitatory

and inhibitory neurons in the cortex depress during MD (Lambo and Turrigiano, 2013; Smith et al.,

2009), while recurrent intracortical inhibition potentiates (Kannan et al., 2016; Maffei et al., 2010, 2006;

Miska et al., 2018; Nahmani and Turrigiano, 2014) (but see Khibnik et al. (2010)). To investigate the

relative contribution of these two factors – decrease in feedforward excitation vs. increase in recurrent

inhibition – we introduced four model parameters to represent the synaptic changes (Maffei et al., 2006;

Miska et al., 2018) (Fig. 1A, Table 1): (1) depression of feedforward synaptic strengths to excitatory

neurons (δE < 1), (2) depression of feedforward synaptic strengths to PV +-interneurons (δP < 1), (3)

potentiation of recurrent synaptic strengths from excitatory neurons to PV +-interneurons (ζPE > 1),

and (4) potentiation of recurrent synaptic strengths from PV + to excitatory neurons (ζEP > 1).

We investigated the effect of these feedforward and recurrent synaptic changes on excitatory and

inhibitory activity separately. For each pair of feedforward (δE , δP ) or recurrent (ζEP , ζPE) synaptic
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Figure 1: Spiking network response to synaptic changes induced by brief MD. (A) Network schematic

showing synaptic connections among neurons with J denoting the overall coupling scale, grc the dominance

of recurrent inhibition and gfw the dominance of feedforward inhibition. The parameters to model MD-induced

synaptic plasticity are: depression of feedforward drive to excitatory neurons (δE < 1) and to PV +-interneurons

(δP < 1), and potentiation of recurrent excitation to PV +-interneurons (ζPE > 1) and of recurrent inhibition from

PV + to excitatory neurons (ζEP > 1). Values of all parameters are provided in Table 1. (B) Network firing rate

in the (δE , δP ) plane as fold-change of baseline firing rate (top right corner where δE = δP = 1) for excitatory

neurons (top) and PV +-interneurons (bottom). (C) Network firing rate in the (ζEP , ζPE) plane as fold-change of

baseline firing rate (bottom left corner where ζEP = ζPE = 1). (D) Combined feedforward (through the E/I ratio

of feedforward synaptic changes, ρEI = δE/δP ) and recurrent plasticity (through the potentiation of recurrent

excitation to PV +-interneurons, ζPE). Network firing rate in the (ζPE , ρEI ) plane as fold-change of baseline firing

rate (bottom left corner where ζPE = ρEI = 1).

changes, we generated a plane of firing rate changes in the excitatory and PV + populations relative to

their respective baseline firing rates before plasticity (Fig. 1B, C). We found that depression of feedfor-

ward synaptic strengths, which reduces the feedforward drive to the network, can have either facilitating

or suppressive effects on the activity of excitatory neurons and PV +-interneurons (Fig. 1B). A linear

relationship between δE and δP separates the facilitation and suppression areas of excitatory and PV +

firing rates. The slope of this line is determined by the relatively stronger feedforward drive onto PV +-

interneurons compared to excitatory neurons (gfw, Fig. 1A and Methods), determined experimentally

(Ji et al., 2016; Pfeffer et al., 2013). To capture the relationship between the relative excitatory and

inhibitory feedforward drive, we introduced the E/I ratio of feedforward synaptic changes, ρEI = δE/δP .

This ratio has been measured to be bigger than unity after brief MD from the thalamus to layer 4 (Miska

et al., 2018), and also from layer 4 to layer 2/3 in the visual cortex (Kuhlman et al., 2013). Therefore,

we found that synaptic changes exclusively in the feedforward pathway from the thalamus to cortex,

which increase the E/I-ratio, increase both excitatory and inhibitory firing rates (Fig. 1B). In contrast,

purely recurrent synaptic changes measured in layer 4 of V1 after two days of MD (Maffei et al., 2006;

Miska et al., 2018), which potentiate synaptic strengths from excitatory neurons to PV +-interneurons

(ζPE > 1), and from PV +-interneurons to excitatory neurons (ζEP > 1), have a purely suppressive ef-

fect on the excitatory and inhibitory firing rates (Fig. 1C). Combining feedforward and recurrent plasticity

can either increase or decrease excitatory and inhibitory firing rates, depending on whether feedforward

or recurrent synaptic changes dominate (Fig. 1D).

Intriguingly, modeling feedforward and recurrent plasticity separately reveals that firing rate changes
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of excitatory neurons and PV +-interneurons should tightly follow each other in the entire parameter

space of feedforward and recurrent synaptic changes (Fig. 1B-D). This implies that if inhibitory firing

rates decrease at MD1, so should excitatory firing rates (when in fact, experimentally, they stay at

baseline), and if excitatory firing rates decrease at MD2, so should inhibitory firing rates (when in fact,

experimentally, they recover back to baseline). Hence, this result is inconsistent with the independent

modulation of excitatory and PV + firing rates following brief MD observed in vivo (Hengen et al., 2013),

suggesting that other factors might be at play.

Network response to MD-induced synaptic changes depends on coupling scale

We next sought to identify a plausible mechanism behind the lack of independent modulation of firing

rate changes in the excitatory and PV + populations. Of the two parameters which determine recurrent

synaptic strengths in the model network, the overall coupling scale, J , is more important than the

relative scale of the inhibitory synaptic strength, grc in determining the network response to MD-induced

plasticity (Table 1). The parameter J has been extensively studied as a determinant of the operating

regime of the network (Brunel, 2000; Hennequin et al., 2018; Murphy and Miller, 2009; Renart et al.,

2010; van Vreeswijk and Sompolinsky, 1996). A network with a strong coupling scale J operates in a

regime where the excitatory dynamics are stabilized by recurrent inhibition (inhibition stabilized network,

ISN). In contrast, a network with weak J operates in a regime where the excitatory dynamics are stable

without recurrent inhibition (non-ISN) (Tsodyks et al., 1997). We found two very different behaviors in

the network at the opposite ends of the coupling scale, J . While at high coupling, excitatory and PV +

responses show a tight alignment (Fig. 1 with J = 0.1 nS), for weak to intermediate coupling when the

network is in the non-ISN regime, excitatory and PV + firing rates can be independently modulated for

all feedforward and recurrent synaptic changes (Supplementary Fig. S1 with J = 0.01 nS). Hence, the

transition from independent to tight modulation of excitatory and inhibitory firing rates corresponds to

the transition from non-ISN to ISN with increasing coupling scale J .

To quantify how closely the firing rates of excitatory and inhibitory neurons follow each other as a

function of J , we computed the fractional response area of facilitation for excitatory neurons (FE) and for

PV +-interneurons (FP ), and the overlap between excitatory and PV + response areas (OEP , Fig. 2A).

