SRC TR 89-12
UMIACS TR 89-10
CS TR #2188

Interoperability of Multiple
Autonomous Databases

by

W. Litwin, L. Mark
and

N. Roussopoulos

Interoperability of Multiple Autonomous Databases

Witold LITWIN

INRIA 78150 Le Chesnay, France!

Leo MARK, Nick ROUSSOPOULOS
Univ. of Maryland, College Park, MD 20742

ABSTRACT

Database systems were a solution to the problem of shared access to heterogeneous files
created by multiple autonomous applications. To make the data usage easier, one proposed to
replace the autonomous files by a globally integrated collection of data called a database. The idea
was successful to a large extent and there are now many databases distributed over local and long-
haul networks and frequently even on the same larger computer. Unavoidably, users now need
shared access to multiple autonomous databases. The question arose as to what the corresponding
principles should be. Should one reapply the database approach principles one level up or should
new methodologies be introduced ?

We show that new methodologies have appeared, defined specifically for the management of
multiple autonomous databases. They lead to a new type of systems, called multidatabase systems
or federated systems. These systems make databases interoperable, ie manipulable together in a
non-procedural way, without global integration. They also preserve the autonomy of each database
to satisfy first its own needs.

Systems of that type will be of basic importance, especially for distributed databases and we
analyze the corresponding reasons. We also present the methodologies proposed for their design
and discuss their relationship. We further show that the evolution towards multidatabase systems is
already on the way, as major commercial relational database systems are becoming of this type. We
discuss their capabilities and limitations with respect to advanced prototypes. We also show
industrial prototypes and the standardization issues. Finally, we present some research issues.

1 Currently with System Research Center, Univ. of Maryland, College Park, MD 20742

1. INTRODUCTIONcuuiiiiiiiitiiiituiieienscinirineertnsrnesinnernaesesnnsssiesssnnns 2

2. DATABASE MARKETcccciiuiiiiiiiiuiiiiiniiieiiiiiiiieiiiiiieneisienaiesensracnenas 3
2.1. Classical corporate databases.........cccoeeiriuiiiiuiiniiiiiiiiiniiiieiienennn, 3
2.2. Relational databases on mainframes or miniCOMpUETs..........ccerveunenes 4
2.3. Relational databases on personal COMPULETS........cociureieriannrrerenaannne 4
2.4. Information retrieval databases...........cccovviirneiiiiiiininiiiiniininiiinnnn 5
2.5. Videotex databasescccoueumiiiiiiiiiiiiiiiiiiiii e, 6
P2 7111 (1o PPN 7
3. METHODOLOGIES FOR MANAGEMENT OF MULTIPLE DATABASES........ 8
3.1. Database approach.........cccceeviriiiniiniiiininiiiiiiiiiiiineees 8
3.1.1. Principles.........cuu.... eeereeeeeieeanrririnn ereereereeeeeeeeanes 8
3.1.2. Motivations............ eeeneeeteteiteeataaettanann eeees eteearaeeeaes 9
3.1.3. Limitations..........c...... e et e ee e et et eaaraaeaa 10
70 0 SN 111 1 1 L O U S O U U PP PPP 11
3.2. Multidatabase approach.........cccoeiiiiiiiiiiiiiiiieieiiiieneinneiiiianees 11
3.2.1. The 1dea.....cceiiiiiiiiiiiiiiiiiir e, 11
3.2.2. The concept of a multidatabase SyStemcceveveveineninnnnne. 12
3.2.3. Reference architecture.........ccoeivvieiiiiiininniicinnnicncennane. 13
3.2.4. Functions of a multidatabase language.........ccccceevcceecrennne 14
3.3. Federated databasesc.cciuiienininiiiiiiiiieniiieieiiniii e reenenans 19
3.4. Related methodologiesc.vveuiniiiiiriiiiiiiiiii i ceereeneens 20
3.4.1. Distributed databases and SyStemS.....cocuiveeiiiiiiiinienennennns 20
3.4.2. Other methodologies.....couviiveiiieiiiviiieiniiiiieiiieiiieenenan, 21
4, COMMERCIAL SYSTEMS AND INDUSTRIAL PROTOTYPES 22
4.1. Commercial SYStEIMS ...uuiuiuriiieiiiiiiiieiiieieieetiaee e eneeeaeareeaenenen 22
4.1.1. Relational databases.........ccccceeeeereenueneennrecreceeaierecanannnns 22
4.1.2. Information reirieval databases.........oooevuviviiiiiiiiininiannnn, 26
4.2, InduStrial PrOtOLYPES . e.vueuerrnenrnncianenrieeneerenaenereraeneseaneneresnsnassens 27
4.3. Interoperable database SYStEM.......cccceverrrreeeeeereriirerneceniuencennonnns 28
4.4. Impact on standardization............ccccececereeeeerreeninineneeeceresesnneenes 28
5. SOME RESEARCHISSUESot ee e 29
5.1. Transaction management and concurrency conu'ol 29
5.2, Data definition.....cccoiiiiriiiieeieiiiiiiieiireestleneriieei e eie e eaeeaiens 31
5.2.1. Self-describing database SyStemoeeevirnruneennenereenenennnns 31
5.2.2. Self-documenting database SyStemsovveueieriinereininenennnns 32
5.2.3. Standard format data units..........c.ceieieiiiiiiiiiiiin e, 33
5.3. Update dependencies.........ovuiineniiiniiieiiieiiaeeeeietenieieaeenannenes 33
5.4. Updates of transformed values........cocccevveererieriiiioniniciiiiiieeninne 35
5.5, QUETY PrOCESSIME ..ueuineniuiininiieneteneteeeeteteneaneeereeateniaarnenanenas 36
5.6. Incremental access of muliiple database Serversc.c..ooeeviiiiannnn.. 37 -
5.7. Logic multidatabase SYStemsceuiiinieeeneireneairieieareieanannnns 38
5.8. Dynamic Derivation of Personalized Views............c.ocooiiiiiinin... 39
6. CONCLUSION ...ttt e ettt e et e et e e eenaeneans 40

REFE R EN CES . oottt e, 40

1. INTRODUCTION

Database systems were proposed as a solution to the problem of shared access to heterogeneous
files created by multiple autonomous applications. These files were hard to manage by a single
application. They presented duplications and various types of heterogeneousness, such as
differences in field naming, valué types and file structures for a similar purpose. In particular it was
difficult to provide interfile consistency and overall privacy and efficiency.

To remove these difficulties, it was proposed to replace the autonomous files by a centrally
defined collection of data called a database. The authority responsible for the centralized control
was called a database administrator. His task was to make the database integrated which meant free
of duplications and hcterdgcncousncss. The database should then be managed under a centralized
control by a system called a database system (DBS). A DBS should in particular give each
application the illusion of being alone to use data, while providing overall consistency, privacy,
" efficiency etc.

The idea was successful to a large extent. There are many databases in any larger company and
frequently even on the same computer. There will be even more on workstations and servers on
local nets. Unavoidably, users now need shared access to multiple databases. The developments in
distributed computing and in networking gave the technical basis at least for the physical access.
The question arose as to what the corresponding methodology should be. Should one reapply the
database approach one level up or should new principles and types of systems be introduced ? In
the former case, a distributed database system should be designed to manage the distributed
databases through a global conceptual schema, making them a logically single integrated database
(to physically replace the existing databases by a single one is obviously a utopia). In the latter
case, it should provide new functions for management of multiple autonomous databases without a
global schema.

Since the problem of the distributed database management has emerged research tried both
approaches. Earlier distributed database system prototypes, like SDD-1, POREL or SIRIUS-
DELTA, followed the former approach. However, it appeared that the market demand for such
system is low, if any. This triggered the effort towards the latter approach. The autonomous
databases that can be managed together without being integrated by a global schema were called
muitidatabases, or federated databases or interoperable databases. The systems able to manage
them are generally called multidatabase systems or federated systems. However, as commercial
systems are now systematically evolving in this directions and multiple databases are frequently on
different computers,. terms like distributed database system or distributed heterogeneous database

systems now also designate this type of systems.

-3-

Research on multidatabase (federated) systems showed that the database principles are
inapplicable to collections of autonomous databases, unlike they were to files. New principles
emerged and will modify the design of database systems at all levels. One reason is that
autonomous databases introduce heterogeneity. The amount of accessible data is also much larger
and the classical requirements on consistency, concurrency control and transaction management
have to be relaxed. Systems will neéed new components for cooperation with other systems.
Finally, new perspectives appear for the query processing, as cases inherently hard for a stand-
alone system may be efficiently solved when spread out on cooperating systems.

We show that systems specifically desighed for the management of multiple databases,
especially distributed, will be of basic importance. We analyze at first the current evolution of the
database market. We then show the methodologies proposed for the design of systems for multiple
databases. We discuss their rationales with respect the motivations and drawbacks of the database
approach. We further show that major operational relational database systems evolved towards
multidatabase systems. We discuss their corresponding capabilities and also the limitations with
respect to advanced prototypes. We also discuss industrial prototypes and the standardization
issues. We finally show selected research issues, particularly these related to the self description

and the data interchange.

2. DATABASE MARKET

The market provides more and more types of database systems. While the demand for access
to data in multiple databases is by now clear and will be general, it will not concern all types of
databases evenly.

2.1. Classical corporate databases

One type of databases are these of well known non-relational systems like IMS, IDMS,
ADABAS etc. They are popular with larger corporations, but also limited to them. They are usually
a few or one per company, thought big corporations may have several hundreds. The need for joint
access is limited, usually to a few users and inside the corporation. The data manipulation
languages are usually navigational ie record-at-the time manipulation statements. The demand for
join access through such classical languages seems almost inexistent, despite some research effort
in the past. It does not seem technically feasible neither, because of the low level of these
languages and difficulty to implement constructs such as a Codasyl set spanning over several
databases. The problem looks obsolete by now also because these systems are nowadays or soon
be provided in general with a relational interface. This moves the problem of manipulation of

multiple classical corporate databases to the class of relational databases.

