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nteroperability is a central concern when building digital libraries as collections of inde-

pendently developed components that rely on each other to accomplish larger tasks. The

ultimate goal for such systems is for the components to evolve independently yet be able

to call on one another efficiently and conveniently. Digital libraries designed to scale to

international dimensions need to be constructed from such interoperable pieces—not only

for technical reasons but because information repositories and information processing services often

need to be operated by independent organizations scattered around the world.

The terms “heterogeneous” and “federated” are often used to describe cooperating systems in

which individual components are designed or operated autonomously. Such cooperation is in con-

trast to the more general term “distributed systems,” which also includes collections of compo-

nents deployed at different sites and are carefully designed to work with each other. Our focus here

is on heterogeneous, or federated, systems of information resources and services and how they can

be made to interoperate.

How to achieve interoperability among the world’s scattered

digital libraries? Nobody knows exactly, though it’s worth

keeping several points in mind when creating the links.
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nteroperability has been a critical problem
in the 1990s and will be for the foreseeable
future, as the number of computer systems,
information repositories, applications, and

users multiplies at an explosive rate. It gets
worse as system design and software produc-

tion become global activities in which, for example,
the politics of local regions may dictate which ser-
vices a component may provide or what data can be
exchanged. Interoperability is also, by nature, an
extremely complex and evolving problem. Although
researchers have been struggling with interoperabil-
ity for more than 20 years, it is often not clear what
principles have been established or key results have
been obtained.

Here we present a broad introduction to the
issues of interoperability, suggesting factors that
may be used in evaluating related solutions and
providing an overview of solution classes. Interop-
erability has been surveyed before, but mostly in
the context of a specific domain (such as database
systems and programming languages). The advan-
tage of taking a broad systems approach is that it
lets us identify common issues and solutions span-
ning domains and applications. We have also pre-
pared an annotated bibliography [1] pointing to
various in-depth examinations. Interoperability is
not just an issue of intercomponent communication
but needs to be considered in each system’s many
different functions. We offer an informal set of cri-
teria by which interoperability solutions can be
classified and evaluated. And our high-level survey
of approaches for accomplishing interoperability
shows there is no single magic bullet, that indeed,
new approaches have to be used in conjunction
with older types of solutions.

A Problem for Almost All
Distributed Systems
One reason interoperability has been receiving broad
attention is that the problem permeates almost all
aspects of digital libraries implemented as distrib-
uted computing systems. Careful decisions around
certain requirements that arise in interoperable sys-
tems can influence the cost of solutions significantly.

To identify at a glance the broad relevance of
interoperability, Figure 1 lists in the columns five
major functions of digital libraries. The first refers to
the storage, organization, and retrieval of informa-
tion; the second to its presentation to users; the third
to communication among parts of the overall sys-
tem; the fourth to initiation and control of a system’s
actions; and the fifth to protection for users and their
property and information resources. The rows list
respective examples of corresponding enabling tech-
nologies, current research thrusts, and some long-
term goals. 

For example, the modeling cell in the information
management column represents basic technologies
for organizing information so it can be shared with
other parts of a system, even if they follow different
information-structure conventions. Early federated
database systems, for instance, created global data-
base schemas to help smooth over syntactic differ-
ences [11]. Translators would convert data field
specifications to local conventions at the target com-
ponents. For example, a global schema for a set of
business directory databases might specify that the
names of firms are stored in a field called company-
Name. A directory of corporate donors to charitable
organizations might locally store this information in
a field called corporation. Another directory, list-
ing corporations involved in lawsuits, might call the
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Figure 1. Examples of system functions where interoperability issues arise
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same field defendant. A client could now issue
queries searching over companyName in all direc-
tories at once. This approach could be used to answer
such questions as “Find the earnings of corporate
donors currently involved in lawsuits.” Before being
submitted to each database, the query would be
modified to use the correct local field name.

We find a similar approach in a very different
arena if we move to the component interconnection
cell of Figure 1. This cell represents the networking
technology of intercomponent communication. For
example, if a library collection is available to one 
set of patrons through a proprietary mainframe con-
nection protocol, gateways can translate traffic
between the mainframe’s native protocol and the
World-Wide Web.