We did this for each parameter space of feedforward (δE , δP ) (Fig. 2B), recurrent (ζEP , ζPE) (Fig. 2C),

and combined (ζPE , ρEI ) (Fig. 2D) synaptic changes. In all cases, we found that the facilitation area

for PV +-interneurons, and consequently the overlap between excitatory and PV + response areas,

abruptly changes at a critical value of coupling (J ≈ 0.017 nS). For instance, in the parameter space of

feedforward changes, PV + facilitation emerges at J ≈ 0.017 nS (FP , Fig. 2B), while in the parameter

space of recurrent changes, PV + facilitation decreases to 0 at the same critical J (FP , Fig. 2C).

Using a reduced linear population rate model (Supplementary Fig. S2) (Tsodyks et al., 1997; Wilson

and Cowan, 1972), we found that a key network property related to the transition from non-ISN to ISN

is the emergence of facilitation in PV +-interneurons at the critical coupling J following feedforward

plasticity (Methods). This transition is a direct consequence of the emergence of the paradoxical effect

at the critical J , where in response to additional excitatory drive, the inhibitory population paradoxically

decreases its rate together with the excitatory population (Fig. 2E) (Tsodyks et al., 1997). Therefore, the
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Figure 2: Firing rate changes in response to MD depend on the network coupling scale J . (A) Schematic

to determine the overlap of facilitating and suppressive response areas of excitatory neurons and PV +-

interneurons. The thresholded plane of responses (Fig. 1) for both neuron types is used to compute the total

facilitating area and quantify how closely excitatory and PV + firing rates follow each other through the overlap of

facilitation and suppression. (B) Network with feedforward depression only (Fig. 1B). Fractional area of facilitation

for excitatory neurons (FE , gray), PV +-interneurons (FP , blue) and the overlap between excitatory and PV +

response areas (OEP , orange) as a function of the overall coupling scale J . Green diamond shows the value of

J used in Fig. 1 (ISN), black triangle shows the value of J used in Supplementary Fig. S1 (non-ISN). (C) Same

as (B) for recurrent potentiation only (Fig. 1C). (D) Same as (B) for combined feedforward and recurrent plasticity

(Fig. 1D). (E) Normalized rate change of PV +-interneurons in response to additional input to them as a function

of coupling scale J . Additional input is implemented as an increase in δP (from 1 to 1.1).

emergence of the paradoxical effect in the model network with excitatory and a single type of inhibitory

neurons can explain the transition from independent to tight modulation of excitatory and inhibitory firing

rates as a function of the coupling scale.

These results argue that only the non-ISN supports the experimentally observed independent mod-

ulation of excitatory and inhibitory firing rates in response to synaptic changes after brief MD due to

the absence of the paradoxical effect. However, cortical circuits seem to operate in the ISN regime

(Lien and Scanziani, 2013; Ozeki et al., 2009; Sanzeni et al., 2020), which due to the paradoxical ef-

fect cannot explain the independent modulation of excitatory and inhibitory firing rates after brief MD.

Moreover, in the non-ISN, the magnitude of this modulation to this plasticity is much weaker, suggesting

that experimentally measurable changes in firing rates might require synaptic changes larger than what

seems biologically plausible.
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Figure 3: Network structure and spiking activity in the model with two subtypes of interneurons. (A)
Schematic of the connectivity in the network with two subtypes of interneurons. (B) Spike raster of activity in the

network with K = 1.6 nS. (C) Firing rates as a function of feedback strength K. The green diamond shows the

value of K used in (B).

Network model with two subtypes of interneurons

Given the role of interneuron diversity in a range of cortical functions, including disinhibition, response

reversal, and surround suppression, we next added the second-largest class of cortical interneurons,

SST+-interneurons, to the ISN (Tremblay et al., 2016; Urban-Ciecko and Barth, 2016). We modeled

SST+-interneurons which project to excitatory neurons and PV +-interneurons via the coupling pa-

rameter K, but which do not receive inhibition from PV +-interneurons nor inhibit each other (Fig. 3A)

(Pfeffer et al., 2013; Xu et al., 2013). SST+-interneurons receive almost no thalamic feedforward in-

put (Ji et al., 2016), but receive feedback from higher-order cortical centers and integrate inputs over

large areas in the visual cortex (Adesnik et al., 2012; Batista-Brito et al., 2018; Tremblay et al., 2016;

Zhang et al., 2014). We modeled these inputs from outside the local patch of cortex represented by

the network as a background that provides input to both SST+ and excitatory neurons (Fig. 3A). Upon

introducing SST+-interneurons, the ISN remained in an asynchronous and irregular firing state inde-

pendent of the SST+ feedback K (Fig. 3B). We found that the overall effect of K on the average rate

is suppressive (Fig. 3C), although SST+ feedback is symmetric providing direct inhibition to excitatory

neurons as well as indirect disinhibition to excitatory neurons via PV +-interneurons. We next studied

whether the ISN with these two subtypes of inhibitory interneurons is a suitable candidate to explain the

independent modulation of excitatory and inhibitory firing rates.

SST
+-interneuron feedback can invert PV

+-interneuron responses

Implementing feedforward synaptic changes in this ISN with two inhibitory subtypes, we found that the

excitatory response is qualitatively similar compared to the network without SST+ feedback (Fig. 4A

vs. Fig. 1B). Strikingly, the presence of strong SST+ feedback K inverts the response of PV +-inter-

neurons in the (δE , δP ) plane of synaptic changes (Fig. 4A vs. Fig. 1B). As before, to quantify the joint
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Figure 4: SST+ feedback selectively inverts PV + responses. (A) Network firing rate in the (δE , δP ) plane

as fold-change of baseline firing rate (baseline in top right corner) for excitatory (top panel), PV + (middle panel)

and SST+neurons (bottom panel) in the network with strong SST+ feedback (K = 1.6 nS). (B) Network firing

rate in the (ζEP , ζPE) plane as fold-change of baseline firing rate (baseline in bottom left corner). (C) Network

firing rate in the (ζPE , ρEI ) plane as fold-change of baseline firing rate (baseline in bottom left corner). (D)
Network with feedforward depression only. Fractional area of facilitation for excitatory neurons (FE , gray), PV +-

interneurons (FP , blue) and the overlap between excitatory and PV + response areas (OEP , orange). (E) Same

as (D) for recurrent potentiation only. (F) Same as (D) for combined feedforward and recurrent plasticity. The

green diamond in (D)-(F) shows the value of K used in (A)-(C).

modulation of excitatory and PV + firing rates, we computed the fractional response area of facilitation

for excitatory neurons (FE) and for PV +-interneurons (FP ), and the overlap between excitatory and

PV + response areas (OEP ), now as a function of K (Fig. 4D). We observed that the inversion of PV +

responses occurs for SST+ feedback bigger than a critical value (K ≈ 0.6 nS), where the facilitation

area of PV + responses achieves a minimum as a function of K (FP , Fig. 4D).