-4-

2.2. Relational databases on mainframes or minicomputers

This type of database systems is becoming increasingly popular. Known examples are DB2 for
IBM mainframes, MRDS for Multics, Ingres, Oracle, Informix or Unify for Unix environment
and minicomputers, as well as newcomers like Sybase or Tandem Non-Stop SQL. There are also
database machines like Britton-Lee or Teradata. The access to this type of databases is also
typically limited to a corporation. However, as smaller computers are becoming popular, there is
also increasingly more relational databases than the classical ones. They are also more autonomous,
being now usually spread out at the department level. As computers ina corporation are by now in
general interconnected, there isa growing need for joint access to these databases, stronger than for
the classical databases. An additional reason for this need is that these databases use now generally
the common language that is SQL. In fact, they share only the kernel of this language. It is well
known indeed that dialects differ with respect to syntax, semantics and availability of statements,

error codes, aggregate functions etc.

2.3. Relational databases on personal computers

Until last year, most of so-called database systems on personal computers (PCs) have had the
capabilities too limited to be a true database systems. In particular, these advertised as relational, in
general were not. This includes even such well known systems as DBASE or RBASE. The term
“relational” was used essentially for the capability to define links between files, abusively called
relations.

This situation is changing sharply. One finds now several relational systems, like INGRES-
PC, ORACLE-PC or XDB, to cite a few, whose prices are around some hundreds of dollars. A
very important system is also the recently announced IBM OS2/DB version. It provides SQL under
the operating system, together with a number of the popular communication protocols. There are
also more powerful systems for the servers, especially the SQL Server announced jointly by
Sybase, Microsoft and Ashton Tate. .

The common characteristic of all these systems is the usage of SQL. They are in process of
generating relational databases at any level of a corporation of any size. They also become popular
with non-corporate professionals and private users. There are already thousands of relational
databases on PCs and this trend will continue towards millions. These databases will constitute the
most important segment of the relational market. As PCs will be naturally interconnected, there is
the strong need for easy access to multiple databases of this kind as well. The manufacturers got the
message and announce all enhancements towards some kind of future distributed database

management.

2.4. Information retrieval databases

This type of databases is popular with the database servers, while it barely exist in corporations.
Their usage is usually payable, unlike for corporate databases. In the USA, well known examples
are Dialog, CompuServe or The Source, to name only a few. In Europe, best known are Inspec
and Questel, but each country has many others. Initially, all these services were designed for
bibliographic purpose. Now, they provide information on virtually any domain of the life. The
server usually carries several databases ; a large one like CompuServe may carry hundreds (450).
However, it should be stressed that some information retrieval databases may be considered rather
as large files by database people. | u _

Information retrieval databases basically use key words to describe records and for the queries.
Unlike for corporate databases, the user frequently does not know exactly the data names (key
words) to be used in the query to make the search precise enough. Even more, in presence of a
large number of databases, one may even have trouble with the choice of the database to start with.
It is therefore common to the servers to use collective, multidatabase names, classifying the
databases into categories like finance, travel, education etc. The categories mail nest. The user is
guided through the categories, until the most appropriate database is reached. The search goes then
in general through a sequence of queries, frequently called search strategy, progressively
narrowing the scope until it fits the user wish.

There are several languages for the information retrieval, usdally different from server to server.
They usually lead to different forms of a query that however always consists of key words linked
through boolean operators. They are also not very user fn’endly and typically require professionals.
These characteristics, restricted the usage of such databases. There were also other reasons such
as fixed subscription and monthly fees, different login procedures,...

The information retrieval database administrators observed that users need the access to multiple
databases since already several years. To find references of a subject, one usually needs indeed to
search a database storing journal papers, as well as this with technical reports,... This gave rise to
networks for easier access to multiple servers from the single terminal. The largest effort is the EEC
sponsored network Euronet, now called Diane that provides the access to over two thousands of
databases (some are however replicated on several hosts). There is also the central service called
ECHO that may provide user with the overall information about DIANE and its particular
databases. Hosts started also to make internal connections among them to simplify the access
procedures. The user connects to one host and acts as if all the databases of other hosts belonged to
this one. The host generates remote sessions, login procedures, passwords etc. and takes charge of
the whole billing. These usually multiple and cumbersome manipulations become then transparent

to the users of these hosts.

-6-

On the other hand, the information retrieval community needed a standard language. For this
purpose, EEC has sponsored and then adopted a standard language for Diane, called Common
Command Set Language (CCS). Currently, all servers have CCS interface, developed usually
- with EEC help, in addition to their local languages. The CCS is now available also in the USA.
Especially, on the important server EasyNet, providing access to over 850 databases and discussed
more in Section 4.1.2.

CCS consists of a few standard commands. The basic one is the FIND command. Its
parameters are key words linked with boolean operators. For instance FIND KW = Information
Retrieval * Natural Languages asks for records indexed with both keywords. Another command
COMBINE allows the user to combine the FIND commands previously issued using boolean
operators. The command COMBINE 1/2 for instance, would ask to eliminate from the set of
documents found by FIND in step 1 of the search strategy, these indexed with key words in FIND
command used in step 2. The search usually ends up with the DISPLAY command with some

formatting specifications that presents the selected documents to the user.

2.5. Videotex databases

This type of databases is more popular in Europe. It generally results from nationwide effort of
Telecommunication administrations (PTTs) of each country. There are now sevqral videotex
standards and EEC starts sponsoring the development of gateways. Most used is the French system
TELETEL, the first known system is the British PRESTEL. We will now discuss the TELETEL
features, these of other systems are similar.

The idea in videotex systems is to massively provide users with a cheap terminal. A typical
videotex terminal has 40 characters per line and limited graphic capabilities. The TELETEL
terminal is basically distributed for free, as the replacement of the paper directory. It is then used
for access to various services, usually connected to the PTT videotex network, but sometimes on
stand-alone servers. To access the services on the network, there are a few nationwide numbers :
11 for the nationwide Electronic Phone Directory service, 3614, 3615,... for others. Each number
has its own connection cost per minute. It ranges from free for the first two minutes for the
Directory, to several dollars per minute for the number connecting to highly specialized databases.
The total bill is charged by the PTT with the monthly telephone bill. On the other end, PTT
dispatches it to each server. One avoids in this way the problem plaguing the information retrieval
databases.

The physical location of the server site and its name is transparent to the user who knows the
services and their databases only by logical names, like AIR FRANCE, AMERICAN EXPRESS
etc. The data manipulation languages are usually customized and menu driven. The commands
bring to the screen information pages , in general organized in hierarchies. Advanced systems use

-7-

key words, like information retrieval databases that, by the way, start providing the videotex
interface as well. No videotex database with the relational interface is known. However, to provide
it does not seem a major problem.

In 1988 the number of videotex terminals in France approached 3 M. This mass, the absence of
subscription fees to access databases and PTT's help to develop the videotex, largely boosted the
offer. The current figure is about 4 K services, new databases appear everyday, as well as some
disappear. They address virtually any aspect of the everyday life. Usually there several services
addressing the same subject, in general in strong competition. For instance, there are over thirty
databases owned by unions or political parties to express their political views (needless to say
that they are highly autonomous and usually not consistent mutually). All rhajer banks,
newspapers, insurance companies, travel agencies, airlines, etc. also provide access to their
databases and compete for customers. There are also multiple databases for buying or selling cars,
choosing a good restaurant or movie etc.)

In this environment , the need for manipulations spanning multiple databases became obviously
strong, as searching databases one by one is time consuming and expensive. However, there is
currently no such a possibility and this slows down the usage of TELETEL. As it became
progressively hard to know even what are the databases pertinent to a given need, PTTs have
created a metadatabase that is the directory to others (MGS). Databases are qualified in the directory
by collective names, such as AIRLINES which serve as the entry point for the search and lead to
the list of the pertinent databases. However, there is no automatic switching to databases. The user
must leave the directory and connect to the databases by himself.

2.6. Synthesis

There are presently many systems providing access to collections of databases, particularly
information retrieval databases and videotex databases. Many more databases will be created
soon, especially the relational ones on shared minicomputers and personal workstations. There is
already a need for manipulations spanning multiple databases and this need will strongly grow.
These databases may be on the same site, as they may be on different ones. In the latter case, the
physical location is usually transparent to the user. The databases are and will be usually
autonomous. They often compete for customers, some die other appear almost on daily basis. A
centralized control as well as global integration are unlikely.

The information retrieval databases have the general trend towards CCS as the standard
languages. Videotex databases use rather dedicated manipulation languages, as they are younger
and only start to move to more general ones, CCS especially. The corporate databases in general
evolve towards a dialect of SQL. As both languages are based on very different paradigms, the
trend for some years to deal from this point of view separately with two worlds.

-8-

The servers of information retrieval databases perceived the need for multiple database access
earlier than corporations. The reason is the absence of corporate barriers or the demand and
support of powerful institutions like EEC. These systems provide already on operational basis
some capabilities making easier manipulations of multiple database, that have to be dealt with by
any further work. It is clear that the relational databases will face similar problem and may benefit
from the information retrieval world experience. On the other hand, the information retrieval world
will benefit from the recent and coming work on relational databases. Many technical solutions will
be also common to both worlds. This also true for new areas for database applications and the
corresponding new types of databases (object oriented, logical,...). There is therefore the need for
a general methodology for the management of multiple databases, taking to the account all the needs
and constituting the frame for both general and specific solutions.

