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Abstract. The increasing popularity of XML Web services motivates
us to examine if it is feasible to substitute one vendor service for another
when using a Web-based application, assuming that these services are
“derived from” a common base. If such substitution were possible, end
users could use the same application with a variety of back-end vendor
services, and the vendors themselves could compete on price, quality,
availability, etc. Interoperability with substituted services is non-trivial,
however, and four types of incompatibilities may arise during such inter-
operation – structural, value, encoding and semantic. We address these
incompatibilities three-fold: (1) static and dynamic analysis tools to infer
whether an application is compatible with a substituted service, (2) semi-
automatically generated middleware components called cross-stubs that
actually resolve incompatibilities and enable interoperation with sub-
stituted services, and (3) a lightweight mechanism called multi-option
types to enable applications to be written from the ground up in an
interoperation-friendly manner. Using real applications and services as
examples, we both demonstrate and evaluate our tools and techniques
for enabling interoperation with substituted services.

1 Introduction

Maintaining interoperability among independently evolving components is an
important but challenging problem in distributed systems (e.g., Vinoski [1]). We
address a variant of this problem in the context of SOAP/WSDL based XML
Web services. Multiple Web service vendors (e.g., Google, Hotbot and Altavista)
may offer services with substantially similar functionality, and this leads to two
scenarios: (1) autonomous services, where each vendor independently defines his
WSDL service, or (2) derived services, where once a vendor becomes popular,
other vendors adopt and extend the popular vendor’s service. This paper shows
that if vendors cooperate and espouse the derived services model, cross-vendor
interoperability can be achieved. (While our techniques also apply to the au-
tonomous services case, it is much more difficult, as explained in section 8.)

The derived services case, illustrated in figure 1, is a variant of the indepen-
dent evolution problem, since each of the derived vendor services represents an
independent extension of the base service. Our goal is to facilitate interopera-
tion with non-native services, i.e., services other than the one the application was



Fig. 1. Vendors V1, V2, . . . , VN derive their services from base service V . Applications
A1, A2, . . . , AN are written to services V1, V2, . . . , VN respectively. We refer to the ser-
vice Vi as the native or source service of Ai, while all other services Vj , j != i and V
are considered non-native services for Ai. For an application A written to base service
V , all of the derived services V1, V2, . . . , VN are non-native services. Only a sibling,
parent or a child of the source service – and not any unrelated service – qualifies as a
non-native service. We only consider one level of derivation in this paper.

originally written to. (See the figure for more details.) E.g., a Google application
should ideally interoperate with other search engines also, a driving directions
application written to an existing provider (e.g., Arcweb) should be switchable to
a future provider that offers traffic-sensitive driving directions. Much like other
services in the economy such as credit-cards and insurance services, the choice of
a Web service depends on many factors (cost, reputation, quality, speed, etc.),
all of which vary over time, apart from the fact that some vendors may shut
down and others may come online. E.g., Inktomi was once the dominant search
provider, today it is Google, and it might be Microsoft or Yahoo in the future.
Lack of interoperability with non-native vendors can significantly undermine the
“revolution” promised by Web service proponents. An analogy is being unable
to switch credit card, cellphone, insurance or mortgage providers.

Non-native service interoperability is challenging however – in section 2, we
identify four types of incompatibilities it may entail: structural, value, encoding
and semantic. We address this problem with static/dynamic analysis and mid-
dleware based tools and techniques, and the results obtained with existing Web
services and applications are summarized below:

– Static analysis reveals that many Web service applications only use a fraction
of a service’s functionality, making the proposition of interoperation with
non-native services a reasonable one.

– For existing applications and services we have studied, a combination of
static and dynamic analysis is sufficient to make automated determinations
of compatibility with non-native services.

– Actual interoperation with the non-native service can be realized through
semi-automatically generated cross-stubs. Cross-stub generation involves in-
compatibility resolution when the application is not fully compatible with
the non-native service, and is done using a GUI-based tool.



– A number of incompatible application-service pairs we studied indicates that
incompatibilities often arise due to non-critical reasons – reasons that do not
hamper the basic functioning of the application.

– If applications are authored using our proposed multi-option types, it is pos-
sible to automatically determine whether incompatibilities with a non-native
service are non-critical, and if so, automatically resolve the incompatibilities.

To summarize, an application owner (i.e., a developer or a user/administrator)
can (1) auto-determine which non-native services are fully compatible, (2) set
up interoperation even with incompatible services, provided the incompatibilities
are (manually) determined to be non-critical, and (3) for applications written
with multi-option types, even auto-determine whether the incompatibilities with
a non-native service are non-critical, and if so, auto-resolve them.

In the context of XML applications and services, HydroJ [2] has recently
addressed the evolution problem by building upon “XML pattern languages” [3].
While HydroJ proposes new kinds of language types and paradigms, we address
the problem using the static host types approach, in which WSDL specifications
are statically mapped to language types in the client application. The static
host types approach is already widely adopted through Web service toolkits
such as AXIS, Glue, Wasp and .NET, making our approach easier to deploy
and also applicable to legacy applications. Furthermore, we go beyond HydroJ
by providing a mechanism for resolving incompatibilities if a desired non-native
service is not fully compatible, and we also propose multi-option types to further
enhance interoperability. Vinoski [1] observes that the static host types approach
is convenient but sacrifices XML flexibility, a limitation we address in this paper.