In the remote computation cell (in the operations
column), we find this translation approach repre-
sented yet again. This column of Figure 1 provides
examples of interoperability for invoking operations
in a target component. “Heterogeneous computing”
is a term sometimes used in this context [12].
CORBA and DCOM are protocols that provide the
ability for components to be written in different lan-
guages and for different computing platforms. The
components remain interoperable in the sense that
they can invoke operations on each other. Appropri-
ate facilities translate among the mechanics of invok-
ing an operation in each participating system.

We can use the information-presentation column
of Figure 1 to show the differences between the focus
on earlier enabling technology and the currently
more prevalent interoperability research thrusts.
These thrusts seek to gain ever more independence
from particular computer platforms and are often
declarative in nature. Early interoperability for dis-
playing information on disparate system components
relied on some minimal, universal agreement, such
as bitmap display technology. Later, the degree of
interoperability was enriched by such facilities as the
X Windows system. An alternative approach, exem-
plified by Display Postscript in Sun Microsystems’
News system, provides a way to describe exactly
what is to be rendered without relying on agreement
at the level of a common window system. All receiv-
ing components are responsible for finding some way
of rendering the descriptions locally. 

Current research thrusts (middle row of Figure 1)
build on basic technologies, usually attempting to
provide richer functionality while expanding plat-
form independence. For example, research into the
information presentation function in Figure 1 has
begun to leverage the remote computation enabling
technology provided by Java. Multivalent docu-

ments [8], for instance, are renderings of information
in a client’s Java virtual machine. These renderings
can include behaviors that dynamically turn the
image of a text document into ASCII or convert a
single-spaced document image into a double-space
one. Other behaviors might include reaching
through the Internet to request another service to
summarize the document’s contents. Interoperability
in this example hinges on the common infrastructure
provided by Java and its standard user interface 
elements. This infrastructure ensures that these
richer documents can still move among a system’s
components. 

Similarly, in the operations column of Figure 1,
the remote computation facilities provided by
CORBA, DCOM, and mobile code, like Java
applets, are raising interoperability issues in the con-
text of coordination among independently executing
components. Full-scale distributed transaction
approaches with guarantees for continuous informa-
tion consistency can at times be too limiting or com-
putationally expensive. Therefore, some systems
attempt to allow heterogeneous components, such as
the word processors of remotely collaborating
authors of a document, to operate independently for
random periods of time. The programs then synchro-
nize occasionally, so that over a long period of time,
document consistency is ensured (see, for example,
the Bayou system in [1]).

As a long-term goal (see top row of Figure 1), sys-
tems would operate by allowing heterogeneous com-
ponents to come online, advertise their capabilities,
and engage in peer-to-peer interaction with other
components. This vision is very difficult to realize,
because it is not clear how to describe arbitrary func-
tionality so other components can inspect the
description and “decide” automatically that this
functionality is appropriate for a given task and what
all the parameters are intended to convey.

Similarly, a long-term goal for the protection
function is simply to declare terms and conditions
for an interaction and to have the system take care of
the rest. For example, a document might travel
among components with attached instructions stip-
ulating that the document’s contents may be read
and passed on to another component but that it must
not be copied. Appropriate watermarking for detect-
ing violations or even preventive measures would
ensure adherence to these stipulations.

A major long-term goal for information manage-
ment, presentation, and communication functions is
complete independence from data formats, docu-
ment models, and languages. The vision is that each
component uses, for example, its own way to repre-
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sent documents, but documents could still be freely
exchanged and widely displayed on different com-
puting platforms and that possibly even human lan-
guage barriers could be overcome. While complete
human language translation is an elusive goal, some
progress is being made in the information manage-
ment function. For example, [10] describes a system
in which queries can be issued using keywords from
one human language but which identifies relevant
documents written in another human language.
However, much more work is needed before the top
row of Figure 1 describes reality.

As shown in Figure 1, interoperability may 
concern information, operations, and protection
functions. Beyond that, differences in interoperabil-
ity requirements need to be considered when design-
ing a digital library consisting of collaborating
components.