3. METHODOLOGIES FOR MANAGEMENT OF MULTIPLE DATABASES -

Earlier research tried to apply the (claésical) database approach as the methodology for the
management of multiple databases, especially the distributed ones. The idea therefore was to built a
conceptual schema, usually called global (conceptual) schema, making all the data behaving as if
they were a classical database. More recent proposals consider this approach unrealistic for larger
collections and not always wanted by users. Two proposal are presently best elaborated which are
the multidatabase approach [Lit82] and the federated databases approach [Hei85]." As they start
from the similar criticism of limitation of the database approach, we will first overview this

common aspect.

3.1. Database approach
3.1.1. Principles

Database principles were elaborated when users had generally no direct access to data and
- systems. The computer universe was so complex that they had to employ application programmers
for data manipulations. The systems were mostly batch and business oriented. The manipulations
were rather short and could be rerun.

The idea in the database design was that the administrator and the system should insulate the
user and even the application programmer from the complexity of data sharing in these conditions.
The administrator was supposed to analyze the needs of all applications sharing the files and/or the
database to be created. From this analysis, he should define at first the conceptual schema of the
database. This schema should define all the data in the database. The whole collection was

supposed to be :
- exhaustive. It should contain all data needed by the applications or at least data sufficient

for deriving the application data through views.

-9.

- integrated. This means that data of the same type should constitute a single data type. Also,
there should not be replicated data types or replicated data in a type.

- consistent. This means that data should respect some predicates defined by the
administrators. The predicate may concem a single data type or may interrelate different types,

- confidential. This means that the interuser privacy should be respected.

After that, the administrator should define on one hand the internal schema of the database. At
this level the administrator was supposed to choose data structures providing optimal performance
of the database. Furthermore, he should also define the external schemas of the database. These
schemas should adapt the conceptual schema to a user's needs, if the conceptual data definition was
not that required by the user. The adaptation could be a simple restriction, but it should be also
possible to define any translation of names or value types or of data structures required by the user.

Ex. 1 Consider a company having suppliers supplying parts. The relational database design
principles would lead to the definition of a database with three well known tables S, SP and P. The
choice of table names, columns, column names and of value types would be made by the
administrator for all users. The administrator would also define the internal structures for the
maximal efficiency of the database. Finally, views would be used to accommodate the needs of
users requiring names or structures or value types different from the common ones.

The database system was intended as an emulation of the administrator. It should provide the
database administrator with the tools for the definition of the conceptual schema and of external
schemas, including the consistency and privacy constraints. It should also provide him with the
tools for the internal schema definition. Then, it should give any user the possibility of
manipulating his data as simply as possible. It should also give any user the illusion of being the
only user of the database.

At the language level, two main concepts were created to fulfill these goals. They were the data
definition language and the data manipulation language. To enhance the simplicity of the user
manipulations further, but also to allow the administrator to choose the physical structures
independently of an application coding, the principle of the independence between the logical and
the physical level was introduced. Finally a number of capabilities was proposed to support the
above objectives, like the concurrency control, the crash recovery,... . For the underlying technical
solutions, it was assumed that if a manipulation is not executed as it should be, then the system

reruns it,

3.1.2. Motivations
The administrator was supposed to act as a mediator whose action should remove data from
independently created files. The reason for the goal of exhaustivity at the level of the conceptual

schema was to let an application program carry out operations in as simple a way as possible, like

-10-

get record or get next, etc. The main reason for integration was to avoid multiple searches and
replicated updates that created difficulties in multiple and heterogeneous files. The idea behind
consistency was to maintain known relationship between values in different structures. Finally,
confidentiality was needed to prevent the leak of user information as the sharing of user data
should be transparent. : ,

It is worth recalling the ultimate purpose of all this methodology. It was the easiness of data
manipulation by a user or rather an application program. All other concepts were tools to achieve
this goal. In particular, the notion of conceptual schema and of various complex data structures
proposed for such schemas were tools : '

- to resolve the problem of binding of names and of corresponding value types in the query. The
name in the query should be one of the names in the schema.

- to leave to the user only the problem of traversing a data structure through simple statements like
those above, the structures themselves being already identified and provided.

- to have for DBS the explicit definition for the corresponding consistency and confidentiality
requirements.

Ex. 2 Consider the database dealing with the suppliers and parts. The goal of the user is
probably only to formulate a manipulation using the most convenient form for himself, his
vocabulary in particular, and to obtain data in the form wished explicitly or implicitly. The user
basically does not care what, if any, the schema of the database is. Also, every other capability of
the DBS is not of interest to him and should remain transparent.

Note that this ideal is not the case of the current database systems. Users have to know the
schema, at least to know how they should name suppliers and parts to be understood by the
system. Then, they obtain value types and data names as they are in the database, unless they
specify conversions (value expressions of SQL).

3.1.3. Limitations

The database approach is a generous idea, but Iargely utopian with respect to its basic goals.
The concept of data sharing leads to intrinsic problems that do not have a solution today or even
cannot have one :

- the administrator is in charge of optimizing the usage of the database for all users. The
optimization for a user may be in contradiction with this global goal.
- the user has to explain his needs to the administrator . This may be a difficult process and the
needs may change. _
- one may imagine very many data structures over a collection of data. It is unrealistic to assume
their existence in a conceptual schema for simple expression of queries, name binding etc. The
popularity of the relational model with its very simple data structures, but with the manipulation

S11-

language undoubtedly more complex than CODASYL statements may be seen as a proof of the
failure of this idea. The complexity of the relational language is in fact the tool for dynamic
definition and creation of data structures that ideally should be all in the conceptual schema and the
database.

- a user is supposed to use the common (globally optimized) data names, values and structures,
unless an external schema provides him with a more subjective picture. However, this view must
be subject to the following constraints : '

- there is no way to introduce attributes that do not exist in the conceptual schema.

- the precision of derived values cannot be greater than that in the database.

- there may be no way to update the view data, as the corresponding update to the database
may be undecidable or it may violate an integrity constraint the user should not be aware of.

- sometimes the user data may be badly affected by side-effects of other users'
manipulations or of an arbitrary decision of the administrator. For instance, if the administrator
changes a table definition, in most current DBSs, the view definition would no longer be valid at
the execution time. '

- manipulating a large collection of data is fundamentally more complex than manipulating a small
one. If most user needs are directed to a subset of data, a large database management must be less
efficient than the management of the user data only.

- in particular, data that some users may already access through various nets seem too large a
collection to be ever manageable as a database.

3.1.4. Synthesis

The database approach frees the users from many annoying aspects of data manipulation. The
way it is done, implies however the loss of the user control of over his own data, eg of the user
autonomy. Some of the corresponding drawbacks may be corrected through the sophistication of a
DBS. Others are inherent to the complexity of sharing a large collection of data.

Multiple autonomous databases present heterogeneousness similar to those that were in files and
triggered the whole story. The limitations of the database approach are however more pronounced,
as the number of users and the size of data to manage are larger. The problem of application of the
database approach in these conditions was debatable for years and will remain so. One may
however reasonably consider the limitations important enough to propose a new approach.

3.2. Multidatabase approach
3.2.1. The idea

This methodology is discussed in [Lit82] - [Lit87b] and the references of these articles. It
considers that the user will in general face multiple databases without a global schema and not a

-12-

single database or the corresponding logical image. As autonomous databases may not be mutually
integrated, data in different databases will present duplications and discrepancies. The discrepancies
will concern the naming, data structuring and value types. One may face also some of
~ inconsistencies the database design was supposed to or would remove. The autonomy may also
lead to more frequent changes to data definitions.

Unlike the database approach, the multidatabase methodology does not consider these
phenomena as drawbacks to be removed. These are all various facets of the user autonomy to
satisfy firstly his own needs. The user should have especially the data definition autonomy,
including specifically the naming autonomy,: the data materialization (duplication) autonomy, the
data structuring autonomy at the logical and physical level, the value type autonomy etc. In
particular, it was postulated that the user may appreciate the possibility to structure his application
in the way where different data are in dedicated databases. -

The to reach these goals, the methodology proposes several concepts, especially this of a
multidatabase language. Such a language should on one hand provide capabilities of a database
language. It should further allow the corresponding databases to be interoperable which means
usable in common through non-procedural operations, despite the constraints of the autonomy and
the absence of the global schema. The formulation of the operations should also remain invariant
to changes to data definition, ie these changes should be transparent, as long as the data meaning is
preserved. Data definition autonomy should not lead to the burden on the user, making the

running formulations of operations obsolete.

3.2.2, The concept of a multidatabase system

The system providing a multidatabase language was called a multidatabase system (MBS). A
set of (multi)databases for which a multidatabase language exists was called a multidatabase. Thus
a set of databases without a multidatabase language is just a set, whereas provided with a
multidatabase language it becomes a multidatabase. Multidatabases could bear a collective
multidatabase name as they could be unnamed. The multidatabase names could be nested. ,

A closed MBS manages only (multi)databases created through its own interface or through
some selected database systems used as servers. An open MBS also allows operations on
(multi)databases of other MBSs or DBSs. Known systems are all closed MBSs. The ISO-OSI
Open System Architecture and especially the Remote Database Access (RDA) protocol is a natural
platform for designing an open MBS [Dai88], [Wol89].

One motivation claimed for the concept of a multidatabase system was to respond to
developments in the information retrieval, to the usage of collective multidatabase names by many
database servers in particular. Another intention was to allow applications to be designed in a way
where different data could reside in dedicated databases. It was felt that the user and the

13-

administrator should then more frequently be the same person so the user autonomy would be
better preserved (the programmers representing the user become eliminated anyhow by the general
progress). Furthermore, the databases should usually be much smaller and the computational
complexity should decrease. The need for systematic sharing should be replaced by that of
occasional cooperation.