Although our work is implemented in the context of Web services due to the
current interest in these technologies, our techniques are more generally applica-
ble. Also, while our focus is on cross-vendor interoperability, our techniques can
also be applied to the (simpler) cross-version interoperability problem, where
an application needs to interoperate with multiple versions of the same ven-
dor service. The rest of the paper proceeds as follows. Section 2 describes service
derivations and the types of incompatibilities that may arise with non-native ser-
vices. Section 3 describes the static and dynamic analysis algorithms and tools
we use to identify compatibility between applications and non-native services.
Section 4 describes incompatibility resolution and cross-stubs. Section 5 reports
experiments with existing Web services (Google, Mappoint and Arcweb) and ex-
isting client applications. Section 6 describes our proposal for authoring future
client applications in an interoperation-friendly manner. We discuss semantic
issues in section 7, related work in section 8 and conclude in section 9.

2 Service Derivations and Incompatibilities

2.1 Background

A WSDL service (see figure 2 for an example) is a collection of porttypes (which
roughly correspond to RPC interfaces, although Web services are not equiva-
lent to traditional distributed objects [4,5,6]), each of which supports a set of



operations. An operation has input and output messages. The types of input
and output messages are specified using XML schema. (We sometimes use the
terms parameters and returns to denote inputs and outputs respectively.) XML
schema defines built-in simple types (int, float, string, etc.) and allows com-
plex types to be built up from them. Unlike most traditional type systems, type
derivation in XML schema allows for both extension and restriction. Thus, a
complex type can be extended by adding new mandatory or optional elements,
and also restricted by removing optional (but not mandatory) elements. In ad-
dition, the value space of simple types can be restricted (but not extended) by
applying one or more facets such as enumeration, regular expression pattern,
minimum/maximum value, etc.

Limitations: For the reader familiar with XML schema, we only consider com-
plex types with element-only content, and do not consider identity constraints,
wildcards or substitution groups. For a reader familiar with WSDL, we deal with
document style and RPC-style operations in this paper, but not the other lesser
known and used operation styles. Finally, we only consider one level of service
derivation. (Service derivation is explained below.) Some of these excluded fea-
tures may not raise any new issues, and none are used by the services we have
experimented with so far, but we plan to consider them in future work when
services using them become available.

2.2 WSDL Service Derivation

The WSDL specification does not yet define service derivation. One might imag-
ine two types of derivations: add/remove an operation or extend/restrict the
input and output message types of an operation. As an example, two vendors
etailer1 and etailer2 could independently derive from vendor etailer’s service of
figure 2 as follows:

– etailer1 adds customer ratings. Accordingly, etailer1 extends KSRequest to
KSRequest1 by adding an optional minRating field. Similarly, Product is
extended to Product1 by adding an optional rating field.

– etailer2 does not sell books, and does not maintain sales ranks. So, etailer2
restricts Category to Category2, which only allows “All”, “Music” and
“Movies”. Also, Product is restricted to derived type Product2, which re-
moves the optional salesrank field.

Independent extensions (but not restrictions) can lead to semantic conflicts
if two vendors each add a field with the same name but different “meanings”.
This problem is avoided in XML schema if each vendor defines his extensions
in his own namespace. Thus, the minRating field added by etailer1 belongs to
namespace “etailer1”, and our techniques (conservatively) consider it as different
from a minRating field added by another vendor. If, on the other hand, a vendor
wishes to reuse a field with the same semantics added by another vendor, there
is a mechanism to import an element from another namespace in XML schema.



<definitions targetNamespace="etailer">
<portType name="EShop">

<operation name="keywordSearch">
<inputpart name="request" type="KSRequest"/>
<outputpart name="product" type="Product"/>

</operation>
</portType>

<complexType name="KSRequest">
<element name="keyword" type="string"/>
<element name="category" type="Category" minOccurs="0"/>

</complexType>

<complexType name="Product">
<element name="id" type="string"/>
<element name="category" type="Category"/>
<element name="salesrank" type="int" minOccurs="0"/>

</complexType>

<simpleType name="Category">
<restriction base="string">

<enumeration values="All, Books, Music, Movies"/>
</restriction>

</simpleType>
</definitions>

Fig. 2. A vendor named etailer defines a WSDL service in the “etailer” namespace
containing a porttype EShop with a single operation keywordSearch with input type
KSRequest and output type Product. KSRequest has two fields: a keyword and an op-
tional category that can take one of four values “All”, “Books”, “Music” or “Movies”.
The output type Product has three fields: id, category and salesrank. (We use some no-
tational shortcuts here, e.g., inputpart and outputpart are not legal WSDL elements.)

While XML schema allows both extension/restriction for complex types by
adding/removing fields, it only allows restriction of the value spaces of simple
types. Value space extension, while useful for deriving services, raises the same
semantic issues as adding fields. Unlike fields, values have no namespaces, but
we can address this problem with facets, as discussed in section 7.

2.3 Types of Incompatibility

Given the service derivation scheme of the previous section, four types of incom-
patibilities may arise between applications and non-native services: structural,
value, encoding and semantic. A structural incompatibility is a mismatch in the
structure of the (XML) message sent by the sender and expected by the receiver,
while a value incompatibility arises when the structure is as expected, but the
filled-in values are unexpected. The bulk of the paper deals with structural and
value incompatibilities (together referred to as SV-incompatibilities), and they
are explained in more detail below. Encoding incompatibilities, illustrated and
addressed in section 4, arise because instances belonging to different schema
types are not identical even if they have the same structure and identical val-
ues. As explained in the previous section, semantic incompatibilities arise when
different vendors introduce extensions with identical syntax (i.e., same struc-



ture and value) but differing meanings, and the problem can be alleviated by
namespaces and facets as further discussed in section 7.

Considering applications written to a given source service S, a non-native
target service T may differ from S in the following ways, each of which represents
a kind of SV-incompatibility:

– Missing methods: If T removes a method from the base service, or if S adds a
method, S-applications may use this method and hence be incompatible with
T . The converse case of extra methods in T does not cause an incompatibility.