The inversion of PV + responses in this ISN with two inhibitory subtypes can be explained by a

generalization of the paradoxical effect. Using the reduced linear population rate model (Supplemen-

tary Fig. S3), we can explicitly derive the link between the inversion of PV +-responses to feedforward

synaptic changes and the reversal of the paradoxical effect as a function of the SST+ feedback κ in
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of SST+ feedback κ. The rate of each population is normalized to its baseline firing rate before additional

current injection (BL). (B) Dynamics of the linear population rate model following onset of step current to PV +-

interneurons for κ = 0.5 (left), κ = 0.8 (middle) and κ = 1.2 (right). Colors are the same as in (A).

the reduced model (Eq. 30). As SST+ feedback increases, PV +-interneurons start to exhibit non-

paradoxical facilitation rather than paradoxical suppression in response to a step-current (Fig. 5A). For

any value of SST+ feedback, κ, the PV + population activity initially transiently increases, leading to

a decrease of excitatory population activity (Fig. 5B). For small κ, the decrease of excitatory activity

suppresses the steady-state PV + activity below baseline, leading to the classical paradoxical effect

(Fig. 5B, left). As the SST+ feedback, κ, increases, the steady-state PV + activity is not only dictated

by the dwindling of recurrent excitation as in the case of the paradoxical effect. Rather, PV + activity

becomes dominated by the release from inhibition mediated through SST+. Hence, the paradoxical

decrease of PV + activity is only transient, followed by a recovery of PV + activity back to baseline at an

intermediate value of κ (Fig. 5B, middle). For large κ, the steady-state PV + activity increases above

baseline (Fig. 5B, right).

Recurrent plasticity continues to have a strong suppressive effect on the excitatory firing rates,

accompanied by a similar response in the SST+-interneurons (Fig. 4B vs. Fig. 1C). As the paradoxical

effect reverses, PV +-interneurons invert their response, exhibiting pure facilitation for large values of

K (Fig. 4B vs. Fig. 1C). As a result of this inversion of PV + responses, the overlap between the

excitatory and PV + responses decays to zero (OEP , Fig. 4E). Combining feedforward and recurrent

synaptic changes further corroborates the inversion of PV + responses with increasing SST+ feedback

(Fig. 4C, F).

We conclude that, in strongly coupled networks operating in the ISN regime typical of the sen-

sory cortex, sufficiently strong feedback from SST+-interneurons can invert the responses of PV +-

interneurons following feedforward and recurrent synaptic changes observed in early MD. This inver-

sion of PV + responses provides a natural substrate for the independent modulation of excitatory and

inhibitory firing rates as observed in vivo during brief MD (Hengen et al., 2013).
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Figure 6: Combining feedforward and recurrent plasticity in S1. (A) Schematic for combined recurrent

and feedforward plasticity in S1: shift in recurrent E/I-ratio through ζEP , shift in feedforward E/I-ratio through

increasing firing threshold of PV +-interneurons (ξθ). Inset: The f-I curve of a single leaky integrate-and-fire

neuron for baseline firing threshold (dark blue) and with increased firing threshold (light blue). The excitability of

PV +-interneurons is decreased via the parameter ξθ. (B) Network firing rate as fold-change of baseline firing

rate (baseline in bottom left corner) in (ζEP , ξθ) plane in the network with only one type of interneurons (PV +).

(C) Network firing rate as fold-change of baseline firing rate in (ζEP , ξθ) plane in the network with two subtypes

of interneurons (PV + and SST+), with strong SST+ feedback K = 1.6 nS.

Sensory perturbation induces similar activity changes in somatosensory cortex via dif-

ferent plasticity mechanisms

Similar to MD, whisker deprivation (WD) is a sensory deprivation, where plucking a subset of the

whiskers on one cheek of the animal affects the barrel cortex of the rodent primary somatosensory

cortex (S1). Interestingly, brief WD induces different changes in the circuitry of S1 than brief MD does

in V1 (Gainey et al., 2018; House et al., 2011; Li et al., 2014). Rather than feedforward synaptic de-

pression, a reduction of feedforward inhibition emerges from a decrease in the intrinsic excitability of

PV +-interneurons through an increase of their firing threshold (Gainey et al., 2018). This leads to a

similar increase in the feedforward excitation to inhibition ratio as in V1 (Kuhlman et al., 2013; Li et al.,

2014; Miska et al., 2018). Our modeling approach allowed us to investigate whether these different

types of plasticity in V1 and S1 during sensory deprivation change the modulation of excitatory and

inhibitory firing rates in a corresponding microcircuit model of S1 (Fig. 6A).

As before, we first considered a network with a single interneuron type by setting the SST+ feed-

back, K, to zero. We modeled the decrease of the intrinsic excitability of PV +-interneurons by increas-

ing their firing threshold by ξθ (Fig. 6A, inset). In an ISN model of S1 with only PV +-interneurons,

increasing the firing threshold of PV +-interneurons facilitates their firing rates, just like the depression

of the feedforward synaptic strength from the LGN onto excitatory and inhibitory neurons in the model

V1 network. This decrease of intrinsic excitability of PV +-interneurons in S1 was proposed as a home-
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ostatic mechanism that counteracts the lack of stimulation after deprivation and enhances firing rates

(see also House et al. (2011); Li et al. (2014)).

We further implemented potentiation of recurrent inhibition as in V1 by ζPE . Experimentally, brief (1

day of) WD in S1 has been found to exhibit a tendency but no statistical significance for the potentiation

of recurrent inhibitory synapses from PV + to excitatory neurons (Gainey et al., 2018). In contrast, pro-

longed (6-12 days of) WD has shown a pronounced increase in this connection strength (House et al.,

2011). Hence, the potentiation of recurrent inhibition by ζPE seems to counteract the facilitation of ac-

tivity by ξθ, giving rise to the same antagonistic regulation we found for early MD-induced plasticity in V1

(Fig. 6B, compare to Fig. 1D). Similar to MD-induced plasticity, excitatory and PV + activity changes in

this network with WD-induced plasticity are tightly coordinated in the ISN. Importantly, after introducing

strong feedback from SST+-interneurons, the response of PV +-interneurons again inverts relative to

the excitatory responses due to the reversal of the paradoxical effect (Fig. 6C).

Therefore, our modeling demonstrates that the dissimilar circuit changes induced by sensory de-

privation (WD or MD) in two different sensory cortices, which decrease intrinsic excitability of PV +-

interneurons or depress feedforward drive to PV +-interneurons, respectively, lead to similar regulation

of overall activity as they interact with potentiation of recurrent inhibition. Hence, excitatory and in-

hibitory firing rates in S1 during brief WD could be independently modulated similar to those measured

in V1 (Hengen et al., 2013) in the presence of feedback from a second inhibitory subtype due to the

reversal of the paradoxical effect in an ISN.