It was in particular felt that multidatabase systems inherently allow the user to better enforce his
needs. If the data definition autonomy leads indeed to a conflict with other users, it will affect only
the common level operations. All together, it was expected that the drawbacks that would affect
many applications if designed according to the database approach, should be at least attenuated
with the new approach.

Ex. 3 Consider users working in a largely autonomous departments. It is likely that most
operations in each department would concern this department data, eg suppliers and parts. The
multidatabase approach would then be to constitute one database per department. A multidatabase
system should then provide some multidatabase language, making implicitly a multidatabase from
the databases. The language should allow the definition of each database, as well as the
dependencies among them if needed. It should further allow the user to manipulate a database and
to easily combine data from different databases. Each department could then have priority in the
control of its data, as it has its own database. The corresponding drawbacks of the database
approach could be avoided.

In particular, a database could be designed in cooperation with others for the choice of some
column names and value types, as well as for the choice of table names and structures. However,
other columns and tables could be designed purely for local needs differing from one database to
another. Furthermore, the user could have the possibility of adding columns or renaming some
even if it could create a conflict at the multidatabase (common) level with users in other
departments. The limitations of a view concept on definition and manipulation of a department data
would thus no longer apply. Also, the user could refuse an update that would be inconvenient for
his department data, even if an inconsistency would appear at the multidatabase level, etc. If
however, some interdatabase consistency should be enforced, the appropriate dependencies would
allow the administrators to preserve them.

3.2.3. Reference architecture

The multidatabase systems should obey some reference architecture, extending that of
database systems. The architecture at Fig. 1 comes from [Lit82] and extends the well known
ANSI-SPARC proposal. The layers of the multidatabase architecture are as follows :

- at the bottom, there are existing DBSs.

-14-

- a DBS presents to the next layer, called the multidatabase layer, the conceptual schema of the
database willing to cooperate. This schema may be the actual conceptual schema or a local external
schema. In the latter case the actual conceptual schema is called an internal logical schema. The
conceptual schema at the multidatabase layer may in particular support a different data model and
may hide some (private) data. If at this layer some common model is required, it is the
responsibility of each DBS to stick to it.

- the multidatabase layer includes in particular schemas for the definition of dependencies
between subcollections of databases. The dependencies may be transitive and uni or bidirectional.
They are intended for database administratofé and allow to tie the databases together more or less
for interdatabase consistency, privacy, etc. In the absence of the global schema they may be the
only tool to preserve the consistency of data in different databases.

- above this layer, one may construct external schemas. These mono or multidatabase schemas
may in particular present subcollections of databases as single integrated databases. An actual
database may however enter different external schemas. It may also be manipulated locally. Thus,
unlike with the global schema, even if data from different databases are presented as a single
database, the consistency cannot be guaranteed if no appropriate interdatabase dependencies are
declared.

As the figure illustrates, it was considered that the user may access multiple databases in two
ways:

- directly at the multidatabase level, using the functions of the multidatabase language,

- through an external view, using either a multidatabase language or a database language, if the
schema defines a single database.

In particular, it was proposed that at the current stage of database technology, there is a
common data model at the multidatabase layer. Furthermore, it was proposed to use the relational
model for this purpose, in the sense that each database appears at the multidatabase layer with local
relational capabilities. For multidatabase manipulations, it appeared useful to consider additional
capabilities at both data definition and data manipulation levels. All together, it was postulated in
[Lit82] to evolve the design of database system towards multidatabase systems, whether the
systems were intended to be monosite or distributed. The postulate was especially directed towards
the relational systems, as they seemed the dominating technology for the 80s.

3.2.4. Functions of a multidatabase language

To operationally provide the data definition autonomy, a multidatabase language has to offer a
number of new functions. At first, one requires functions for a non-procedural definition of data
to enter several schemas, including the export and the import of data definitions. One also requires
functions for a non-procedural manipulation (queries and updates) of data located in visibly distinct

-15-

databases, that may in particular be replicated and should usually differ with respect to names,
structures or values despite a similar meaning. The duplication may need to be deait with logically,
as it may have a semantic meaning eg two different recommendations of a restaurant are usually
more meaningful than a single one. Finally, one need functions which let the user provide the
formulation which will remain unaffected by changes to autonomous schemas.

Database languages lacked such functions, as they were designed for a single integrated
database [Dee87]. As Ex. 1 points out, the relational médel assumes all the suppliers in the same
S table, and not in several tables, especially in distinct databases, as in Ex. 3 (see also the example
in [Lit87a]). If suppliers are split into many 'tables, even in the same database, the model loses its
non-procedurality. For instance, the query "select all suppliers” would require as many SQL
SELECT statements as there are tables.

The first characteristic feature of multidatabase languages appeared to be the possibility of using
the logical database names in the queries, especially to qualify relations in different databases to
resolve name conflicts. The reason for the absence of this feature in classical systems does not
seem technical, but rather philosophical, as the corresponding implementation is easy. It is
probably a blind application of the classical methodology considering that interrelated data should
be all in the same database and so there is no need for a common manipulation of different
databases. Examples in [Lit82] - [Lit87a] show it may be false for even immediate real-life needs.

Several functions to be provided by multidatabase languages were found through the
experimental design of the MRDSM multidatabase system [Lit86], [Lit87] . While some of these
functions were intended as general notions, others were specific to the relational data. Their
analysis and implementation, was aimed at demonstrating the feasibility and the high utility of
relational multidatabase systems. Further work reported in [Lit87a], defines them specifically for
the SQL environment, through the proposal of the MSQL multidatabase language. The functions
are basically as follows:

- the definition and alteration of multidatabases, to compose (multi)databases into explicitly
named multidatabases.

- multidatabase data definition : single statement creation (alteration, drop,..) of a relation in
several databases, import of data definition, etc.

- definition of units and of precision of data values, for value type autonomy.

- classical retrievals and updates of relations, being however in different databases, called
elementary multidatabase queries in the MRDSM terminology,

- so-called multiple queries, performing relational operations on sets of possibly heterogeneous
tables. For instance a single statement selection from a set of Supplier tables in different
departmental databases, each table being to some extent particularized for the department needs.

-16-

- possibility of multiple identification of data objects bearing the same name, to deal with data
materialization autonomy (the multiple identifiers in [Lit82]). ’

- possibility of dynamic unification of heterogeneous names of data objects to deal with naming
autonomy (the semantic variables in [Lit86] and column labels in [Lit87a]).

- implicit joins for queries to databases with similar data, but different decomposition into
relations, to deal with the data structuring autonomy, [Lit87a}).

- dynamic attributes, for ad-hoc transforms of heterogeneous data values to a user defined
basis, for value type autonomy.)

- in particular, the capability to update the dynamic attributes [Lit87b].

- various new built-in functions. For instance, for transformation of data names into data values
subject to relational operations (names in one database may correspond to a data value in another).

- view definition, using the (multidatabase) query modification technique.

- multidatabase external schema definition (called virtual database in [Lit87a}).

- interdatabase queries for import and export of data between databases.

- auxiliary objects like manipulation dependencies, equivalence dependencies and procedures
(transactions, stored queries,...) [Lit87a].
concerned only the implementation level (ex. implicit joins; dynamic attribute updatéé, value unit
and precision conversion). MRDSM showed that these functions are feasible. Some of the
corresponding implementation techniques and research problems are discussed in Sections 4 and 5.
For a while, they were exclusive to MRDSM. Starting from 1987, several now characterize
commercial systems and industrial prototypes, which we will discuss in Section 4.

The following example illustrate the capabilities the above functions offer. Although one could
express the query below using the actual language of MRDSM, called MDSL, [Lit87], we use
MSQL as its SQL compatibility makes it better suitable.

Ex. 4. Consider a bank bnp with branch offices in Paris called etoile nation, opera
[Lit87a]. Each branch and the main office has a database called upon the corresponding name. The
branch databases constitute a multidatabase collectively called branches. It was declared by the
command : CREATE MULTIDATABASE branches (etoile nation opera). The following
samples illustrates how a multidatabase language fits such a typical bank needs.

- The usual practice is that the main database in a bank keeps track of balances and of accounts in
branches, being refreshed daily. Consider therefore the query : refresh in bnp balances of all
branches and add all new accounts, assuming that the following tables are involved : '

-17 -

bnp : account (acc#, cl#, balance, br#)
br (br#, brname, street, tel)
etoile : account (acc#, cl#, balance, open_date)
nation : acc (acc#, cl#, balance, open_date, type)
opera accounts (acc#, open_date, balance, cl#, category)

e se

One formulation of the corresponding MSQL query is as follows :

USE bnp branches
LET x BE branches.*
STORE bnp.account (* *)
SELECT * . g
FROM x.acc%

The USE clause defines the scope of the query. The LET BE clause defines the explicit
semantic variable x whose values are names of databases constituting branches. The STORE
command means that one should replace all and only tuples in bnp.account whose key matches
the incoming tuples (the key here is the column acc#). The (* *) clause means that the source
columns are mapped on the target columns with the same names, regardless their order in the table
schemas. The values of other target columns are preserved. The designator x.acc% in FROM
clause is a compound semantic variable where x is defined above and acc% is any table name that
starts with the prefix ace.

It is highly instructive to try to write this query using SQL which does not have most of the
functions used (including the STORE command). Note that unless SQL is extended with the
concept of database name, there is no way to formulate the query at all. The formulation above is
also designed to enhance a relational query reusability [Gas87), for a larger data definition
autonomy. The administrators have the following possibilities for definition or modification of their
schemas that would-remain transparent to the query. None of other relational languages provides
similar openings.

- the order of matching columns may be changed in their tables.

- new columns may be added at any position in any table schema. As long as the target table has
no the column with the same name, no transfer is performed. Otherwise the column is included
automatically.