– Extra fields: If T adds a field f to the base service, or if S removes f , S-
applications do not use f , but T expects a value for f if it is mandatory
(minOccurs > 0). No incompatibility occurs for optional extra fields, or for
extra T fields in method outputs (as opposed to method inputs).

– Missing fields: If T removes (or S adds) a field f , S-applications using this
field are incompatible with T . Incompatibility occurs even if f is optional
(minOccurs=0) – if an S-application uses an optional field, it may be impor-
tant to the application, and cannot be ignored.

– Facet mismatches: If S and T have different facets for an input field f ,
where the value space for S.f !⊆ the value space for T.f , values passed by S-
applications may be disallowed for T resulting in incompatibility. For output
fields, incompatibility occurs when value space of T.f !⊆ value space of S.f .

– Cardinality mismatches: If S and T have different cardinality requirement
for a field f , as when T declares minOccurs=3 and S declares minOccurs=2,
incompatibility may result.

In the first case, we refer to the offending method m as the causal method, while
in other cases the offending field is called the causal field. In the last four cases,
we further distinguish whether the causal field is an input/output field. These
incompatibility categories are summarized in figure 3. In the examples we have
experimented with so far, I1 − I5 (missing methods, missing/extra fields and
input facet mismatches) are prevalent, while the others are rare. Finally, note
that all the SV-incompatibilities can be detected automatically given the source
and target service WSDL specifications.

3 Application Usage Behavior and Compatibility

While the incompatibilities of figure 3 represent all the potential SV-incompatibilities
between S and T , many of them are irrelevant for a given S-application A, e.g.,
an I1-category incompatibility is irrelevant for A if A never calls the causal
method. In this section, we discuss how we gather the method and field usage
information from the application.

3.1 Usage Inference with Static Analysis

As noted earlier, our approach is primarily intended for applications written
using static host types. In the static host types approach, the WSDL specification



Fig. 3. The possible SV-incompatibilities (i.e., structural and value incompatibilities)
when applications written to service S interoperate with a non-native service T . T may
differ from S in having extra/missing methods, extra/missing fields or cardinality/facet
mismatches. The I2 incompatibility occurs only if the causal field is mandatory i.e.,
minOccurs>0. (Other incompatibilities can occur even with optional fields.)

and XML schema types are mapped to Java classes, and applications are written
using these classes. The Java classes generated for etailer1’s service, and sample
application code using this service is shown in figure 4.

Our static analysis tool, called UAT-S (usage analysis tool-static) identi-
fies which fields of the inputs are filled in by the application, and for leaf-level
fields UAT-S also determines which values they are set to. Similarly, UAT-S also
identifies which output fields of the service result are actually consumed by the
application. To do this, UAT-S performs an interprocedural points-to analysis [7]
on the application code. For each call site of every method in the service inter-
face, UAT-S determines which allocation sites the parameters and returns (and
their subfields) can point to. Based on these points-to sets, UAT-S generates
usage tuples, such as shown below for the application code in figure 4:

T1 <method, keywordSearch>
T2 <method, alsoBought>
T3 <input, keywordSearch@param1.category, known, "Music", appCode>
T4 <input, keywordSearch@param1.keyword, unknown>
T5 <input, alsoBought@param1, return, keywordSearch@return.id>
T6 <input, alsoBought@param2, return, keywordSearch@return.category>
T7 <output, keywordSearch@return.id>
T8 <output, keywordSearch@return.salesrank>

.....

The first component indicates whether the tuple refers to a method or an
input/output field. The second component identifies the method or the in-
put/output field. A method tuple identifies that the specified method is invoked



package etailer1;
public interface JEShop1 {

public JProduct1 keywordSearch(JKSRequest1 x);
public JProduct1[] alsoBought(String id, String category);

}
public class JKSRequest1 {

public String keyword;
public String category;
public Integer minRating;

}
public class JProduct1 {

public String id;
public String category;
public Integer salesrank;
public Integer rating;

}
public class JEShop1Stub implements JEShop1 { .. }
// Sample application code
L1 JEShop1Stub stub = new JEShop1Stub();
L2 JKSRequest1 req = new JKSRequest1();
L3 req.category = "Music";
L4 req.keyword = infile.read(..);
L5 JProduct1 prod = stub.keywordSearch(req);
L6 outfile.write(prod.id, prod.salesrank);
L7 JProduct1[] others = stub.alsoBought(prod.id, prod.category);

Fig. 4. Java classes generated for the etailer1 service of section 2. We add an extra
method “alsoBought” here, which returns other products purchased by customers who
bought a given product. Notice how the code “pipes back” the id and category fields
of the keywordSearch return from line L5 to the alsoBought method on line L7.

at some call site in the application. For input tuples, the third component can
be known, unknown or return as explained below:

– known: This means at some service callsite, the application passes a known
value for this field. For example, T3 was derived from line L3 of the sample
code. For known input tuples, the final component indicates the source of
this value, i.e., application or library code.

– unknown: This means at some service callsite, the value passed to this field
cannot be statically determined. T4 and line L4 illustrate this case.

– return: This means that at some callsite, the value passed to this field was
obtained as a return from another callsite. For example, T5 indicates that
prod.id obtained as return from keywordSearch on line L5 is piped back
to alsoBought on line L7.

The output tuples record which output fields are consumed by the application.
For example, T7,T8 indicate that output fields id and salesrank were consumed
(line L6). The input field minRating is never used by the application, and the
output field rating is never consumed, so no tuples are generated for them.
Input tuples of type “known” and “unknown” are only generated for leaf level
input fields. Values are not recorded for outputs (unlike for inputs), and we
assume that services can generate any legal output value (i.e., any value allowed
by the facets declared in the specification).