How Much to Hide Heterogeneity?
Alternative degrees of hiding heterogeneity can be
illustrated by examining transparency for three
aspects of distributed digital libraries—differing
levels of functionality in participating components,
heterogeneity among user interfaces, and the effects
of data and functionality distribution on the use of
components in the system.

deally, all components of an interoperable
system would be made to appear equally
fast, equally rich in functionality, and
equally expressive in modeling data. For

example, a digital library of independently
maintained collections would appear to the

user as one big resource whose subcollections all
behaved identically. In practice, this is usually not
possible. Instead, a series of design choices must be
made, depending on how much homogeneity is
required. For example, if homogeneity of functional-
ity across all collections is highly desired, a designer
might decide to not make any functionality available
that may be obtained at only some of the participat-
ing collections. This approach ensures that all col-
lections appear maximally homogeneous in
functionality, although it also sacrifices functionality
that would be available if some heterogeneity in the
functionality of the digital library’s collections were
deemed tolerable.

Similarly, at the user-interface level, if differences
in interaction styles are tolerable, it is permissible to
display different user interfaces as users interact with
the various collections. On the other hand, if a com-
mon look and feel is considered crucial to a system’s
success, an interoperability solution may need to

include a complete user interface that bypasses the
collections’ native interfaces.

Finally, usage requirements may demand trans-
parency of physical distribution of data and opera-
tions. This requirement makes designing for
interoperability more complex, because it implies
that access time differences among the collections
need to be eliminated or minimized. Achieving it
may involve precomputation, data caching, precise
scheduling, or even the artificial slowing of the faster
collections. On the other hand, if transparency of
distribution is less important, appropriate indica-
tors, such as a cursor turning to an hourglass for
some operations, may be acceptable. Alternatively in
this case, a human user may be asked to decide
whether or not an expensive operation is to be per-
formed. However, this approach assumes the ability
to predict system behavior, which is frequently not
possible.

The degree to which all aspects of an interopera-
ble digital library are to look homogeneous signifi-
cantly affects the complexity of solutions.

Syntax vs. Semantics
The degree to which component differences are to be
bridged at a syntactic vs. a semantic level is fre-
quently stressed when describing interoperability
projects. The implication is often that semantic
interoperability is more important or sophisticated
than syntactic approaches. But the differences are
not always clear. 

As a first approximation, a simple example 
can illustrate the difference between syntactic 
and semantic interoperability: Consider a compo-
nent publishing the fact that anyone can remotely
call its function print(String:author,
String:pubData, Float:price, String:
address). Assuming appropriate remote invoca-
tion technology, this publication provides syntactic
interoperability. Anyone can call this function with-
out causing an invocation error. Semantic interoper-
ability would be improved if this component also
published the fact that it will print at 600dpi on the
printer in Hall A, that the parameters are supposed
to specify a book to be paid for in Japanese yen, and
that the printed output will be an order form as
required by standard company procedure.

This kind of simple example is generally used
when describing the difference between syntactic
and semantic interoperability. But the difference is
actually more complex, in that it recurs at multiple
layers. For example, looking at the formula
(Forall x (Exists y (Knows y x))),
one might say the syntax is Lisp-like, but the
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implied semantics are first-order logic. On the other
hand, one might say that its being a statement in
first-order logic is really just syntactic, and the
semantics have to do with what Knows means in
some axiom system. Or one might instead character-
ize the whole formal axiom system as syntactic and
conclude that the real semantics are in the axiom sys-
tem mapping onto some domain of interest in the
world. Two representations might therefore be said
to be “semantically interoperable” if they can be used
with a common inference system. But are they really
interoperable if  Knows in one system has a different
shade of meaning in the other? 

Similar complexity arises in programming lan-
guages. What most people refer to as the “semantics”
of a program is really the syntax of its execution,
with no reference to what the program is about—
whether, for instance, it is playing chess or balancing
a checkbook. We can say loosely that the more ambi-
tious a system becomes in considering semantic
interoperability, the more flexibility we have in
options for interacting with it—and the more diffi-
cult it is to implement.

Measuring Success
One of the biggest problems with interoperability is
that comparing solutions is very difficult. Different
approaches operate under differing assumptions, and
design goals frequently conflict with one another. It
is therefore important to articulate the potentially
relevant goals and to understand trade-offs among
them.