- The administrators have the autonomy to choose and to change the names of the table with
accounts as they like, provided the names start with the prefix acc. Similar possibility could be.
applied to column names, through the usage of column labels.

If the system supports the unit conversion at the implementation level, then the users have in

addition the autonomy to choose different currencies.
- A new branch trocadero is created. To add it to branches multidatabase one uses the

command :

-18 -

ALTER MULTIDATABASE branches INCLUDE trocadero

From now, any operation with USE branches clau-sc, especially the above STORE, will have
trocadero in its scope and will be evaluated also for this database.

- The administrator of bnp has created a table loan in his database to deal with loans. After a trial
period, he decided with the branch administrators to decentralize the management of loans to branch
databases. To export the schema of loan to all branch databases it suffices to call the MSQL

command : P

USE branches
CREATE loan FROM bnp.loan

The table name loan is here a multiple identifier of all loan tables in databases in branches. The
administrators of these databases may now further customize each table.

- A bnp user wishes to have an integrated (single table) multidatabase view of the accounts in
branches, in addition to his own table. He also wishes to see the balance in $ instead of FF. He
may get it through the following MSQL command :

CREATE VIEW bnp.acc_br (acc#, cl#, balance$, brname) AS
USE branches
LET x BE branches.*
D-COLUMN (balance) balance$ = balance / 6
SELECT x.acc%.acc# x.acc%.cl# x.acc%.balance$ NAME(X)
FROM x.acc%
UNION *

The D-COLUMN clause declares the dynamic column (attribute) named balance$ and the value
expression for the derivation of its values from the actual values of balance. For the updates of
the dynamic values, this expression has to be inverted. A technique used by MRDSM for updating
views with value expressions and dynamic columns is described in Section 5.4 and in [Lit87b],
and as far as we know, it is the sole (multi)database system with this capability. The NAME is an
MSQL built-in function converting data name into a value. Note that NAME acts here as the
implicit attribute-locality mapping in the sense of [Sam88]. The queries to acc_br may be
processed through the well known principle of the query modification technique.

- User Dupont of etoile would like to have the view acc_br also in his database, including for
himself the same access rights as defined for user Durand of bnp.acc_br. He may import the

view using the following statements :

-19-

USE etoile
CREATE VIEW etoile.acc_br FROM bnp.acc_br
GRANT ALL ON acc_br TO Dupont FROM Durand ON bnp.acc_br

3.3. Federated databases

The report [Ham79] proposed the notion of a federated database that was a loosely coupled set
of its components. This principle was then extended to the notion of federated databases which
were a federation .of loosely coupled databases without a global schema [Hei85]. The main
principles for a federation constitution werg as follows, see other articles in this issue for more
details :

- For cooperation, each database presents a schema called an export schema. This schema is
either the actual conceptual schema or a derived schema hiding the private data. These data, whose
schema is called a private schema, are all those in the local database.)

- data to be manipulated by a user are defined by an import schema. This schema may in
particular group data from several export schemas.

- there are mechanisms called derivation operators to produce the import schema. There is also a
mechanism for negotiation between databases along a dedicated protocol, like that in [Hei87], when
they wish to cooperate. :

- each federation has a single federal dictionary, which is a distinguished component whose
information province is the federation itself.

The reference architectures proposed by both approaches are very close. This is not a
coincidence, as [Hei85] relies in particular on the multidatabase approach (see its references) and
the multidatabase approach is inspired by ideas in [Ham79]. An import schema is an external
schema. A private schema is either the internal logical schema or the conceptual schema at the

_multidatabase level. An export schema may be considered equivalent to a conceptual schema at the
’multidatabasc layer. However it does not seem to be specified in the federated architecture whether
the user may manipulate the export schemas directly, separately or jointly.

In contrast, the federated architecture as defined in [Hei85] does not seem to have the concept of
interdatabase dependencies between the export schemas. There is nevertheless the concept of object
equality functions that seems largely equivalent to that of equivalence dependencies in the
multidatabase architecture, except the functions are in import schemas. Also, one may.easily add
interdatabase dependencies to the architecture [Hei87].

Conversely, the multidatabase architecture does not assume as a basic feature of a
multidatabase, a dictionary that would be an‘equivalcnt of the federal dictionary. By the same
token, it does not consider as a general feature of an MBS, the capabilities for inter-DBS
negotiation. Apart from these aspects, the differences between the methodologies are only in the

-20-

terms used for similar concepts, and in the aspects of multiple databases management put forward
as key ramifications of the principle of the absence of a_global schema. If these differences are
neglected, then both methodologies are equivalent. This is in fact the case for their popular usage.

The key words for the federated approach are indeed autonomy plus cooperation in
interdatabase sharing. The multidatabase approach shares these goals, though it stresses the
concept of multidatabase manipulations. A multidatabase language is assumed to be the minimal
tool for the existence of a non trivial federation. A multidatabase is a federation of databases,
coupled most loosely through the sole existence of the multidatabase language and more strongly
with the increase of declarations of the interdétabase dependencies. A coneeptual schema at the
multidatabase layer (federative layer) may be termed an export schema, as in particular it has no a
dedicated name in [Lit82]. The federal dictionary and the negotiation may be among the functions
supposed secondary for an MBS in the multidatabase approach, depending on the system typeor
the implementation issues. The single dictionary is probably best choice for a closed MBS, while
negotiation protocols are probably necessary in the-open MBSs.

3.4. Related methodologies
3.4.1. Distributed databases and systems

The concept of a distributed database (DDB) was generally defined as a database transparently
implemented on several sites, instead of a single one. This concept differs from that of a
multidatabase or of federated databases and keeps by its nature the drawbacks inherent to the
database approach. The multidatabase approach carefully distinguishes further the notion of a
multidatabase system and of a distributed system. The former is intended as a new general type of
database system applicable to both cases : of all databases at the same site and of databases at
different sites. It requires functions for the distributed management only in the latter case.

The notion of site and of database are also distinguished, unlike in literature on distributed
DBSs until recently [Abb88]. A site is a distinct network node supporting a DBS, that belongs to
the physical level. A database is a logical model of a universe, bearing in particular a semantically
meaningful name. For instance it could be a database AIR-FRANCE at site GCAM. A site may
support several databases, like for instance MRDS or Ingres systems. If an MBS is distributed, it is
assumed to provide location transparency. This means that the user manipulates the databases as if
they were all at a single site.

It should be noted nonetheless that while the distinction between a distributed database and a
multidatabase used to be strict in research prototypes and the theory some years ago, it is now
disappearing in practice. Especially, most of the commercial systems claiming to be distributed
database systems are in fact distributed multidatabase systems. We will show it more in detail

later on.

-21-

3.4.2. Other methodologies

While the above approaches are relatively carc_fuily elaborated, one may also find in the
literature other terms and concepts which are rather loosely defined. They frequently overlap with
the above terminology or even use the same terms with different meanings. Some have precise
meanings, but are frequently used in a popular way with broader, less specific meanings. Some
terms seem to gain a new meaning, different from the initial one. The state-of-the-art with respect to
the main terms appears to be as follows.

The terms : multidatabase system, federated database(s). system, a system without a global
schema and interoperablé database system, are in practice synonyms. The term virtual database is
the synonym of the terms federated database and dism’butéd database, at least for Mermaid
[Tem87a]}, [Tem87a] and Ingres/Star.' The term distributed database system is now frcqueritly used
in a loose way to designate all types of systems for the management of distributed da’taBases,
including those above. This is especially the case of commercial or popular literature. This may
become the new general meaning, as there is no operational system based on the classical definition
on the market.

The term external multidatabase schema is a synonym of the terms import schema and
superview [Mot87). These terms are now frequently synonyms of the term global schema though-
the external multidatabase schema may mean a rultidatabase, while the latter is supposed to mean a
single integrated database. Also, this meaning of the global schema is new with respect to the
classical one, as in particular several such schemas may coexist and data consistency cannot be
enforced. One reascns is that the work on the global schema design did not considered updates and
consistency issues until recently, [Sam88], applying therefore fully also to multidatabase views
[Day85], [Cze87], [Man88], [Fan88]. The term gateway designates the system component
providing the conceptual schema at the multidatabase layer from an internal logical schema.

A The concept of a multidatabase and of a database federation are synonyms, as no one seems to

envisage a federation without the possibility of join manipulations. A superdatabase is a particular
kind of a multidatabase that is a hierarchical composition of (multi)databases with particular
assumptions on concurrency control mechanisms. The supertransactions are also called (atomic)
global transactions, while global procedures correspond to non-atomic global transactions. The
meaning of the concept of a transaction in multidatabase system is in general evolving toward this
latter interpretation.

The concept of a distributed heterogeneous system was some years ago specific to the system
for the management of databases with the heterogeneous data models. This is no longer the case, it
also refers to data model homogeneous systems with different underlying DBSs or even to

homogeneous DBSs with preexisting databases. One then sometimes speaks about the semantic

-22.

heterogeneity, in contrast to data model heterogeneity or system level heterogeneity or syntactic
heterogeneity [Wol89]. The concept of a multidatabase system is sometimes identified with that of
a distributed heterogeneous system, despite the more precise definition of the former and of the
broader one of the latter. Sometimes, in contrast, the latter concept seems to designate any type of
system for the management of heterogeneous databases, leaving the room for considering systems
with a global schema as well.

4. COMMERCIAL SYSTEMS AND INDUSTRIAL PROTOTYPES

- 4.1. Commercial systems
4.1.1. Relational databases

Up to 1987, the work on multidatabase systems had been theoretical and on a few research
prototypes. It was therefore still a matter of discussion whether operational multidatabase systems
would ever be constructed. The year 1987 was important in this respect, as the first commercial
systems appeared. They were Sybase, Empress V2 and Ingres/Star. There is now also an
operational multidatabase version of Oracle. These systems appear to be major achievements,
destined for widespread and durable use.