Discussion

We investigated how synaptic changes induced by sensory deprivation affect the firing rates of exci-

tatory and inhibitory neurons in a microcircuit network model of the sensory cortex. Specifically, we

modeled two pathways: (1) the reduction of feedforward excitability manifested as a depression of feed-

forward, thalamocortical synapses onto excitatory and inhibitory neurons observed following monocular

deprivation in visual cortex (or as a decrease of intrinsic excitability in inhibitory neurons following

whisker deprivation in somatosensory cortex), and (2) the potentiation of recurrent synapses between

excitatory and inhibitory neurons. Crucially, we found that strong feedback from a second interneuron

subtype, SST+- in addition to PV +-interneurons, is needed to explain the independent modulation of

excitatory and inhibitory activity observed experimentally in the primary visual cortex during the critical

period of plasticity.

Previous studies have investigated MD-induced plasticity in V1, but with a focus on ocular domi-

nance plasticity in binocular cortex governed by winner-take-all competition where the open eye out-

competes the closed eye (Blais et al., 2009, 1999; Kuhlman et al., 2013; Miller et al., 1989; Toyoizumi

et al., 2014; Toyoizumi and Miller, 2009; Toyoizumi et al., 2013). Since most brain regions do not ex-

hibit such strong competition, we focused on plasticity in the monocular region of primary visual cortex

where synaptic and activity changes during MD have recently been measured (Hengen et al., 2013,

2016; Miska et al., 2018). Some models have already begun to incorporate these experiments by

implementing a careful orchestration of biologically inspired synaptic and homeostatic plasticity rules

to explain the recovery of diverse aspects of network dynamics after MD (Ma et al., 2019; Sweeney
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et al., 2018; Wu et al., 2020). Although our approach is agnostic about the plasticity rules underlying

deprivation-induced synaptic changes, it offers the advantage to turn individual synaptic changes ‘on’

or ‘off’ in different network regimes. This gives us complete control to study the effect of the timing of

individual plasticity mechanisms in the network.

We found that the operating regime of the network, determined by the overall coupling scale, has

a major impact on how deprivation-induced plasticity shapes firing rate changes. Inhibition stabilized

networks (ISNs) with a single inhibitory subtype and strong coupling, commonly used to describe the

cortex (Mahrach et al., 2020; Sanzeni et al., 2020), cannot capture the independent modulation of exci-

tatory and inhibitory firing rates after brief MD due to the presence of the paradoxical effect. We propose

that sufficiently strong feedback from SST+-interneurons can achieve the independent modulation of

excitatory and inhibitory firing rates in response to MD-induced synaptic changes by reversing the para-

doxical effect. This is consistent with previous theoretical results for a network with multiple subtypes of

interneurons, where a specific inhibitory population can behave non-paradoxically in response to an in-

put current, even if the whole network operates as an ISN (Garcia del Molino et al., 2017; Litwin-Kumar

et al., 2016).

An alternative to changing the overall coupling scale is to change the response gain of single neu-

rons in the network, as is the case in the stabilized supralinear network (SSN). The SSN has recently

gained attention as a circuit model of V1 with powerful computational capabilities, including contrast

gain control and nonlinear response amplification (Ahmadian et al., 2013; Rubin et al., 2015). Our

systematic analysis over a wide range of coupling scales could be interpreted as the local linear ap-

proximation of the SSN in response to MD-induced synaptic changes. Hence we expect all results to

hold also in the SSN.

Our microcircuit model with two interneuron types suggests that PV +-interneurons in layer 4 in

monocular V1 should respond non-paradoxically upon optogenetic stimulation. However, recent exper-

iments find that PV +-interneurons in layer 2/3 and upper layer 4, as well as deep layers of V1, show

a paradoxical response following stimulation (Sanzeni et al., 2020). It is possible that our proposed

non-paradoxical response of PV +-interneurons is a transient property of the developing cortex during

the critical period that disappears with maturation, e.g. through a developmental decrease of initially

strong coupling from SST+- onto PV +-interneurons (Tuncdemir et al., 2016), or that it depends on the

anatomical region or the cortical layer (Adesnik, 2017; Atallah et al., 2012; Kato et al., 2017; Mahrach

et al., 2020; Sadeh et al., 2017).

Our results make concrete predictions that can be tested with further experiments that character-

ize the population activity in response to driving individual circuit elements at different stages during

development and in different layers. First, we predict that SST+-interneurons in layer 4 during the

critical period should decrease their activity in response to additional stimulation of PV +-interneurons

(e.g. through optogenetic activation). This decrease would be the result of a withdrawal of recurrent

excitation, rather than direct inhibition from PV +- to SST+-interneurons, and could specifically be in-

vestigated by experimentally measuring the respective conductances in individual SST+-interneurons.

A second, related prediction is that the firing rates of SST+-interneurons during the first two days of

MD should be tightly coordinated with excitatory firing rates. Separating excitatory and SST+ firing

rates is currently difficult in in vivo extracellular recordings because, depending on the morphological
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Figure 7: An ISN with strong SST+-feedback can capture the independent modulation of excitatory and
inhibitory firing rates observed during brief MD. Firing rates of excitatory (black) and PV + (red) neurons after

one day of MD (left histograms) and after two days of MD (right histograms), normalized by the firing rates before

MD-induction. Data are extracted from (Hengen et al., 2013) and reproduced in the spiking network in the ISN

regime that includes strong feedback from SST+ and in an ISN without SST+-feedback (Methods). Experimental

data are mean ± SEM, simulation data are mean ± SD.

subtype of the SST+-interneurons, the spike-waveform would either be classified in the regular-spiking

or the fast-spiking type, but chronic calcium imaging recordings present a possible alternative (Rose

et al., 2016). A further unknown is the plasticity of recurrent connections involving SST+-interneurons

in L4 during MD (Scheyltjens and Arckens, 2016; Urban-Ciecko and Barth, 2016). Although the plastic-

ity of synapses involving electrophysiologically identified regular spiking non-pyramidal units has been

measured (Maffei et al., 2004), these cells were not genetically labeled as SST+, and the measure-

ments were performed before the onset of the critical period, which might involve a different set of

plasticity mechanisms than the critical period (Lefort et al., 2013). Third, we modeled the potentiation

of intracortical inhibition during brief MD as a change in the excitatory drive from excitatory neurons to

PV +-interneurons to be consistent with known plasticity mechanisms (Maffei et al., 2006; Miska et al.,

2018). However, it is possible that the additional sources of inhibition from SST+-interneurons con-

tribute to this increase in inhibition. For instance, potentiation of synaptic strength from SST+- onto

excitatory neurons and/or depression of synaptic strength from SST+- onto PV +-interneurons could

also underlie the increase in intracortical inhibition. We found that implementing these changes in our

recurrent network generates comparable results to the firing rate modulation of excitatory and PV +-

interneurons (Fig. S4), suggesting the existence of a parallel, possibly redundant pathway to generate

the same firing rate changes.