We can, however, isolate criteria for evaluating
interoperability solutions. There are many such cri-
teria, but the following six stand out:

• High degree of component autonomy
• Low cost of infrastructure
• Ease of contributing components
• Ease of using components
• Breadth of task complexity supported by the

solution
• Scalability in the number of components

These are not quantitative measures but provide use-
ful guidelines for understanding distributed and
interoperable digital libraries. Sometimes, trade-offs
that optimize one criterion can negatively affect

another. For example, a system that minimizes the
cost of infrastructure may be usable only for simple
tasks or may be difficult to use. Because the result-
ing simple facilities require more programming for
each participating component, we limit the follow-
ing discussion to the first four criteria.

Component autonomy. The degree of component
autonomy refers to the amount of compliance with
global rules required of each participating compo-
nent. Not considering interactions with other goals,
higher autonomy is better, because it provides more
local control over implementation and operation of
components, and because it makes it easier to include
legacy systems as participating components. At one
extreme, complete autonomy would make no
assumptions of components complying with any
global rules. Components could present arbitrary
interfaces and insist on any interaction protocol or
data format. These protocols and formats could be
freely changed without notice. At the other extreme,
components participating in the system might be
required to engage in global procedures, such as
transactions or information store-and-forward, and,
for example, to organize all their information follow-
ing organizational schemes established by the
Library of Congress.

Limiting autonomy may affect many aspects of a
component. There may be limitations on how a com-
ponent schedules its activities; it may be required to
react right away to interrupts, or it may be allowed
to accept requests asynchronously and return results
via callbacks. A component may have to make all its
capabilities available at startup time, at a particular
address or port, and in a particular form. Less auton-
omy limitation in this area may instead allow late
binding of functionality. 

Yet another aspect of autonomy concerns security;
limited autonomy may, for example, require all par-
ticipating components to guarantee certain behav-
iors, while a higher level of autonomy may not make
any a priori rules but curb security transgressions
dynamically at run time.

While desirable in principle, high autonomy
can lead to solutions that allow interoperation over
only the lowest common denominator of function-
ality or that require very expensive construction of
component descriptions or translation facilities.

COMMUNICATIONS OF THE ACM April 1998/Vol. 41, No. 4 37

A long-term goal for information management, presentation, 

and communication functions is complete independence 

from data formats, document models, and languages.



This limitation in turn can undermine other desir-
able characteristics, such as the ease of using the
components.

Practical interoperable systems lie between these
extremes. For example, federated databases with
global schemas provide very high autonomy for par-
ticipating local DBMSs. In contrast, consider the use
of blackboard architectures for coordinating large
tasks. In such an architecture, all components of an
interoperable system coordinate their work by post-
ing tasks and results to a centrally accessible loca-
tion. This approach provides less autonomy to the
components, because they must all agree to use the
blackboard and adhere to the respective data
exchange formats. On the other hand, the system
might be easy to use and implement.

Cost of infrastructure and entry. The cost of a
solution is another aspect to consider in any evalua-
tion. The cost of the infrastructure needed to support
a solution can be very difficult to assess even after
construction, because costs are shared among many
users, or even nonusers if funds are derived from
taxes. Examples include development of such widely
available “free” software as SGML parsers and the
Internet’s own development and maintenance. These
costs are paid for by entities beyond the scope of a
single organization. If the infrastructure costs are
local, such as installation of fiberoptic wiring in a
building, they are easier to assess. 

Ease of contributing components. This criterion,
unlike the previous criterion, refers to the incremen-
tal cost of enabling interoperability when building a
new component. This incremental cost could involve
hardware investment necessitated by the approach or
could be in the form of software complexity required
to ensure interoperability.

A good example is in the coordination area. If
the operations of interoperating components are
coordinated by transactions that initially lock
access to all resources needed by a component,
then any individual component can be assured
that once it is finished and commits its transac-
tion, it will not need to undo what it has done. On
the other hand, if coordination is achieved by
optimistic concurrency control in which all
actions are performed—even in the face of possi-
ble interoperation conflicts with other compo-
nents—then all components must be much more
sophisticated and ready to undo their own actions.

A low cost of entry is highly desirable, but a
higher cost of providing new components may well
be justified if it provides other engineering advan-

tages. In the concurrency-control example men-
tioned earlier, such an advantage potentially arises
for the optimistic concurrency solution. If there are
few conflicts, the overall system runs faster under
the solution, because components do not need to
wait for resources as often. Another reason for
choosing to accept a higher cost of contributing
new components is to make them easier to use.