We now present their current features related to the scope of this survey, usmg the MRDSM
functions as the framework. Other features of these systems are extensively discussed elsewhere in
this issue. Table 1 sums up the comparison, also with respect to functions provided by prototypes
other than MRDSM and discussed in Sections 4.2 and 5. The Research’ column indicates the
system that was the first to provide the function or provides the most extensive implementation,
unless no system provides the function. The "Y' in other columns means 'Yes', though the system
may support the function less extensively than a research prototype (which is normal). This is
particularly true for implicit joins and the multidatabase aggregate functions, where for instance no
commercial system provides NAME function, as far as we know. Then, 'YY' means more
extensive capabilities than those of the other systems, while 'P' means planned. Note, that while no
commercial system provides all the discussed functions, all together they provide most of them.

-23-

Sy base A A

This system designed by Sybase Inc. is a high performance relational system, available in
particular on SUN workstations, Vax computers and Pyramid. The implementation on the SUN
may be entirely on one machine or it may consist of the front-end software on one machine and of
the server software on another. Several front-ends may share a server and a front end may access
several servers. This does not mean however that Sybase is a distributed system. The distributed
version should be released later on.

Sybase language called Transac-SQL is an extension of SQL. Also, one may use a more user
friendly interface called Visual Query Language (VQL). Transac-SQL and -VQL are multidatabase
languages, the first on the market, as far as we know. They have several interesting features:

- the user may qualify the relation name, let it be T, with the database name, let it be B using the
form B.T . Thus one may formulate elementary multidatabase queries. There is however currently
the limitation that the databases have to be at the same server. Theoretically, up to 32 K databases
may be used simultaneously.

- the user may define multidatabase views, but nét virtual databases.

- the queries may include implicit joins. Unlike in MRDSM, they are however limited to relations
with a single connection through primary or foreign keys.

- the user may formulate interdatabase queries using multidatabase INSERT and UPDATE
statements. The latter statement then takes values in a table and puts them accordingly into a target
table. These statements map column names only by order of their enumeration in the SELECT
clause, while MRDSM also allows columns to be mapped by name.

- the user may define interdatabase manipulation dependencies under the form of triggers or of
procedures embedding triggers into a programming Janguage. A manipulation of one database, may
thus trigger that of another database. The dependencies may be transitive ie fire one another,
provided they are declared as procedures. They may be defined by independent users. The length
of the chain is however arbitrarily limited to 8 elements, to avoid cycles.

- in the distributed version, the language will allow multiple queries to be formulated.

1t is also interesting to note the differences in the user interface with respect to these functions,
compared to MRDSM and MSQL.:

- the user opens explicitly only one database at a time, through USE <database name> statement.
This database constitutes the default scope for table and column names. All other databases remain
however, available to the user, provided he has the access rights. The access to a database is
triggered by the use of its name as the prefix. In contrast, MRDSM allows the user to open
explicitly several databases. The database name is then required as the prefix oaly if table names

conflict.

-4 -

- MRDSM had no interdatabase UPDATE. This feature of Sybase inspired the corresponding one
 of MSQL. ,
. - the multiple queries will most likely be generated through the new statement FOR EACH <table
_ names> <elementary qucry>. This is somewhat more procedural than the use of multiple identifiers
or semantic variables in MRDSM. It also makes the query formulation less open to the local
autonomy. For instance, if a new database using the same table name and pertinent to the query
intention enters the federation, then the Sybase statement has to be modified, while the MSQL
statement may remain valid.

As may be seen, Sybase puts into operational practice many concepts of the multidatabase
approach. It is an important system that soon will be widely used. It was indeed selected by
Microsoft to become the Microsoft system for IBM-PS2, replying to 0S2/DB of IBM. It was also
selected by Apple for Mac SE and Mac-2 and by Ashton-Tate under the name of SQL Server. If
these plans finalize, database management will become in general multidatabase systems, re:ilizing
the postulate in [Lit82]. This will be the case not only for the distributed databases, but also the

monosite (physically centralized) environment, as was also conjectured there.

Empress V2

This system is made by Rhodius Inc, in Toronto, (_;anada. The version described below is V2,
following the “classical" version 1, installed in a number of countries. Unlike Sybase, Empress V2
is a distributed system that runs on a number of computers over the Ethernet network : Sun, Vax,
Apollo, IBM-PC/PS.... Currently, however it does not allow different computers to mix under the
same system, as it manages the distribution through the NFS file management system. It uses a
multidatabase extension of SQL that is currently as follows:
- table names in a query may be prefixed with database names. The database names may themselves
be further prefixed by muitidatabase names that are ultimately the site names.
- several databases may be open simultaneously.
- the user may define multidatabase views and virtual databases. Both views and virtual databases
may be distributed. A virtual database is manipulated as a single actual one, with location
transparency, except for some updates.
- Empress V2 supports distributed updates using two phase locking and two phase commitment.

Empress V2 has multidatabase features that Sybase has not and vice versa. The possibility of
using multidatabase names, in particular allows the resolution of name conflict between database
names. Note also that Empress V2 is already a distributed multidatabase system, unlike Sybase.

An auxiliary from our point of view, but interesting feature of Empress V2 is that it supports

multimedia data. These data may be declared as a particular "bulk” column of a table. They may

-25.

then be interpreted as text, image or voice data. This feature is an opening towards interoperability

of multidatabase and multimedia systems.

‘Distributed Ingres . ,

Distributed Ingres, also called Ingres/Star, is a software layer to Ingres systems and, in the
future, to other types of DBSs, supporting locally an SQL interface. The component providing this
interface, for instance to IMS, is called gateway. It corresponds to the Internal Logical Schema in
our multidatabase architecture in Fig. 1.

Documents on Ingres/Star say it differs, from traditional distributed DBSs, by its "non
monolithic" architecture. The analysis of the system principles shows that this term designates the
absence of the global schema. The architecture of Ingres/Star is that of Fig. 1. However, there are
currently no interdatabase dcpcndénciés. Thus, the consistency of replicated data cannot be
guaranteed, unlike in Sybase. However, it has no importance for the current version, as updates
through external (import schemas) are not supported, with the exception discussed below.

The main features of Ingres/Star, from the point of view of this survey, are as follows:
- the system allows the definition of any number of the external multidatabase schemas over
subcollections of SQL databases, currently only Ingres databases. The virtual database defined by

. this schema is called a distributed database (DDB) and its"elements are called links. Once the DDB

is created, it is used as an actual Ingres database, except for update limitations. The DDBs may in
particular share an actual table or database.

- In fact, if a DDB creation is requested over n databases, then it is created over n + 1 databases.
The latter database is a hidden actual database created at the node of the DDB schema definition and
simultaneously with it. This database is named upon the DDB and allows a DDB user to
transparently invoke the CREATE TABLE statement. This statement could not work otherwise, as
any table has to be in actual database, while the user cannot indicate in SQL where it should be.
These tables may be updated, altered etc. -

- the system does not allow the user to directly formulate multidatabase queries to actual databases
or, more precisely, to their export schemas. The reason seems implementation dependent, namely
the necessity of a dictionary entry, created when a link is declared. The only way to formulate an
ad-hoc query is to define a DDB whose links are the addressed tables and formulate the query to the
links. The links may be declared temporary in which case the DDB is automatically dropped.
Otherwise, the user must drop the DDB himself or keep it for further needs. In both cases, the
additional manipulations are required for ad-hoc multidatabase queries than for Sybase and
Empress. In addition there is a danger of system pollution with DDBs and the underlying hidden
actual databases, created for an ad-hoc query and then forgotten.

-26-

Oracle V5§

In its new version V5.1.17, Oracle aiso became an MBS (although the corresponding
capabilities were announced for V5 in general, we could sce them working only in this release). It
allows the creation of several databases at the same site and the formulation of clementary
multidatabase queries. The Oracle multidatabase language is termed SQL*PLUS. Unlike in Sybase
or Embrcss, the database name does not prefix the table name, but postfixes it, after the character
‘@'. The user has also particular staterments defining aliases for table nameis and for database
names. The former capability allows the resolution of the name conflict, avoiding the use of the
database name. The latter, called database linké, should not be confused with the different meaning
of this term in Ingres/Star. ~ ~ .

The language offers also statements for interdatabase queries unknown to other commercial
systems and largely similar to the corresponding ones in MRDSM. All the multidatabase
manipulations are moreover available for distributed databases, throrugh the distributed database
management component SQL*STAR. It is likely that the latter will be permanently included in
Oracle which means that the concept of centralized and monodatabase Oracle will disappear.
However, the distributed updates are not yet available, like in Ingres/Star V1.

4.1.2. Information retrieval databases

The Common Command Set Language (CCS) appears to be the best candidate for the standard
language, at least in Europe, for this type of databases. However, as SQL it needs to be extended
with functions for multidatabase management, like these provided by the Messidor multidatabase
system [Lit82]. Some of these functions also appear now in the commercial systems.

EasyNet

EasyNet is the gateway switch and the common single site image interface to over 850
databases, distributed on several servers. The connection procc_dures, passwords etc. are
transparent. It offers an extension to CCS as the standard language, but also allow to use local
languages. Databases are grouped under multidatabase names which are key words like history,
finance, law, etc. A database may belong to any number of multidatabases. The user may search
multiple databases under the same multidatabase name using a multiple query. In the terminology
of EasyNet such queries are called scans. The scan shows the number of records retrieved in each
database. The user may then reformulate the query to narrow the search.
ii

The bibliographic multidatabase system strangely termed ii, was put to commercial service
recently. It allows the user to query a given database or a number of databases simultaneously, in

an extension to CCS language. It thus supports the concept of multiple queries. As EasyNet it

-7 -

further provides multidatabases-names and a database may belong to any number of multidatabases.
The system got the award of the product of the year at the 1987 On-Line conference.