In summary, our mechanistic modeling of a network with more than one interneuron type suggests

the following sequence as the most parsimonious explanation for the independent modulation of exci-

tatory and inhibitory firing rates after sensory deprivation observed experimentally (Fig. 7). First, during

the first day of deprivation, depression of the feedforward synaptic weights from LGN to excitatory neu-

rons and PV +-interneurons in the visual cortex (or of PV + excitability in the somatosensory cortex),

can give rise to strong suppression of PV + firing rates, while excitatory rates remain at baseline, only

in the ISN with strong SST+-feedback (Fig. 7, left). Instead, in the ISN without SST+-feedback the

firing rates of both excitatory and PV + populations facilitate or suppress together. Second, during the

second day of deprivation, potentiation of recurrent inhibition in the cortex can strongly suppress excita-
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tory firing rates and recover PV + firing rates to baseline through potentiation of activity from the earlier

suppressed state (Fig. 7, right). Again, this is only possible in the ISN with strong SST+-feedback

which reverses the paradoxical effect in PV +-interneurons, while in the ISN without SST+-feedback

the presence of the paradoxical effect leads to a tight coordination of excitatory and PV + firing rates.

More generally, our work provides a critical link between changes on the single-synapse level and ac-

tivity modulation on the circuit level during perturbation of normal development as a function of cortical

operating regime and interneuron diversity.
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Methods

Spiking network model

We studied recurrently connected networks of leaky integrate-and-fire neurons (LIF), consisting of NE

excitatory neurons, NP PV +-interneurons and NS SST+-interneurons. The membrane potential V (t)

of a single neuron follows the dynamics:

Cm
dV (t)

dt
= gL ·

(

EL − V (t)
)

+ I(t) (1)

where Cm is the membrane capacitance, gL the conductance of the leak-current, EL the leak reversal

potential and I(t) the total input current (parameter values provided in Table 1). When the membrane

potential reaches a firing threshold Vθ, a spike is emitted and the potential is reset to Vr. The neurons are
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randomly and sparsely connected with connection probability p with fixed in-degree by conductance-

based synapses, or weights. Thus, all values for synaptic weights are positive and the excitatory or

inhibitory action of a presynaptic neuron is determined by the respective reversal potential (Table 1). All

excitatory weights are denoted by J regardless of the postsynaptic target (Brunel, 2000); this parameter

is known as the coupling scale and determines the operating regime of the network (Tsodyks et al.,

1997). Synapses from PV +-interneurons are scaled by the factor grc (Brunel, 2000). Synapses from

SST+-interneurons are denoted by K. Hence, the population connectivity matrix is given by:

W =







WEE WEP WES

WPE WPP WPS

WSE WSP WSS






=







J grcJ K

J grcJ K

J 0 0






(2)

where WAB denotes the connection from population B to population A, and E denotes excitatory

neurons, P denotes PV +-interneurons and S denotes SST+-interneurons. The case with only two

populations, excitatory and PV +, can be derived from this by setting the SST+ feedback K to zero.

Neurons receive external excitatory spike trains with Poisson statistics from two different sources.

Both excitatory and PV +-interneurons, but not SST+-interneurons, receive feedforward input from the

lateral geniculate nucleus in the thalamus (LGN) denoted by Js and where feedforward input to cortical

PV +-interneurons is considerably stronger than the input to excitatory neurons by the factor gfw; this

is consistent with experimentally measured inputs from the LGN to layer 4 (Ji et al., 2016), as well as

from layer 4 to layer 2/3 (Pfeffer et al., 2013). Excitatory neurons and SST+-interneurons, but not PV +-

interneurons, receive a second source of input denoted by Jb, which we identified as background inputs

from the surrounding cortical tissue or higher-order cortical centers (BKG) (Adesnik et al., 2012; Zhang

et al., 2014). To minimize the number of parameters, we made these two inputs the same (Table 1). We

can write the feedforward population connectivity vector as:

Wffw =







WLE +WGE

WLP +WGP

WLS +WGS






=







Js + Jb

gfwJs + 0

0 + Jb






=







2Js

gfwJs

Js






(3)

where L denotes LGN and G denotes background.

The total input current to neuron i from population A = {E,P, S}, IA(t), is the sum of synaptic input

current from neurons in all populations B coupled to A, IAB
i,syn(t), and the external input current, Ii,ext(t):

IAi (t) =
∑

B

IAB
i,syn(t) + Ii,ext(t). (4)

Denoting the spike train of neuron j in population B by Y B
j (t) and the feedforward input spike train to

neuron i by Xi(t), we can further write:

IAB
i,syn(t) =

∑

j

WAB
ij (ε ∗ Y B

j )(t)
[

EB − V (t)
]

Ii,ext(t) = Wi,ffw(ε ∗Xi)(t)
[

EE − V (t)
]

(5)
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where ε(t) is an exponentially decaying synaptic kernel with a synaptic time constant τsyn, and ∗ denotes

a convolution. Note that here EE is the excitatory reversal potential, while EB could be either the

excitatory reversal potential, EE , or the inhibitory reversal potential, EP , ES . To extract firing rates, we

simulated the network for 30 seconds and calculated the time-averaged population rate. All network

simulations were performed using NEST (Linssen et al., 2018).

Implementation of deprivation-induced circuit changes

We introduced the parameters δE < 1 and δP < 1 to model the depression of feedforward synapses,

and ζEP > 1 and ζPE > 1 to model the potentiation of recurrent synapses (Table 1). Synaptic changes

induced by MD were applied multiplicatively to existing synaptic connections, with a new population

connectivity matrix (Table 1):

W
MD =







J ζEP grcJ K

ζPEJ grcJ K

J 0 0






. (6)

This is consistent with experimental measurements where the synaptic strength from excitatory to ex-

citatory neurons and from fast-spiking to fast-spiking interneurons is unaffected, but other synapses

potentiate (Maffei et al., 2006; Miska et al., 2018). There is no experimental evidence of plasticity

in synapses of molecularly identified SST+-interneurons during MD. The new feedforward population

connectivity vector after MD is:

W
MD
ffw =







(δE + 1)Js

δP gfwJs

Js






. (7)

Note that we did not change the rate of the feedforward input, consistent with experimental findings

(Linden et al., 2009).

To map firing rate changes in response to brief MD, we separately simulated networks with feed-

forward and recurrent MD-induced plasticity. For each type of synaptic change, the networks were

simulated with parameter combinations on a 21 × 21 grid in the respective two-dimensional parameter

planes (Figs. 1B, C and 4A, B). To study the interaction of feedforward and recurrent plasticity, we com-

bined δE and δP into the E/I ratio of feedforward synaptic changes ρEI = δE/δP . To simulate networks

with varying E/I ratio, we fixed δE = 1 and varied δP (Figs. 1D and 4C) (see also (Miska et al., 2018)

where δE was also varied).