3.2 Compatibility Based on Statically Inferred Usage Behavior

We provide a tool CAT-S (compatibility analysis tool-static) that uses the usage
tuples to eliminate irrelevant SV-incompatibilities between the source and target
interfaces. Each incompatibility i is processed by CAT-S as follows depending
on which category (among I1 − I8 from figure 3) it belongs to:

– I1: If the causal missing method m is never invoked, i.e., there is no method
usage tuple for m, i is irrelevant.

– I2: If the causal extra field belongs to method m, and there is no usage tuple
for m, i is irrelevant, because the method to which the extra field belongs
to is never invoked.

– I3-I4: If there is no usage tuple for the causal missing field f , i is irrelevant
because the missing field is never used.

– I5: If there is no input tuple for the causal field f , i is irrelevant. Other-
wise, set RELEVANT to false and iterate through each input usage tuple t
involving f :
• If t’s type is unknown, set RELEVANT to true. This is because if the

value for f at some call site is unknown, we assume (conservatively) that
it can be the worst case value – one that causes the incompatibility.

• If t’s type is known, and the known value is disallowed by the target
service’s facets for f , set RELEVANT to true, else leave RELEVANT
unchanged.

• If t’s type is return, and if the piped return field is r (for example, in tuple
T6, r = keywordSearch@return.category and f = alsoBought@param2),
if the target service’s value space for r !⊆ the target service’s value space
for f , we set RELEVANT to true, else leave RELEVANT unchanged.
(This is because the value returned by the target service for r is being
sent back to the target service as f , so there is no incompatibility if the
value space for r ⊆ the value space for f .)

Once we have iterated through all tuples involving f , if RELEVANT is false,
i cannot occur and is irrelevant.

– I6-I8: If there is no usage tuple for the causal field f , i is irrelevant.

First, the asymmetry in handling inputs vs. outputs in rules I5 and I6 arises
because, as noted earlier, we assume that services can generate any legal value
allowed by the declared facets. Second, the above rules are correct, but not op-
timal as elaborated below:
Correctness: The points-to analysis we perform as part of UAT-S can escape as-
signments when the application code uses native methods, dynamically loaded
code (using URLClassLoader) or reflection. In these cases, the above rules only
declare incompatibilities as “likely irrelevant” rather than irrelevant. In other
cases, the above rules are always conservative.
Optimality: The above rules for I5− I8 are not optimal – unlike missing method
and missing/extra field incompatibilities, exact constraint and facet compatibil-
ity cannot always be determined statically for applications written in general-
purpose languages such as Java, so we err on the conservative side. For example,



it is possible that an application always passes values allowed by the target ser-
vice facets, but if the values passed cannot be statically determined (i.e., there
is an unknown input usage tuple for this field), the above rule for I5 (conserva-
tively) does not rule the incompatibility as irrelevant. Similarly, fields that can
occur multiple times are typically modeled as arrays in the static host types ap-
proach, and optimal detection of cardinality incompatibilities requires that the
array lengths be determined statically, which is not always possible.

We have rarely encountered I6 − I8 incompatibilities in the examples we
have dealt with so far, although I5 incompatibilities are quite frequent. Dynamic
analysis (discussed in the next section) partially addresses the sub-optimality of
the rules in this case.

3.3 Dynamic Analysis

Dynamic analysis complements static analysis, especially when an application
can theoretically generate an incompatible message, but never does so in practice.
To enable dynamic analysis, we track the input messages sent by the application
to the service at runtime in normal operation. Message interception can be per-
formed at the stubs if they are suitably instrumented, or using a network-level
proxy otherwise. Since we control stub generation, we use the former approach.
CAT-D (compatibility analysis tool-dynamic) simply checks if all the past input
messages sent by the application are compatible for the target service. Clearly,
the effectiveness of CAT-D increases as time of capture increases. Dynamic mes-
sage tracking and compatibility checking is technically straightforward, so we do
not discuss further mechanical details.

Summary of compatibility determination: When it is desired to switch an S-
application A to one of several non-native target services, say available at a
registry, we do the following for each target service T :

– Generate all SV-incompatibilities between S and T from their specifications.
– Using the usage tuples for A and the CAT-S rules, filter out irrelevant in-

compatibilities.
– Among the remaining incompatibilities (if any), mark the ones that do not

occur in practice (as determined by CAT-D) as likely irrelevant.

The target services are ranked based on the remaining incompatibilities, referred
to as relevant incompatibilities. While fully compatible target services (if any)
are best from an interoperability standpoint, the application owner may still
choose a not fully compatible target service for other reasons (cost, reputation,
quality, etc), and the next section explains incompatibility resolution.

4 Cross-stubs

Instead of a regular stub, the interaction between an application and a non-
native target service is mediated at runtime by a semi-automatically generated



middleware component called cross-stub. A cross-stub is link-compatible with
a regular-stub, allowing the unmodified application to be run against the non-
native service. When generating a cross-stub, the application owner must resolve
the relevant incompatibilities (if any). The available resolution choices are:

1. Runtime exception: Here, the cross-stub throws a runtime exception when
this incompatibility is detected at runtime. As indicated by JEShop1Stub, a
network service application is already expected to handle an exception, for
other reasons such as service and network failures. This choice is applicable
for all incompatibility categories.

2. Ignore: For missing fields and for cardinality/facet mismatches involving op-
tional fields, the owner may choose this option if it is acceptable for the
causal field to be dropped.