Ease of use. A component’s ease of use refers to both
the complexity of creating client components and
the complexity of interacting with the component at
run time. For example, an information service that
provides only a very simple query interface might
make creation of clients easy, but everyday use might
be more complex.

The ease of using existing components in an
interoperable system needs to be considered sepa-
rately from the cost of creating service components,
because construction of a service component occurs
only once and might warrant higher costs, and
because it may be desirable to ensure that the cre-
ators of client components need not be as well
trained as the creators of service components.

Consider, for example, a remote client/server com-
munication mechanism modeled on Unix pipes;
clients and the server produce output by writing to
a standard output port, and other components con-
sume this output by reading from a standard input
port. This design makes client components easy to
build if the interoperation consists of components
producing single data types, such as ASCII-encoded
words or a few predefined types, that are then
processed by another component. The Common
Gateway Interface used on the Web is a slightly
more involved version of this piping mechanism.

n contrast, the CORBA/DCOM approach
requires the programmer to acquire and
process a special file that uses a specification
language to describe the interface of the ser-
vice component at a syntactic level. The

client program must then faithfully adhere to the
conventions laid out in that interface. For simple
tasks, this approach makes it more complicated to
write client components than it is in the piping solu-
tion. On the other hand, if complex data structures
and multiple component methods are involved, a
CORBA-like approach is much easier to use, because
it takes care of packaging parameters appropriately
for travel over the communication link (parameter
marshalling) and syntactically allows components to
be viewed as if they were local objects.

These examples show that evaluation criteria tend
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to be interrelated in complex ways. Evaluation also
depends on the complexity of tasks the system in
question is to be used for. In general, to select partic-
ular strategies for a given scenario, the system’s
designer must weigh the importance of each goal
against how well each strategy meets the goal. Because
it is difficult to quantify the whole evaluation process,
one must rely on experience and intuition.

Blending 
Solutions
Over the years, sys-
tem designers have
developed many very
different approaches
to achieving interop-
erability. Curiously,
these solutions are
beginning to blend
into each other (see
Figure 2). Each point
on the circle in Figure
2 represents one clus-
ter of approaches. 

Strong standards.
One of the oldest
approaches to achiev-
ing interoperability
among heterogeneous
components is to
agree on a standard that achieves a limited amount of
homogeneity among them. These standards come
about in different ways. Such standards as the ISO
802 for network connections and Z39.50 for infor-
mation retrieval were created by committees that
convened because a large and diverse enough com-
munity agreed a standard was needed. Sometimes
one product gains enough market share that it
becomes a de facto standard by virtue of its broad
deployment, as happened with DOS and later Win-
dows in the area of desktop operating systems. Other
times, government organizations help a standard
gain wide acceptance, as happened with USMARC,
an important method for organizing metainforma-
tion about books.

A de facto standard occasionally arises sponta-
neously because a small group of people developed an
approach that is compelling and easy to deploy and
fills an important need at the right time. Examples
include the initial versions of the document markup
language HTML, the Web’s communication proto-
col HTTP, and MIME, a set of facilities to enhance
Internet mail.

The success or failure of standards and the design
philosophies underlying standardization efforts are
often determined more by social and business con-
siderations than by technical merit. Companies
sometimes resist official standardization processes
because they believe they are strong enough to estab-
lish a de facto standard earlier than an official stan-
dard would evolve. Such a de facto standard would
give them a lead over competitors, because once the
de facto standard is ratified and elevated to official

status, their products and technologies have the
advantage of deep market penetration. A careful
exploration of these connections is important for
understanding the influence standards exert on inter-
operability [6], although such exploration is beyond
the scope of this article.

An appropriate standard that is widely adhered to
provides a powerful interoperability tool. For exam-
ple, a strong, well-designed standard makes it
worthwhile for vendors and freelance programmers
to create easy-to-use modules that implement the
standard. Wide availability of such modules
enhances the ease of contributing new services that
use the standard as a foundation (as per the ease-of-
contributing-components criterion). A reliable stan-
dard also helps encourage infrastructure investment,
even when infrastructure costs are high.