4.2. Industrial prototypes

We designate in this way prototypes that are likely to give rise to operational systems in the near
future. One is the Mermaid system initially intended as a classical distributed DBS, it now evolved
towards the federated qrchitccture. It is presented elsewhere in this issue and in [Tem87],
[Tem87a], where one describes problems and original solutions to deal with the privacy issues in

the multidatabase environment. The following.two prototypes are also promising.

Calida _ _ 7
This system is under development in GTE Research Laboratories. The operational version is
destined for the management of numerous databases of GTE, mostly the relational ones. The main
features of the system, in the scope of this survey are as follows [Jac88] :)

- Calida makes it possible to access relational and Codasyl-like databases or hierarchically
structured files. The data model at the multidatabase level is relational. The internal logical schema
and the corresponding manipulation are generated through the original rule processing system. This
system provides a particularly flexible interface to data model heterogeneous databases.

- the multidatabase manipulation language is not the SQL, but a proprietary relational language
called U/DELPHI (Universal DELPHI). It is an SQL like, multidatabase, joinless \)eféion of
earlier DELPHI language. U/DELPHI is used as a final language for the sophisticated user and as
an intermediate language for a natural language for interface. U/DELPHI allows the formulation of
elementary multidatabase gueries, including the updates, where database names may be used as
prefixes to solve name conflicts. The query decomposition is carefully optimized, using field
statistics gathered by the system. Calida moreover allows the definition of external schemas and of
views through the usual query modification technique.

- the system: supports the implicit joins that, in particular, may concern columns in tables in
different databases. This feature existed only in MRDSM, as it requires the definition of
equivalences between domains or tables of different databases. In the GTE system, the
corresponding equivalence dependencies are stored in a so-called global dictionary. The algorithm
for the query completion is similar to that of MRDSM in that it searches for a minimal spanning tree
over the intersection of the non-connected query graph and the connected database graph whose
nodes are relations and edges are connections through keys. However, the algorithm is limited to
the case of a single connection between two relations (acyclic graphs). If there are multiple
connections, the user is asked to make a choice, unlike in MRDSM. One advantage is a fast

recursive algorithm for the spanning tree edges computation.

-28 -

Among other interesting features of Calida one may cite the menu driven User Interface Modale
with the possibility of user defined macros.

DQS/Multistar

The relational model also seems an appropriate common model for access to non-relational -
databases. The Distributed Query System (DQS) prototype is a multidatabase system developed
for investigation of the corresponding issues [Bel87]. The system should soon lead to a commercial
version called Multistar. It allows multidatabase retrievals from IMS/VS, IDMS, ADABAS and
RODAN databases, as well as from standargf VSAM files. The objects of these databases are
presented as relations through dedicated mapping commands. The retrievals are formulated in SQL
over so-called global schema in DQS terminology. However thie DQS global schema is in fact an
import schema, as several different schemas Vmay be defined which may be partial, and they may
overlap. These schemas may also include views, in the SQL sense of this term. Views are the
principal data abstraction méchanism for aggregations and generalizations in DQS.

DQS has several interesting features. An appealing feature is also its algorithm for SQL query
decomposition. Views are dealt with using the query modification technique. The query is then
represented as a tree, subject to the algebraic transformations to reduce intermediate relations. A
heuristic algorithm is also used to produce the query tree optimized with respect to data movements
between the sites. For execution, this tree is finally transformed to a Petri Condition-Event net.

4.3. Interoperable database system

This title refers to the name of a large national project in Japan [Int87]. As with the 5-th
Generation Project, this one is backed by MITI and involves all major Japanese computer
manufacturers grouped into an organization named INTAP. The project budget is around 120 M$
over five years. The project goal is to build the software and hardware which would permit
distributed database systems to exchange data and to be manipulable together. The databases are not
in general integrated under a global schema, they are only interoperable. Externai multidatabase
schemas may be created and it is assumed that there may be several over the same collection of
databases. A longer term goal of the project is also to make databases interoperable with other types
of information systems. For both multidatabase interoperability and interface to other systems the
vehicle should be the ISO-OSI Open System Architecture.

4.4. Impact on standardization
ISO has issued the SQL standard of the so-called level 1. This standard is the kernel of the -
classical SQL, without the concept of the database name in the statements, and thus inappropriate »

for multidatabase manipulations. Given the extensions to SQL that appeared in the commercial

.29

systems, as well as the join work of most of the corresponding companies on the common
version, called Open SQL, it however likely that ISO will include at least this multidatabase
function into coming releases of the standard. One should also note the proposals of C. Date for
improvements to SQL [Dat84]. One of the proposals is to provide names for the results of SQL
value expressions (p. 35) that will give rise to dynamic attributes in SQL.

The notion of a multidatabase system, as distinct from the classical distributed database system
concept was on the other hand used by ISO in its work on Remote Database Access Protocol
. (RDA) [Iso87]. MBSs are assumed more common. The RDA protocol is intended mainly for these

systems though in its current version it lacks many features.
5. SOME RESEARCH ISSUES

| The number of investigations of multidatabase (federated) systems has greatly increased
recently. Some are reported in the references to this survey, in particular in [Chu87], and [Sar87].
They have led to interesting results and inspiring concepts, opening a number of new issues. Their
common rationale is that the classical techniques for database management proved too simplistic for

the new needs.

5.1. Transaction management and concurrency control

The autonomy and lack of integration between databases put new requirements on the
concurrency control. The classical two phase locking and commitment will be increasingly
inappropriate. In particular, a multidatabase operation (a multidatabase manipulation language
statement or a sequence of such statements) may not need to hold on all of its resources until it
completes. In this case, it is useful either to extend the classical notion of a transaction, or to create
new cbncepts. The following ones seem particularly promising [Alo87], as they are close to real
. life procedures in many organizations:

- a global procedure is a procedure initiated at some node that can request other nodes to execute
procedures (usually transactions). At each node the global procedures are managed by a global
procedure manager (GPM), interfacing for local operations the local transaction manager (LTM).
Because of local autonomy, the GPM has no control over the local concurrency control and
transaction processing. In particular, once a transaction has been run by an LTM on behalf of some
global transaction, it cannot be undone or rolled-back by the GPM. The only recourse of the GPM
is to request the execution of another transaction, called compensating transaction. Thus, a global
procedure cannot be atomic in the transactional sense.

- For many applications, it is not necessary to serialize global procedures. For-instancc,
consider a multiple query to several "Scheduled Meetings" personal databases proposing a meeting

for a given date, provided all persons are available. As the serial consistency for the entire

-30-

corresponding procedure is not required, this procedure may be broken up into a number of
transactions which can be interleaved in any way with other transactions. Such a procedure is a
saga and as the example shows, many operations in the multidatabase environments may be run as
sagas. It may be shown that by ninning global procedures as sagas, instead of ensuring their total
serializability with other global procedures, substantial performance benefits may be achieved.

- Sagas are not however always appropriate, especially if a multidatabase manipulation uses an
aggregate function. In this case, two phase locking may be used. However, there may be a
substantial performance problem when many nodes are involved, as no lock should be released,
until the last lock is requested. Even worse, the corresponding delay may be greater than the local
time-out of an LTM Which will then release the lock, believing a dead-lock. To avoid these
problems, new locking protocols providing a higher degree of concurrency are needed. Also, it
may be necessary to combine locking with other protocols and methods for the recovery. .-

- It is possible, on the one hand, to then use the altruistic locking [Alo87]. On the other hand,
the same order of subtransactions at each site may be maintained, detecting and recovering from
global deadlocks in a simple way [Bre87]. Furthermore, providing the knowledge of the serial
ordering at each site, one may attempt to group databases into sets called superdatabases inside
which different concurrency control and crash recovery methods may be used together [Pu87].
Finally, under similar assumptions, the optimistic control [Elm87] may be used.

- Locking and timestamping have nevertheless limitations which no algorithm using these
concepts may overcome, as they results from the paradigms themselves. A more general paradigm
is introduced in [Lit88] and termed value dates. This concept is well known in the banking,
airlines,... and means that a value is certain only after its value date. Otherwise, it is uncertain,
though may be used with precautions. The concurrency is controlled through the examination of
value dates put by transactions under the control of the scheduler. As value dates define a serial
order, one may easily obtain the serializability of the schedules.

Value dates exhibit several interesting properties. The corrcsponding‘schedules may be
deadlock and livelock free independently of the transaction semantics. The simplicity of the
corresponding algorithm compares favorably to that of the two phase locking (which is the most
used algorithm, but is not deadlock free). Furthermore, through the dedicated manipulations of
value dates or of uncertain values, one may design schedulers enhancing efficiency for particular
classes of transactions. Also, the paradigm shows that locking and timestamping are in fact
particular cases, where value dates are assumed infinite. This observation explains limitations of
those paradigms, especially the impossibility to ever eliminate the deadlock while using locking.

Finally, the value datc paradigm provides a new view on the commitment and recovery
oroblems. A value date may be seen as an implicit non-procedural commit point. The current

commitment protocols, like two phase commit, appear as particular procedural implementations.

-31-

Other choices appear then as well and look at least as useful. All together, these properties make the
new paradigm highly promising.