3. Supply a value: For extra fields (category I2), the owner can supply a value
that should be used for this field.

4. Alternative value: For facet mismatch incompatibilities, the owner can pro-
vide a substitute value to be used when the value supplied by the application
is disallowed by the target service facets. The substitutes can be tailored to
the target service facets, as the following examples indicate:
– Enumeration facet: A fixed substitute value is specified.
– Range facet: The owner may choose to use the closest legal value.
– Pattern facet: A search and replace substitute pattern (similar to the

“s/../../” expressions of sed and perl) may be specified, and is applied
when the original value is disallowed by the target service facets.

As an example for the pattern facet case, in both their Web UI and WSDL
API, the Google query parameter allows special operators in queries, such as
“foo file:pdf” and “foo site:cnn.com”. If the target service specifies a pattern
facet disallowing “file:” queries, the application owner can provide a substitute
pattern that removes the “file:” terms from the query.

In all the above four options, the owner can optionally specify a notify mes-
sage, to be displayed to the user (with a pop-up window) at runtime when
the incompatibility occurs and the resolution action is taken. Once the owner
resolves all the relevant incompatibilities, the cross-stub is auto-generated from
the source and target service specifications and incorporates the resolution code.

For some incompatibilities, resolution may require more complex handling
than selecting one of the standard resolution choices. (E.g., a missing method
incompatibility may be better handled by invoking a third-party service.) Mod-
ifying the application sources (if at all available) is not desirable from a main-
tenance standpoint, because the core application logic should ideally be kept
separate from the incompatibility handling code. For this purpose, we allow the
application developer to optionally provide a custom handler (written to well-
defined conventions) that is interposed between the application and the cross-
stub. The custom handler may use arbitrary code to handle the incompatibility.
Another advantage of custom handlers is that they can be used to handle new
types of incompatibilities. For example, extending the service derivation scheme
of section 2 to allow derived services to add new fault types (i.e., exceptions) to



existing operations results in a new type of incompatibility - mismatch in thrown
fault types. Additional fault types introduced by the target non-native service
can be handled in the custom handler.

During the resolution process, an application owner may determine that an
incompatibility can not be handled and critically affects the functioning of the
application, and thus abort the cross-stub generation process. In section 6, we ex-
amine how such aborts can be avoided by automatically determining beforehand
whether the incompatibilities with a non-native service are critical.

In addition to implementing SV-incompatibility resolution, cross-stubs also
handle encoding incompatibilities that arise because, as shown below, instances
of different XML schema types (such as etailer1’s KSRequest1 and etailer2’s
KSRequest2) derived from a common base type are not identical even if they
contain the same (non-null) elements and values.

<KSRequest xsi:type="KSRequest1">
<keyword xsi:type="string">foo</keyword>
<category xsi:type="Category1">Music</category>
<minRating xsi:type="int" xsi:nil="true"/>

</KSRequest>
<KSRequest xsi:type="KSRequest2">

<keyword xsi:type="string">foo</keyword>
<category xsi:type="Category2">Music</category>

</KSRequest>

Depending on how etailer2 service is implemented, it may expect the type
attribute to be set to “KSRequest2”, and hence not recognize even an SV-
compatible KSRequest1 instance. To address this, a cross-stub from services
S to T is link-compatible with an S stub, but generates messages on the wire
identical to those generated by a T stub.

5 Experimental Results

Our implementation was primarily done within AXIS, an open source toolkit
from Apache that implements static Java host types for WSDL services. Dynamic
analysis and cross-stub generation was implemented by modifying the AXIS stub
generators. UAT-S was implemented using joeq [8], which allows us to perform
context-sensitive (but flow-insensitive) inter-procedural points-to analysis. We
implemented an optional extension that allows the analysis to include primitives,
i.e. an instruction that assigns the value 10 to a primitive int is considered as
an allocation site that creates a java.lang.Integer object with value 10. In
some cases, UAT-S declares a primitive value “unknown” even if a more detailed
analysis could have ascertained a known value, e.g. static evaluation (or partial
evaluation) of arithmetic expressions; but we have found that this does not
significantly reduce the effectiveness of the analysis.

We perform three sets of experiments. (1) Application usage behavior exper-
iments, where we study what fraction of service functionality typical applica-
tions exercise. Non-native service interoperability is more likely to be successful
if applications typically exercise only a small subset of the service functional-
ity, because this small subset is likely also supported by non-native services.



Application Service #meths #used #i/p #filled #o/p #consumed
ORG #60 Google SearchService 3 1 10 10 27 6
ORG #69 Google SearchService 3 1 10 10 27 6
ORG #78 Google SearchService 3 1 10 10 27 6

ComparePop Google SearchService 3 1 10 10 27 2
JDLS Mappoint FindService 5 1 17 9 51 16
JDLS Mappoint RenderService 4 2 327 39 48 17
JDLS Mappoint RouteService 2 1 102 50 281 25
JDLS All Mappoint Services 11 4 446 98 380 58

StoreLocator All Mappoint Services 11 5 414 62 446 44
AW-apps All Arcweb Services 45 13 446 134 210 83

Table 1. Usage statistics extracted by UAT-S for several applications. These results
indicate that the applications only exercise a fraction of the service functionality. For
example, JDLS only accessed 4 out of 11 methods, and even among these 4 methods,
filled in only 98/446 input fields and consumed only 58/380 output fields. (The 446
inputs/380 outputs belong to the 4 accessed methods only, not all the 11 methods.)
The Google applications filled in all inputs because they were forced to – the 10 inputs
are simple type parameters rather than fields of a single structure – but they exercise
only a small fraction of the input value space for these parameters. E.g., the language
and country restricts parameters permit search customized to hundreds of language
and countries, but these applications only use a few of these options.