One drawback of standards is that they are diffi-
cult to agree on and therefore often end up being
complex combinations of features reflecting the
interests of many disparate parties. A more funda-
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mental difficulty is that a standard by nature
infringes on site autonomy (as per the high-degree-
of-component-autonomy criterion). With a single
standard, component providers are no longer free to
introduce local optimizations or satisfy the prefer-
ences of different customer groups. 

One solution is to include optional portions in the
standard, but this can quickly lead to increased com-
plexity and risks, diluting the standard. An alterna-
tive approach to increasing site autonomy without
completely losing the benefit of standards is to have
more than one standard.

Families of standards. In the families-of-standards
approach, component designers have the choice of
implementing one or more of several standards.
When two components begin to communicate, an
initial automatic or human-mediated negotiation
process determines which standards to share. Elec-
tronic commerce systems typically operate this way.
Any given vendor or customer may implement pay-
ment through a variety of payment schemes, such as
First Virtual, DigiCash, or one of several credit cards.

The International Organization for Standardiza-
tion (ISO) standard for interconnecting systems
called Open Systems Interconnection (OSI) created
an interoperability framework based on the family-
of-standards approach. OSI conceptually partitions
interconnection tasks into seven layers, each contain-
ing a family of standards concerned with a given set
of interoperability issues in the area of interconnec-
tion. For example, the bottom (first) layer contains a
set of standards concerned with the physical inter-
connection of components, such as transmission
speeds and voltage levels. One of the middle layers is
concerned with packaging information for transport,
such as partitioning large bodies of data into pack-
ets. Layers near the top are concerned with such
issues as establishing sessions. Each layer is designed
to function without knowledge of choices made at
other layers. For example, the session layer is
intended to operate without regard to whether the
relevant lower layer is using token ring or Carrier
Sense Multiple Access (CSMA) facilities. Interaction
negotiations take place only among the correspond-
ing layers in communicating components. 

The family-of-standards approach alleviates the
problem of autonomy infringement somewhat,
while maintaining the benefits of standards. But the
approach breaks down when standards are not avail-
able or are not adhered to for technical or business
reasons. This lack of standards can occur when, for
instance, applications or infrastructure are poorly
developed and multiple organizations are attempt-

ing to gain market dominance. In such cases, an
infrastructure explicitly constructed to provide
interoperability among highly autonomous compo-
nents can be put into place.

External mediation. The only way to provide very
high levels of autonomy for components is to locate
interoperability machinery outside the participating
local systems to mediate between components. A
primary function of such mediation machinery is
translation of data formats and interaction modes.
For example, in the area of interconnection, network
gateways play such a mediation role. Facilities that
map global schemas to local ones are also examples
of this approach.

However, translation in the sense of simple map-
ping is not always sufficient for full interoperability.
Components sometimes completely lack certain data
types or operations and therefore cannot interoperate
with some clients without further work. For example,
consider two collections of documents provided by
different digital library search services. The first pro-
vides a ranking feature that sorts search results by
estimated relevance; the second does not. In order for
a client to interact with both collections in an equally
convenient way, a mediation facility could provide a
separate ranking facility that would augment the
less-sophisticated collection’s functionality. When
dealing with the first collection, clients can simply
call the search operation; instead of interacting
with the second component directly, clients would
always interact with the mediation facility, which
would rank the results. Such mediation facilities are
sometimes called “wrappers” or “proxies.” An exten-
sive example is described in [7], where proxy objects
play a major mediation role in a digital library envi-
ronment. Another example is the context mediator
component in [9], which is placed between informa-
tion clients and servers and converts data attributes of
queries and the corresponding result values.

Even more of a mismatch occurs when compo-
nents differ in their interaction models. For example,
if some components expect to establish long-lasting
interaction sessions while others are stateless, then
mediation technology may need to simulate session-
based interactions for the stateless components. Con-
necting HTTP- and Z39.50-based components is an
example of such a mismatch.