Feedforward plasticity in S1 was driven by a decrease of intrinsic excitability of PV +-interneurons

through an increase of their firing threshold (Gainey et al., 2018). In the simulations, we thus changed

the firing threshold of PV +-interneurons by adding ξθ, without changing any feedforward inputs. For

plasticity of the recurrent synaptic connections, we modeled the potentiation from PV + to excitatory

neurons (ζEP ) (Gainey et al., 2018). We simulated the S1 network with combined feedforward and

recurrent plasticity following the procedure described above to extract the plane of firing rate changes

(Fig. 6B, C).
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Symbol Value/ Description

Range

Cm 200 pF Membrane capacitance

gL 10 nS Leak conductance

EL −70 mV Leak reversal potential

Vθ −50 mV Threshold potential

Vr −58 mV Post-spike reset potential

EE 0 mV Excitatory reversal potential

EP , ES −85 mV Inhibitory reversal potential from PV + (P ) and SST+ (S) interneurons

τsyn 5 ms Synaptic conductance time constant

NE 4000 Number of excitatory neurons

NP 1000 Number of PV +-interneurons

NS 500 Number of SST+-interneurons

p 0.1 Connection probability between two cells

J 0.1 nS EPSG amplitude E → E, E →PV + and E →SST+

grcJ 0.8 nS IPSG amplitude PV +→ E and PV +→ PV +

K 1.6 nS IPSG amplitude for SST+ → E and SST+ → PV + connections

Js, Jb 0.5 nS EPSG amplitude LGN,BKG → E, BKG → SST+ and scale for EPSG

LGN → PV +

gfw 2 Multiplicative factor for strong feedforward EPSG LGN → PV +

Rstim 1000 Hz Rate of feedforward input spike trains LGN → E and LGN → PV + and of

background input spike trains BKG → E and BKG → SST+

δE [0.5, 1.0] Depression of feedforward synapses onto excitatory neurons

δP [0.5, 1.0] Depression of feedforward synapses onto PV +-interneurons

ζPE [1.0, 1.5] Potentiation of recurrent synapses from excitatory neurons to PV +-

interneurons

ζEP [1.0, 1.5] Potentiation of recurrent synapses from PV +-interneurons to excitatory neu-

rons

ρEI [1.0, 1.5] E/I ratio of feedforward synaptic changes (increased in V1)

ξθ [0, 3] mV Firing threshold of PV +-interneurons (increased in S1)

Table 1: Default parameters of the single neurons and networks, and parameters for modeling the synaptic

changes during monocular deprivation in layer 4 of V1m (Figs. 1-4) as well as for the changes during whisker

deprivation in layer 2/3 of S1 (Fig. 6). EPSG/IPSG: excitatory/inhibitory postsynaptic conductance; LGN: lateral

geniculate nucleus; BKG: background.
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Quantification of the activity changes induced by deprivation

For each pair (x, y) of synaptic changes in the two-dimensional parameter space, (x, y) = (δE , δP )

for feedforward plasticity, (x, y) = (ζEP , ζPE) for recurrent plasticity and (x, y) = (ζPE , ρEI) for com-

bined feedforward and recurrent plasticity, we obtained a matrix of rate fold-changes of population

A = {E,P, S} at MD, RA
MD(x, y), relative to baseline, RA

BL:

ΨA(x, y) =
RA

MD(x, y)

RA
BL

. (8)

To quantify the responses, we first studied the fractional area of facilitation. Elements of ΨA(x, y)

were thresholded at 1, which denotes the border between suppression (ΨA(x, y) < 1) and facilitation

(ΨA(x, y) > 1). All matrix elements corresponding to facilitation were then set to 1, while those for

suppression to −1. Summing up all the positive entries in this thresholded matrix and dividing by the

total number of matrix elements produced the fractional area of facilitation (FE , FP in Figs. 2 and 4). We

calculated the overlap of the response areas in excitatory neurons and PV +-interneurons by multiply-

ing the thresholded matrices of excitatory and PV + responses element-wise. After this multiplication,

matrix elements corresponding to pairs of synaptic changes that resulted in the simultaneous suppres-

sion or facilitation of excitatory and PV + responses had values of +1, while elements corresponding

to opposite responses of excitatory and PV + had values of −1. We summed all positive values and

divided this sum by the total number of matrix elements to calculate the fractional area of the overlap

for facilitation and suppression in the two neural populations (OEP in Figs. 2 and 4).

Capturing the sequence of firing rate suppression and recovery

We extracted the experimental data for firing rate fold changes of excitatory and fast-spiking interneu-

rons during the first two days of MD from Figure 3D in (Hengen et al., 2013) using open source software

(Rohatgi, 2011). We hypothesized that MD should affect feedforward connections immediately. There-

fore, to capture the firing rates of excitatory and PV + neurons on the first day of MD, we assumed that

only feedforward synapses change (Fig. 7, left). We simulated networks in the ISN regime with strong

SST+-feedback for 70 randomly drawn (δE , δP )-pairs chosen from a range in which excitatory neurons

have normalized firing rates close to baseline (1.05± 0.15 in Fig. 4A). This set of parameters produces

suppressed PV + firing rates.

To capture the firing rates of excitatory and PV + neurons on the second day of MD, we assumed

that in addition to changes in the feedforward connections, recurrent connections also change (Fig. 7,

right). Therefore, for each (δE , δP )-pair, we found a (ζEP , ζPE)-pair that can recover the firing rates of

PV +-interneurons close to baseline (0.98± 0.15 in Fig. 4B).

We also simulated the ISN without SST+-feedback with the same changes in feedforward and

recurrent connections to investigate how the firing rate changes in this network compare with those

measured experimentally.
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Linear population-rate model

To gain a deeper understanding of the factors underlying firing rate changes in response to MD-induced

plasticity, we used a Wilson-Cowan linear population model where we studied the rates of each popu-

lation (Wilson and Cowan, 1972). The dynamics of the firing rate in this model follow:

dr(t)

dt
= −r(t) + f

(

Wr(t) + s(t)
)

(9)

where r is the vector of rates, s the vector of external inputs and W the population connectivity matrix

of the rate-based model:

W =







w −γw −κ

w −γw −κ

w 0 0






. (10)

As in the simulated network, input to the network comes from two sources, LGN and BKG. As before,

we set the input rates from both sources to be the same, rx, in which we also absorb the input weights:

s =







rLGN + rBKG

gfwrLGN

rBKG






=







2rx

gfwrx

rx






. (11)

We used a rectified-linear population input-output function:

f(x) = Γ
[

x
]

+
=







0 for x < 0,

Γx for x ≥ 0
(12)

where Γ is the input-output gain, chosen to be the same for all populations. With steady inputs and

assuming that the network operates in the linear regime away from rectification, the steady-state of the

rates in this model is:

rss =
(

I− ΓW
)−1

· Γs (13)

From this steady-state, we can calculate the fold-change of the network rate after MD relative to

baseline for each combination of synaptic changes. Synaptic changes induced by MD were applied

multiplicatively as before, with (δE , δP ) and (ζEP , ζPE) affecting W and s, similarly to Eqs. 6 and 7, to

yield:

W
MD =







w −ζEPγw −κ

ζPEw −γw −κ

w 0 0






(14)

and

s
MD =







(δE + 1)rx

δP gfwrx

rx






(15)

We solve the steady state in Eq. 13 for MD by inverting I − ΓWMD. Without loss of generality, we
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absorb the response gain factor Γ into the interaction parameters (w and κ respectively) as well as into

the feedforward input (rx) by rescaling them with a common factor. The steady-state activity after MD

becomes:







rEMD

rPMD

rSMD






=

1

ηMD







1 + γw −ζEPγw γwκ(ζEP − 1)− κ

w(ζPE − κ) 1− w + wκ wκ(1− ζPE)− κ

w(1 + γw) −ζEPγw
2 1− w + γw + γw2(ζPEζEP − 1)













(δE + 1)rx

δP gfwrx

rx






(16)

where

ηMD = det(I−W
MD). (17)

To generate the planes of firing rate change in response to MD-induced plasticity, we solved the rate

model in Eq. 9 numerically, while also incorporating firing rate rectification when rates became negative.