(2) Compatibility and integration experiments, where we demonstrate our tools
and techniques in action. (3) Nature of incompatibilities experiments, where we
study how often incompatibilities occur due to non-critical reasons. If incom-
patibilities frequently arise due to non-critical reasons, then non-native service
interoperability can be further automated by employing multi-option types (to
be described in section 6).

5.1 Application Usage Behavior

We examine several existing applications. The first three are taken from the
O’Reilly book “Google Hacks”, although we reimplemented them in Java. Com-
parePop is a Google application we wrote that compares relative popularity of
search phrases across different languages (English, French, etc) based on the
number of matches and where the words occur in the matching Web pages (ti-
tle, URL or link). JDLS (Java Desktop Location Suite, a desktop application
that provides maps, routes, panning/zooming, etc), StoreLocator (a JSP-based
application created by a third-party vendor SpatialPoint) and AW-apps (collec-
tion of JSP applications accessing Arcweb location services) are available from
the Mappoint and Arcweb web sites. Mappoint is a collection of three document
style services (Find, Route and Render), while Arcweb, provided by the leading
GIS software vendor ESRI, is RPC-style and consists of six different services.
Both are quite complicated – for example, AXIS generates over 125 classes for
Mappoint.

Table 1 shows the results produced by UAT-S on these applications. The
results indicate that applications often only exercise a subset of features of the
backend service they are written to, implying they can be compatible with non-
native services even if the latter do not support all the features of the source
service. (Also, the results of the next section show that most inputs/outputs used



by these applications are supported by other services.) Thus, interoperation with
non-native services is a reasonable proposition.

Application Google AltaVista AllTheWeb Hotbot Teoma
ORG#60-Google TC

ORG#60-AltaVista
√

TC
ORG#60-AllTheWeb

√
TC

ORG#60-Hotbot
√ √ √

TC
ORG#60-Teoma

√ √ √
TC

ORG#69-Google TC
ORG#69-AltaVista

√
TC

ORG#69-AllTheWeb
√

TC
ORG#69-Hotbot

√ √ √
TC

ORG#78-Google TC
√ √ √

ORG#78-AltaVista
√

TC
√ √

ORG#78-AllTheWeb
√ √

TC
√

ORG#78-Teoma
√ √ √

TC
ComparePop-Google TC

√ √

ComparePop-AllTheWeb
√

TC
√

ComparePop-Hotbot
√ √

TC
Table 2. Compatibility of search applications with different vendors. (TC indicates
trivially compatible,

√
means compatible, i.e., all incompatibilities removed by CAT-S,

while a blank indicates one or more relevant incompatibilities.) The row ComparePop-
AltaVista is missing because ComparePop cannot be implemented using AltaVista,
since one or more features needed by ComparePop is not provided by AltaVista. The
same applies to other missing rows. These results show that when an application owner
has a choice of several non-native services to use, (s)he can automatically determine
which among them are compatible using our techniques.

5.2 Compatibility and Integration

We first consider the scenario where an application owner needs to choose a suit-
able target service from among several non-native services available at a registry.
In particular, we study compatibility of several search applications with five dif-
ferent search vendors: Google, AltaVista, AllTheWeb, Hotbot and Teoma. The
Google WSDL service is considered the base service; we created WSDL services
for the other vendors based on the features supported in each vendor’s “advanced
search” Web pages. We paired each of four search-based applications—ORG#60,
ORG#69, ORG#78 and ComparePop—with each of the five search services.
Each application-service pair only makes calls that are legal for its native ser-
vice. For example, ORG#60-AltaVista, an interactive application, allows a user
to enter only queries containing operators supported by AltaVista. As shown
in table 2, the owner can use CAT-S to automatically determine which among
the potential target non-native services are compatible with the application at
hand. For a compatible service, no resolution step is needed, and the owner can
auto-generate the needed cross-stub.

We next consider a scenario where an application owner has pre-decided on
a specific (possibly incompatible) target service, and the goal is to enable rapid
integration. We consider two Mappoint applications and four Google applica-
tions and target services Arcweb and AltaVista respectively. Table 3 shows the



effectiveness of automatic application usage inference during the integration pro-
cess. Using the usage tuples inferred by UAT-S, CAT-S eliminates most of the
incompatibilities, so the owner is only left with a few incompatibilities to resolve
using the GUI tool.

Application Service #Total #Relevant Application Service #Total #Relevant
JDLS Find 25 1 ORG#60 Google 13 1
JDLS Render 44 10 ORG#69 Google 13 1
JDLS Route 50 2 ORG#78 Google 13 1

StoreLocator Find 25 4 ComparePop Google 13 2
StoreLocator Render 44 10 - - - -
StoreLocator Route 50 0 - - - -

Table 3. Number of incompatibilities (total and relevant) for two Mappoint and four
Google applications with the non-native Arcweb and AltaVista services respectively.
These results are based on CAT-S alone (i.e, CAT-D was not used here.) and demon-
strate the effectiveness of application usage behavior inference in the integration pro-
cess. Using the usage behavior data gathered by UAT-S, CAT-S is able to weed out
most incompatibilities. Without CAT-S/UAT-S, the owner has to manually determine
the relevance of each incompatibility.