Mediation approaches to interoperability are partic-
ularly strong in supporting the criteria of autonomy,
ease of use, and scalability. They require no compliance
from the components, and to the extent that mediation
can succeed, clients have the illusion of a highly inte-
grated system. All mediation facilities can be repli-
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cated, so scalability is usually not a problem.
The drawbacks of the mediation approach lie

mostly in the area of ease of contributing a new com-
ponent; whenever a new component is added, a cor-
responding mediation facility (such as a wrapper or a
schema augmentor) needs to be built as well. Notice
that for cases in which family-of-standards solutions
are used by some of the components, this drawback
is much less severe. 

Mediation technology then reaps the benefit of
standardization just as any regular client would. For
example, in an external mediation system providing
interoperability for highly autonomous search com-
ponents, a single mediation facility covers all Z39.50
sources at once. Different facilities still need to be
constructed for the non-Z39.50 sources.

ore generally, if mediation technologies
are used to make n kinds of components
interoperate with m other kinds, the sys-

tem designer needs to construct n 3 m
mediation facilities. One way out of
this complexity is to design the medi-

ation facility so it uses one common standard inter-
nally (for, say, sets of operations and data structures).
Then mediation is provided between that internal
standard and all the components that are to interop-
erate. For example, a mediation facility translating
among n metadata attribute sets might attempt first
to translate to USMARC and then to translate from
there to the desired target set. Some systems apply
the family-of-standards approach in this context,
translating to one of a small number of intermediate
standards and from there to the final target. This
method is appropriate if translation to a single com-
mon standard is too lossy, because no single standard
is sufficiently similar to all components. For example,
the Networked Digital Library of Theses and Disser-
tations uses PDF (a page-description de facto stan-
dard) and SGML (an international markup standard).

An important tool for mediation technology is
metadata for describing and translating among com-
ponents. Metadata is information describing the ele-
ments the mediation technology deals with, such as
components, or data items to be passed among the
components. Examples are the global schemas of
some federated databases, routing tables for gate-
ways, catalogs for document repositories, “semantic
values” in [9], and tags in document formats like
SGML. Due to the current increased emphasis on
component autonomy and the consequent interest in
interoperability solutions strong in this criterion,
representation and acquisition of metadata are being
widely explored [5].

Metadata plays an even more important role for
another approach to interoperability—specification-
based interaction—which attempts to avoid the
additional infrastructure required by mediation
approaches.

Specification-based interaction. When interoper-
ability is achieved by thoroughly describing the
semantics and structure of all data and operations, we
speak of a specification-based approach. The vision of
such an approach is to allow the use of components
without prior arrangement and without the help of
mediators. The goal is to describe each component’s
requirements, assumptions, and services so the com-
ponents can interact with each other after inspecting
and reasoning about each others’ specifications. Var-
ious enabling technologies have been developed
toward this goal. For example, the Agent Communi-
cation Language (ACL), a knowledge-sharing facility
for software agents, includes a Knowledge Inter-
change Format (KIF) that is an extension of first-
order predicate calculus. Also included is a
Knowledge Query and Manipulation Language
(KQML) for passing constraints and instructions
among agents [3]. The specification-based interac-
tion approach assumes that all components use the
same knowledge exchange facilities, although the
use of different ontologies to cover varying applica-
tion domains is anticipated. 

The software reuse community is also interested
in methods for describing component functionality
as succinctly and completely as possible. Very high-
level languages (VHLLs), such as SETL and PAISLey
[4], attempt to describe the semantics of a compo-
nent’s functionality in purely declarative form. That
is, the procedural means by which the functionality
is achieved is not the subject of VHLL specifications.
The goal in the context of software reuse is to
describe component functionality so the best compo-
nent is selected for each job. The same descriptions
can also be used to further interoperability in the tra-
dition of specification-based approaches.

Specification-based solutions rate high in auton-
omy, because of the strict separation of their func-
tionality/data description from their implementation.
The general lack of nonreplicable centralized facili-
ties ensures good scalability. These approaches suffer
most from the complexity—and sometimes impossi-
bility—of completely describing components, giv-
ing them a low ranking on the ease-of-component-
contribution criterion.