We found that the rate model could capture firing rates changes in the spiking networks both for the

network with a single subtype of interneuron (compare Supplementary Fig. S2 A-C vs. Fig. 1 B-D and

Supplementary Fig. S2 D-F vs. Fig. 2 B-D) and for the network with two subtypes of interneurons

(compare Supplementary Fig. S3 vs. Fig. 4).

Analysis of the paradoxical effect and its reversal

The linear model enables us to mathematically relate the firing rate changes to MD-induced plasticity

to specific response properties of the network depending on its operating regime. In the linear model,

setting the coupling scale w = 1 marks the transition between the non-ISN (w < 1) and the ISN (w > 1)

regimes (Tsodyks et al., 1997). A hallmark of the ISN regime is the “paradoxical effect” whereby an

excitatory input to the inhibitory population decreases its firing rate after a transient increase.

We first considered the network with a single subtype of interneuron, by setting κ = 0. In this case

the firing rate change in response to additional drive ξ > 0 to the PV + population becomes:

(

∆rEss

∆rPss

)

=
1

1− w + γw

(

1 + γw −γw

w 1− w

)(

0

ξ

)

=
1

1− w + γw

(

−γwξ

(1− w)ξ

)

. (18)

The scalar pre-term 1 − w + γw is always positive when the network is stable. The responses of each

population to this additional drive to the PV + population are:

∆rEss = −
γwξ

1− w + γw

∆rPss =
(1− w)ξ

1− w + γw
. (19)

Hence, the response of the excitatory neurons is always in the opposite direction to ξ for any network

parameters (γ > 0 and w > 0). However, the response of the PV + population depends on the value

of w. When w < 1 and the network is in the non-ISN regime, the PV + population changes its activity

in the same direction as ξ. When w > 1 and the network is in the ISN regime, the PV + population

changes its activity in the opposite direction to ξ, as the excitatory population. Since the depression of
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synaptic connections to PV +-interneurons observed in early MD is equivalent to providing an inhibitory

input to the PV + population in the linear model, i.e. ξ < 0, the operating regime of the network and

the presence of the paradoxical effect in the ISN regime can be related to the observed firing rate

changes in response to MD. Therefore, in the non-ISN, the excitatory and PV + populations respond to

MD by changing their firing rates in the opposite direction, while in the ISN regime, the excitatory and

PV + firing rates changes closely follow each other (Supplementary Fig. S2). We confirmed through

simulation that the value of J where the same change in PV + responses to MD-induced plasticity

occurs in the spiking network is indeed the point where the spiking network goes from non-ISN to ISN

and is related to the paradoxical effect (Fig. 2).

We extended this result in the network with two types of interneurons. Now the firing rate change in

response to additional drive ξ > 0 to the PV + population becomes:







∆rEss

∆rPss

∆rSss






=

1

η







1 + γw −γw −κ

w(1− κ) 1− w + wκ −κ

w(1 + γw) −γw2 1− w + γw













0

ξ

0






=

1

η







−γwξ

(1− w + wκ)ξ

−γw2ξ






(20)

where η = det(I − W), which is always positive when the network is stable. The responses of the

excitatory and the PV + population to this additional drive to the PV + population are:

∆rEss = −
γwξ

η

∆rPss =
(1− w + wκ)ξ

η
. (21)

As for the network with a single type of interneurons, the response of the excitatory neurons is always in

the opposite direction to ξ for any network parameters, independent of the strength of SST+ feedback

κ. The response of the PV + population is proportional to (1 − w + wκ)ξ. Thus, the direction of rate

changes in the PV + population no longer depends only on w but also on the strength of SST+ feedback

κ. In the non-ISN, the PV + population responds with a change of activity in the same direction as ξ

since w < 1 and wκ > 0, independent of κ. In the ISN, where w > 1, the PV + population responds

with a change of activity in the opposite direction to ξ when the following condition is satisfied:

κ <
w − 1

w
. (22)

This implies that for any w > 1, there exists a sufficiently large κ that leads to a reversal of the paradox-

ical effect and thus a non-paradoxical response of the PV + population even in a network operating as

ISN (Fig. 5).

Relating facilitation of PV
+ firing rate to the paradoxical effect

Next, we related the above conditions (Eq. 22 and w > 1) for the presence of the paradoxical effect

in networks with one or two types of interneurons to the presence of facilitatory responses for PV +-

interneurons in the parameter spaces of MD-induced plasticity. In particular, in the network with a single

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.25.445562doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.25.445562
http://creativecommons.org/licenses/by-nc-nd/4.0/


type of interneuron, PV +-interneurons start showing a facilitatory response in response to feedforward

plasticity at a specific value of coupling (Supplementary Fig. S2D). In the network with two subtypes of

interneurons operating in the ISN regime, the facilitatory response of PV +-interneurons vanishes for a

specific strength of SST+ feedback κ and reemerges at a higher value of κ (Fig. S3D).

From Eq. 16, the rate for the PV + population after induction of MD-plasticity is:

rPMD =
rx

ηMD
·

(

(δE + 1)w(ζPE − κ) + δP gfw(1− w + wκ) + wκ(1− ζPE)− κ

)

. (23)

We focus on feedforward plasticity only, since recurrent plasticity affects ηMD (Eq. 17). In the case of

feedforward plasticity, the rate for the PV + population after induction of MD-plasticity reduces to:

rPMD =
rx
η

·

(

(δE + 1)w(1− κ) + δP gfw(1− w + wκ)− κ

)

. (24)

Setting all MD-related parameters to one, the baseline rate is:

rPBL =
rx
η

·

(

2w(1− κ) + gfw(1− w + wκ)− κ

)

. (25)

Therefore, the condition for the emergence a facilitatory area of PV + responses after MD is:

δE · w(1− κ) > (1− δP )gfw(1− w + wκ) + w(1− κ). (26)

We first considered the network with a single type of interneuron by setting κ = 0. Then the condition

for the emergence a facilitatory area of PV + responses after MD becomes:

δE > (1− δP )

(

gfw
1− w

w

)

+ 1. (27)

Since feedforward plasticity in response to MD depresses synaptic inputs to excitatory neurons and

PV +-interneurons, δE , δP < 1. Therefore, this condition can never be satisfied in the non-ISN regime

where w < 1. Thus, PV + responses to MD-induced feedforward depression in the non-ISN never

increase above baseline (Supplementary Fig. S2D).