5.3 Nature of Incompatibilities

Here, we study a number of incompatible application-service pairs to determine
how often incompatibilities occur due to non-critical vs critical reasons. To max-
imize incompatibility cases, we study compatibility of Google applications with
other vendors, since Google supports more features than others. Figure 5 shows
that in as many as 33 out of the 56 incompatible pairs, the incompatibilities
do not affect the basic functioning of the application. This result is significant
for two reasons. (1) the results of section 5.1 show that applications typically
exercise only a fraction of the service functionality. Figure 5 suggests that even
among the features exercised, many are not critically needed for the function-
ing of the application, further suggesting that interoperability with non-native
services is practical. (2) the figure indicates that a mechanism for automated
“white vs grey” determination is desirable, since this allows the “white” cases
(i.e., critically incompatible cases) to be auto-filtered out without manual effort.

6 Interoperation-friendly Applications

In this section, we examine how applications can be written ground-up for better
interoperability. Specifically, if an application were explicitly authored to indicate
which features are critical, then our algorithms could use this information to
automatically resolve non-critical incompatibilities. Non-critical should not be
confused with optional. (Recall that the service specification can declare a certain
field as optional, e.g., minRating was declared optional in the schema definition
of KSRequest1.) Whether a field is non-critical depends on application semantics.
Much like WSDL, RPC systems in the past have often allowed services to specify



Fig. 5. Compatibility of various O’Reilly Google applications with non-native vendors.
Black indicates compatible, white indicates incompatibility due to a critical feature,
and grey indicates incompatibility due to a non-critical feature. Each label identifies
an incompatibility, e.g., SO = special operators (i.e., “file:pdf”, “site:cnn.com”, etc) F
= filter (indicates if multiple results from same host should be filtered out). For legacy
applications, the white vs. grey determination requires manual effort, whereas it can
be automated for multi-option types.

(in their interface specifications) whether certain parameters are optional, but
few systems allow a client to specify that a particular parameter or field that it
supplies is non-critical.

Our goal is to specify the critical/non-critical information manually only once
at application authoring time, and to use it automatically every time integra-
tion with a non-native service is desired. (An application is written once, but
integrated multiple times during its lifetime.) To enable this goal, we propose
multi-option host types.

6.1 Multi-Option Host Types

Example multi-option types for the KSRequest1 input message are shown below.
(A different design based on generic types is possible in Java 1.5.)
public class M_JKSRequest1 {

boolean non_critical = false; // ok to ignore?
boolean ignored = false; // was it ignored?
M_String category;
M_String keyword;
M_String minRating;

}
public class M_String {

boolean non_critical = false; // ok to ignore?
boolean ignored = false; // was it ignored?
String suppliedValue; // value supplied by app
Object substitutes; // other values to use if suppliedValue is disallowed
String usedValue; // value that was actually sent to the service
public M_String(String val) {

suppliedValue = val;
}

}



A multi-option simple type (such as M_String) is similar to the corresponding
plain simple type (such as java.lang.String) except that in addition to sup-
plying a value, a multi-option type provides a boolean non_critical indicating
whether it is OK for the application if this field were altogether ignored, and
an optional substitutes object providing a set of alternative values to use if
the supplied value is not allowed by the service. A multi-option complex type
(M_JKSRequest1) is similar to the corresponding ordinary complex type, ex-
cept each of its fields is replaced by the corresponding multi-option type, and
the boolean non_critical indicates if the whole subtree corresponding to this
complex type can be ignored. Multi-option types are used as shown below:

M_String m_cat = new M_String("Books");
m_cat.substitutes = {‘‘All’’};

M_Integer m_rating = new M_Integer(4);
m_rating.non_critical = true;

M_JKSRequest1 req = new M_JKSRequest1();
req.category = m_cat;
req.rating = m_rating;

Instead of specifying values, the substitutes object can also specify substitute pat-
terns (like the “s/../..” patterns in sed and perl) or substitute ranges. The former
specifies that the value can be transformed using the specified pattern if need
be. A substitute range indicates that any value in the range is acceptable. For
applications using multi-option types, the cross-stub generator generates best-
effort cross-stubs automatically from the source and target non-native service
specifications. A best-effort cross-stub behaves similarly to a regular cross-stub,
except (1) if it detects a missing field incompatibility, but the causal field is
non_critical, it simply sets ignored to true and ignores the incompatibility,
and (2) if it detects a facet mismatch incompatibility, but the causal field spec-
ifies substitute values one of which is compatible with the target service facets,
usedValue is set to the compatible substitute value, and the incompatibility is
ignored. (Substitute patterns and ranges are similarly handled.) Once the call is
made, the application can determine if the value was ignored or substituted by
the cross-stub, and (perhaps) notify the user:

stub.keywordSearch(req); // see req in previous code snippet
// we’ve called the service. were the values changed by the stub?
if (m_cat.usedValue != "Books" or m_rating.ignored) {

// if need be, notify the user or log somewhere
}

The philosophical essence of multi-option types is to build substitutability from
ground up – fine-grained field-level substitutability is an atomic building block
for higher-level service substitutability.

6.2 Multi-Option Types in Use

Here, we discuss real examples of multi-option types in use. First, Mappoint
applications such as JDLS and StoreLocator specify fonts and styles, and colors
for routes/zones, which could be made non_critical and/or substitutable. Sec-
ond, the O’Reilly Google applications specify filter and safesearch, but do



not critically rely on them, so these can be made non_critical. (These parame-
ters respectively indicate if multiple results from the same host and adult content
should be excluded.) Finally, many O’Reilly Google applications allow special
operators to be entered by the user, but can usefully function with services that
disallow some special operators. So, a substitute pattern can be specified that
removes the special operators.