Mobile functionality. At least since the introduc-
tion of Lisp in the late 1950s, which made programs

COMMUNICATIONS OF THE ACM April 1998/Vol. 41, No. 4 41



and data share the same representation, the move-
ment of functionality implementation has been con-
sidered from time to time. An example is General
Magic’s Magic Cap mobile agent system, which has
software agents travel through the network to sites
where they access the services they need. The agents
move even after starting to execute code. They then
report back to their original site with the results of
their work.

ore recently, Java applet facilities have
enabled approaches using mobile func-
tionality to deliver new capabilities to

client components at run time, rather
than relying on service components to
provide functionality remotely or mak-

ing all components fully functional from the outset.
Interoperability is an important application of mobil-
ity, and the functionality delivered to a component
can be the ability to communicate successfully with
another component. Instead of complex component
descriptions, third-party mediation, or standardiza-
tion, this approach accomplishes interoperability by
exchanging code that “does the right thing” to com-
municate successfully among components. However,
it is still true that the one interface of the applet itself
must be well known or hand adapted. For example, a
new kind of search engine might supply clients with
an applet allowing sophisticated interactions with
that search engine. This approach makes the search
engine component very autonomous in that its inter-
face can be arbitrary as long as it supports the request
for the applet. On the other hand, the client still
needs to know how to communicate with the applet
once it arrives. 

Today, this problem is solved by the fact that most
Java applets interface directly with the user and that
the user interface standards that are part of Java and
Java-enabled browsers are widely available. In that
sense, Java relies heavily on a standards approach. If
applets were also used to implement mobile func-
tionality invoked by programs on the client side,
then the client-side interaction with the applet
would be subject to the same interoperability issues
as the original client/service component interaction.

An example of mobile functionality in the service
of interoperability can be found in [2], in which a
Java applet is used to deliver a small CORBA-based
distributed digital library interface. After the applet
is received, its sender and the receiving component
can communicate via remote method calls. This
arrangement again solves some of the client/applet
interoperability problems through a standards
approach, namely CORBA, except that the standards

implementation itself is delivered through mobile
functionality.

Mobile functionality scores lower on the auton-
omy criterion than some of the other solutions,
because all the components share the same execution
environment (such as the Java run time). On the
other hand, contributing a new component is easier
in this approach than, for example, in the specifica-
tion-based approach, because achieving interoper-
ability through mobile functionality involves
creation of concrete programs rather than a sophisti-
cated, often mathematical, abstraction of functional-
ity. Ease of use tends to be good, except that the
client component bears all the risk of importing
another component’s programs. Until proper security
safeguards are worked out, this risk will continue to
represent a significant cost.

If we think of incompatible components as discon-
tinuities within an overall system, then mobile func-
tionality is a technique for smoothing these
discontinuities whenever the need arises. Note that
in this sense, a system based on standards is perfectly
smooth at all times; all components can interoperate
from the outset. Observed over time, a system whose
interoperability is implemented through mobile
functionality is therefore equivalent to an interopera-
ble system based on standards. This equivalence is
why the solutions in Figure 2 are arranged in a circle.

However, implementing all of a system’s interoper-
ability through mobile functionality is expensive in
terms of latency and bandwidth consumption, because
in the absence of long-term client-side caching, the
same code (in addition to any related data) needs to
travel across the network again and again. Mobile
functionality is also expensive in terms of risk man-
agement, because authenticity and safety of code have
to be checked wherever the functionality travels. 

Consequently, in the case of Java, interoperability
efforts are now beginning to move through the cir-
cle in Figure 2 again. For example, facilities deliv-
ered frequently have been migrating into Web
browsers as standard components. One example is
the recent addition of Java-based CORBA facilities
to Netscape browsers. As soon as functionality is
assumed by component providers to be resident at
all client components, interoperability is standards-
based. Thus there is natural movement of interoper-
ability solutions along the circle in Figure 2. In the
future, we could imagine other developments based
on combinations of the solution families in Figure 2.

Conclusions
Interoperability is gaining in importance as the
Internet unites digital libraries of different types run
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by separate organizations in different countries. At
the same time, the increasing power of desktop com-
puters, the increasing bandwidth of networks, and
the popularity of mobile code is changing the inter-
operability landscape. The result is an urgent need to
solve the problems hindering true interoperability
on national and international scales.

Our discussion has been informal, because interop-
erability is a complex topic for which there are no good
metrics. Nevertheless, we hope to have provided a feel
for how issues of interoperability across different
domains are interrelated, for the spectrum of solutions,
and for the primary criteria for comparing them.
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