In the ISN regime, w > 1, the condition becomes:

δE > δP ·

(

gfw
w − 1

w

)

−

(

gfw
w − 1

w
− 1

)

(28)

giving a specific linear relationship between δE and δP that is the boundary between suppression and

facilitation (Supplementary Fig. S2A and 1B). Thus, the position of the boundary between facilitation and

suppression depends on w and gfw. However, for w ≫ 1, which is well in the ISN regime, (w−1)/w ≈ 1

and thus the slope and offset of this linear relationship depend primarily on gfw.

In the ISN network with SST+-interneurons where w > 1, we studied the condition for the emer-

gence a facilitatory area of PV + responses for increasing κ. Assuming that 0 < κ < 1, the condition

yields again a linear relation between δE and δP that separates facilitatory and suppressive areas of the
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parameter space:

δE > (1− δP )

(

gfw
1− w + wκ

w(1− κ)

)

+ 1. (29)

As long as

κ <
w − 1

w
(30)

the condition Eq. 29 can be satisfied with depression of feedforward synapses. Note that this is exactly

the condition Eq. 22 for which the PV + population switches to non-paradoxical behavior due to SST+

feedback. As κ increases, the condition Eq. 29 becomes harder to satisfy because the term 1−w+wκ
w(1−κ) < 0

grows monotonically. Thus, the facilitation area of the PV + population in the parameter space of feed-

forward plasticity decreases (Fig. S3D). As κ increases, the condition Eq. 29 can no longer be satisfied,

and PV +-responses no longer show facilitation (Fig. S3D; at κ = 0.8 for the chosen parameters, see

also switch of paradoxical response in Fig. 5).

As κ approaches one, the condition in Eq. 26 goes through a singularity. Therefore, the condition

for the emergence of facilitation of PV + responses after MD in Eq. 29 switches sign:

δE < (1− δP )

(

gfw
1− w + wκ

w(1− κ)

)

+ 1. (31)

PV +-interneurons can again show a facilitatory response during MD-induced plasticity for κ > 1, but

on the opposite side of the linear boundary (Fig. S3A).

For networks well in the ISN regime, where w ≫ 1, the conditions for the disappearance of the facili-

tatory area and the reemergence on the opposite side of the linear boundary become the same because

(w − 1)/w → 1. Here, the condition for reversal of the paradoxical effect in PV +-interneurons through

SST+ feedback and for the opposite firing rate changes of excitatory neurons and PV +-interneurons

through SST+ feedback become the same.
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Supplementary figures
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Supplementary Figure S1: Response to synaptic changes induced by brief MD in a spiking network in
non-ISN regime. (A) Network schematic showing couplings among cells and parameters to model MD-induced

synaptic changes (see Fig. 1). In the non-ISN, J has a smaller value than in the ISN (shown responses for J =
0.01 nS) (B) Network firing rate in the (δE , δP ) plane as fold-change of baseline firing rate for excitatory neurons

(top) and PV +-interneurons (bottom). In the non-ISN there is no facilitation of activity of PV +. (C) Network firing

rate in the (ζEP , ζPE) plane as fold-change of baseline firing rate. Facilitation of activity of PV +-interneurons

is present in the non-ISN. (D) Combined feedforward (through the E/I ratio of feedforward synaptic changes,

ρEI = δE/δP ) and recurrent plasticity (through the potentiation of recurrent excitation to PV +-interneurons, ζPE).

Network firing rate as fold-change of baseline firing rate in (ζPE , ρEI ) plane. In contrast to the ISN (see Fig. 1),

here in the non-ISN, the rate changes are opposite over large fractions of the plane.
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Supplementary Figure S2: Linear model of the network with a single subtype of interneurons (PV +). (A)
Network firing rate in the (δE , δP ) plane as fold-change of baseline firing rate for excitatory (top) and PV + popula-

tions (bottom). (B) Network firing rate in the (ζEP , ζPE) plane as fold-change of baseline firing rate. (C) Combined

feedforward (through the E/I ratio of feedforward synaptic changes, ρEI = δE/δP ) and recurrent plasticity (through

the potentiation of recurrent excitation to PV +-interneurons, ζPE). Network firing rate as fold-change of baseline

firing rate in (ζPE , ρEI ) plane. (D) Network with feedforward depression only. Fractional area of facilitation for ex-

citatory neurons (FE , gray), PV +-interneurons (FP , blue) and the overlap between excitatory and PV + response

areas (OEP , orange) as a function of overall coupling scale w. (E) Same as (D) for recurrent potentiation only. (F)
Same as (D) for combined feedforward and recurrent plasticity. For all plasticity types studied, the linear model

qualitatively reproduces the structure of firing-rate fold changes in the spiking network (compare to Fig. 1 and

Fig. 2). Note that w in the linear population model is the equivalent to the coupling scale J in the spiking network.

Green diamond shows the coupling scale value (w = 5) used in (A-C).
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Supplementary Figure S3: Linear model of the network with a two subtypes of interneurons (PV + and
SST+). (A) Population rate in the (δE ,δP ) plane as fold-change of baseline in the linear model containing SST+-

interneurons. (B) Population rate in the (ζEP ,ζPE) plane as fold-change of baseline in the linear model con-

taining SST+-interneurons. (C) Population rate in the (ζEP ,ρEI ) plane as fold-change of baseline in the linear

model containing SST+-interneurons. (D-F) Fractional area of facilitation for excitatory neurons (FE , gray), PV +-

interneurons (FP , blue) and the overlap between excitatory and PV + response areas (OEP , orange) as a function

of SST+ feedback κ, for the three types of plasticity considered: feedforward only (D), recurrent only (E), and

combined feedforward and recurrent (F). Green diamond shows the value of κ used in (A-C) for the response

planes showing reversed responses in PV +-interneurons.
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Supplementary Figure S4: Plasticity of synapses from SST+-interneurons affects circuit dynamics sim-
ilarly to potentiation of recurrent synapses between excitatory and PV +-interneurons. (A) Network

schematic showing couplings among cells and parameters to model hypothetical MD-induced synaptic changes

in synapses from SST+-interneurons: depression of synapses from SST+- onto PV +-interneurons (ζPS < 1)

and potentiation of synapses from SST+-interneurons onto excitatory neurons (ζES > 1). (B) Network firing rate

in the (ζPS ,ζES) plane as fold-change of baseline firing rate (bottom right corner where ζPS = ζES = 1). The

qualitative effect of this hypothetical plasticity closely resembles that of recurrent plasticity (Fig. 4B).
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