For applications written using multi-option types, UAT-S records which fields
were indicated as non_critical, and the provided substitute values/patterns/ranges
(if any). The CAT-S rules of section 3.2 are updated as follows. If a missing field
incompatibility i is considered relevant by the rules of section 3.2, but the field
is always declared non_critical, declare i as non-critical. If a facet mismatch
incompatibility i is considered relevant by the rules of section 3.2, but substitute
values or ranges are available, we check if any of the specified substitute values
or any value in the substitute range is legal for the target service facets. If so, i
is declared non-critical. The case when substitute patterns are available is a bit
involved, and not implemented yet, but is theoretically tractable. Substitute pat-
terns are finite state transducers, and since regular languages are closed under
FST’s, we can check if the regular language obtained by applying a substitute
pattern to the source value space is a subset of the target value space.

If the Google applications of figure 5 were written using multi-option types,
the new CAT-S rules would automate the “white vs. grey” classification, and
non-critical incompatibilities will be automatically resolved by the cross-stubs.

7 Semantics and SV-Compatibility

The bigger picture is that we have facilitated automatic detection of SV-compatibility,
but this does not assure semantic compatibility, i.e. it does not guarantee the
service will “do what you want.” Ideally, we want an application and service
to be SV-compatible if and only if they are semantically compatible. We can
approach this ideal if service creators follow these guidelines:

1. If a vendor restricts some base interface construct (method, type, type field
or valuespace) or keeps it the same, he should keep its semantics the same
as those of the corresponding base interface construct.

2. If a vendor extends by adding a method, type or type field, he should do so
in his own namespace, unless he wants to reuse an extension already done
by someone else, in which case he should import the construct from that
party’s namespace.

3. If a vendor extends the value space of some type/field, and uses facets to
specify this, the system would know which values carried over from the base
and which are added by each vendor. So, even if two vendors add the same
value with different semantics, the system can infer that the value is not part
of the base type and hence can conservatively assume that this value might
have different semantics for each vendor.

The above conventions are similar to the re-use namespace names and the new
namespaces to break rules of Orchard [9], and if adhered to will ensure that:



1. For methods, types and type fields, (a) SV-compatibility implies semantic
compatibility, and (b) semantic compatibility implies SV-compatibility to
the extent vendors reuse existing extensions from other namespaces;

2. For values, SV-compatibility will imply semantic compatibility, though not
necessarily the converse.

8 Related work

We urge that vendors cooperate and derive their services from existing WSDL
services. This may make economic sense even for competing vendors, since a de-
rived service may help them draw traffic. However, we recognize that a competing
vendor may (e.g., for political reasons) choose to define a completely different
autonomous WSDL specification. Building upon [10,11], we have partially ad-
dressed autonomous services interoperability before [12] by employing adapters.
In future work, we combine UAT-S/CAT-S/CAT-D with adapters to better
address the autonomous services case. However, unlike the semi-automatically
generated cross-stubs, adapters must be completely handwritten, and thus au-
tonomous services interoperability requires much more effort.

Referring back to the derived services case, service interface subtyping has
been used for evolution, but with a base service V and two derivatives V1 and
V2, traditional subtyping only handles two (namely V → V1 and V → V2) out of
the six non-native service interoperation scenarios (V → V1, V → V2, V2 → V ,
V1 → V , V1 → V2 and V2 → V1). Also, traditional subtyping does not con-
sider restriction. Compared to systems that address cross version/vendor sub-
stitutability without relying on subtyping [13,14,15,16], we leverage application
usage behavior and multi-option types to customize the integration behavior to
the application with minimal effort from the application developer/owner.

Schmidt et al. [17] explain the lack of practical versioning support in CORBA,
while Vinoski [1] and Vogels [4] point out some of the interoperability/versioning
issues with XML Web services. XDuce [3] provides static type checking for pro-
grams processing XML data, but does not target compatibility of applications
exchanging XML messages over the network. Debugging tools such as SOAP-
scope [18] can check differences in WSDL documents, but UAT-S/CAT-S/cross-
stubs go much further. David Orchard’s guidelines [9] for XML schema version-
ing emphasize the need to provide processing models to deal with unrecognized
schema components/extensions (i.e., incompatibilities). Our contribution is in al-
lowing automated detection of which unrecognized components/extensions can
break a given application and to specify a processing model (i.e., resolution
choice) in an application-specific manner.

Multi-option types are most similar to Spreitzer’s flexible types [19]), Or-
chard’s “mustUnderstand” model [9] and the HTTP extension framework’s non-
ignorable bits [20]. These mechanisms at best only provide the equivalent of the
non-critical flag, but not the substitute patterns, ranges or values. Furthermore,
they rely on both client and server side support, while our multi-option types are
entirely client-side and require no changes to wire protocols or server-side imple-
mentations. Schema evolution [21] and data integration [22] are well-researched,



but do not leverage application usage behavior or provide multi-option types.
Schema matching systems [23] attempt to auto-derive semantic relationships
between different schemas; we rely on simple conventions, and perform no non-
trivial semantics inference. Unlike semantic Web services [24], our approach does
not require development of or global agreement on semantic markup languages.

9 Conclusions

Interoperability with non-native services is an enabling technology, because it
assures application developers that their applications will stay relevant and us-
able across vendors, and hence promotes Web services adoption and application
development. Our foray into this problem space reveals that many applications
only access a fraction of the service functionality, and even among the features
accessed only a subset is critically needed. Leveraging these observations, we
address the problem threefold: (1) static and dynamic analysis tools that auto-
matically infer application behavior and determine compatibility with non-native
services, (2) a GUI tool for resolving incompatibilities and generating cross-stubs,
middleware components that actually enable the interoperation to occur, and (3)
a lightweight mechanism called multi-option types that enables applications to
be authored from ground up for better interoperability. We presented a set of
experiments that, although by no means exhaustive, provide initial support for
our claims and demonstrate the workings of our techniques.
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