This synthesis is by no means -complete. The concepts discussed have ramifications either
discussed in the corresponding papers or which remain to be studied. However, it already appears
that the multidatabase systems put new constraints on the transaction processing and trigger
interesting extensions [Eli87], [Wie87]. Especially, thcy bring to consideration as henceforward
most important criteria for the transaction processing various facets of the concept of autonomy,
like C-autonomy, D-autonomy, -and E-autonomy (Comiriunication, Design, Execution) for S-
transactions in [Eli87], or Abort Autonomy, Lock Autonomy or timeliness in [Gar88]. These
extensions are closer to real life procedures in human organization than the classical rather idealized
concepts and algorithms. It is therefore likely that the corresponding studies will largely widen their

scope.

5.2. Data definition i]

Databases managed by different systems need conventions for the ‘data exchange. Autonomous
systems may in particular use different data formats, encoding or precision of similar data. The
brutal approach, such as a list of all possible conversions, is excluded because the number of
conversions may be very large in an open system. The usual binding of names by exact and
explicit designation is also too limited in the present systems and would require a global schema
with a possibly very large number of generalizations, aggregations, etc. The concepts of self-
description and of self-documentation are one solution to this problem [Rou82, 83, 85], [Mar87].

A self-describing database describes and controls its type objects in terms of meta-objects
stored in its catalogs and especially its Data Dictionary [Mar87]. A self-documenting database
captures into its catalogs and controls the evolution of all derived data objects [Rou83]. Derivation
dependencies are used to take appropriate actions during changes ou the schema affecting derived
objects. The descriptions of the Objects, especially the data formats, are exchanged ameng
autonomous databases using Standard Format Data Units (SFDUs) [Ccs87]. |

5.2.1. Self-describing database system

Fig 3 illustrates the architecture of a self-describing database system. This architecture is a
framework for database management systems, proposed by the Database Architecture Framework
Task Group (ANSI/X3/SPARC/DAFTG) [Bur86] , and recently adopted by the ANSI/X3/SPARC
Database System Study Group. The data dictionary is an active and integrated part of the
system, used for information interchange. The core DBMS supports the internal, conceptual; and
external schemata. It also supports the intension- extension dimension of data description with four

levels. Each level is the extension of the level above it, and the intension for the level below it.

-32-

The data are application data. The data dictionary stores the application schemata. The data
dictionary schema contains the rules for managing these schemata. Finally, the meta-schema stores
the basic set of rules for defining self-describing data models.

The core DBMS supports the data language (DL), which is the language used to manipulate data
and data descriptions at any level in the intension-extension dimension. The DL provides a set of
primitive operations on any data element or data description element at any level in the intension-

_extension dimension of data description. Any compound operation is implemented as a too] in the
data management tool box using the -primitive operations of thé DL. The tools are plug-compatible
with the core DBMS through the DL. Some tools are specific to information interchange.

5.2, Self—documentin-g database systems. A .

Conventional database systems have mostly dealt with the management of the database
extension. They simply retrieve, insert, modify, delete or restructure (derive views of)“data
instances. This includes maintenance of the views during updates of the base files, view. indexing
techniques for storage savings and performance improvement, etc. On the contrary, very little
work has be reported in the management of the evolution of the schema because it has been mostly
thought of as relatively stable over time. When the intension (schema) changes, several derived
objects, views, materialized views, and/or compiled queries may be affected. In a centralized
system with tight control and a relatively few data objects, a simple invalidation flag rﬁay be
adequate. A multidatabase environment leads however to large collections of basic and derived data
objects and to the autonomy of schema design. A more systematic approach to management of
schema catalogs is necessary. Without it, there is no way for instance to prevent an unexpected
failure of a query or of a view definition that ran well, because an autonomous administrator have
locally modified the schema of a relations involved. This is what by the way happens on current
systems. The failure may be in particular hidden ie the execution would take place, but would be

R

fallacious. _
A self-documenting database concept is a solution to this problem in that it keeps a record of

what has happened to the database objects. For this purpose, all objects (schema and data objects)
are derived via some data language whose semantics is controlled by the database. The whole
meaning of any derived object is then kept in a derivation record in the database's catalogs, instead
of being partly in the administrator's mind, as in today systems. A derivation record may in
particular contain information about other cooperating databases.
The catalogs may be used in two ways. First, the participating systems can check the affected
-derived objects and take appropriate correction actions on schema changes, or simply notify the
users and invalidate the affected objects. The system may then for instance verify whether a
multidatabase view definition is still valid, before processing the query. Also, the users and the

-33-

systems can take advantage of derived objects that may be more refined that the ones they used to '
access or planned to define. .In particular, one may avoid the proliferation of equivalent views or of
other objects. Self-documentation allows in this way a smoother and more natural evolution of
autonomous databases. ' '

Management of the schema catalogs can be a complex process. It is however simpler for
relational data, as the relational model provides some mechanisms for specifying or inheriting
intensional properties of a derived object. These may be the. derived object's name, the names of its
attributes, the inherited security and authorization properties or constraints etc. Also, the well-
defined semantics.of the relational algebra used'to derive data views allows a precise interpretation
of the schemas of the derived objects. On the other hand, one may also use the Entity Relationship
model [Bat88]. i

In the distributed environment, the autonomy of the cooperating databases requires a distributed
control over catalogs for self-documentation. A fully distributed control can be very time
consuming especially if instantaneous distributed update of many catalogs is required. The
primary copy techniques with incremental updates of the copies may be a more down-to-earth

approach [Rou86].

5.2.3. Standard format data units) .
It is proposed thai self-describing and self-documenting databases exchange data through
. Standard Format Data Units (SFDUs) [Ccs87]. DL commands that should be sent are considered
simply as data of some type. An SFDU is also self-describing. It contains both data and format
represented by a recursive type-length-value (TLV) encoding with the syntax in Fig 4. The fixed
length Type Field T identifies the format of data that are in Value Field V. The fixed length Length
Field L represents the length of V, basically in bytes. The V field itself can be in any
representation supported by the system.

SFDUs are defined using a Format Definition Language, (FDL). Specific standard for an
FDL, are not included in [Ccs87]. It is, however, agreed that it shouid support the description of
the data structure, the unit of measure, the range, and the precision of each value. The problem of
conversion of value types between autonomous systems, needed especially to make operations like
relational join meaningful, has a local solution for each system. Note that RDA [Iso87] is an FDL,,
but without these possibilities, at least today.

5.3. Update dependencies
Frequently, the update of a base relation implies updates of other relations related through some
underlying dependencies that are not expressed in the database schema. This situation becomes

even more ccmmon in multidatabase environment where there is no global schema. To deal with

34

these update dependencies a solution may be triggers embedded in some programming language,
eg Sybase. However, a general solution requires a high level non-procedural formalism capturing
update dependencies semantics. Such a logic programming like formalism as well as the
corresponding prototype implementation is presented in [Rou84], [Mar85], [Mar87a].

A relation R is update dependent on relation S if an update operation on relation R implies
update operation(s) on relation S. Such update dependencies may be declared in the following
form. '

£0p> -> <¢,l1>, <op,L,1>, <op,.,2>, .. <op,l, nl>,

-> <g2>, <op,2,1>, <opy2,2>, .. <0p,2, n2>.
>)

The term <op> is a compound update operation on some relation. The <c,i> are alternative
conditions on the database state, expressed as predicates. Each <op,i,j> is either a compound
update operation, defined in another update dependency, or a primitive operation, implied by
<c,i>. An evaluation of a compound update operation succeeds (evaluates to true) iff, at least one
<c,i> evaluates to true and all the operations implied by <c,i> succeed. The compound update
operations are the data manipulation commands of the database language eg MSQL. The
evaluation of primitive operations always succeed. They are add for adding a single tuple,
remove for eliminating one, write and read for the interface with the user and some others.
See [Mar835] for details of all these operations.

When an update dependency is invoked its variables are bound to the actual values, selected by
the database system or to values supplied by the interacting user. The evaluation of conditions,
replacement of implied compound update operations, and execution of implied primitive operations
1s in order of appearance, left-to-right and depth-first. The evaluation of conditions assumes a
closed world interpretation. If an evaluation or an execution fails, the backtracking takes place.
The database-is physically modified iff the <op> evaluation succeeds (unlike if Prolog
expressions were used with assert etc. operations). -

An implied compound update operation matches the left-hand side of an update dependency if
the operation names and the relation names are the same, and all the domain components which
are variables or constants match. They match if they are the same constant or if one or both are
variables. If a variable matches a constant it is instantiated to that value. If two variables match thcy
share value.

Ex. 5 Recall the bank example Ex. 4. We will declare the update dependencies (i) to create an
entry in the bnp main office for each new account created in the branch etoile and (ii) to refresh

the balances as accounts get updated in the branches.

-35-

insert(etoile<x,y,z,w>) ~ -> insert(bnp<x,y,z,'etoile'>).
-> write("unable to insert to bnp").
update(etoile<x,y,z,w>) -> bnp(x,yl, ,) & not(y = yl),
write("inconsistency detected").
-> bnp(x,y, ,), update(bnp<x,y,z,'etoile's.
-> not(bnp(x, , ,)), insert(bnp<x,y,z,'etoile's).
-> true.

The first update dependency takes care of the insertionsin etoile. The insert in bnp is tried
first. If it succeeds, ie no logical constraint forbids such an insertion in bnp independently of when
it will be physically stored it, then the insert in etoile succeeds and both databases are allowed to
accept the new account. Otherwise, the second clause gets executed and sends the message to the
etoile administrator. Because the write operator always succeeds, the insert in etoile also always
succeeds. This is consistent with the notion of autonomy of the databases. .

The second update dependency checks first whether the accounts to update in etoile and in
bnp are consisient with respect to the sharing of the cl# values, y and yl. The-"_' is like in
Prolog an anonymous variable. If an inconsistency appears, the message is sent and the update
dependency succeeds. Otherwise, the second clause makes the update of the new balance z in bnp
while the third clause takes care of the case of bnp yet unaware of the updated account (for
instance, when the insertion to bnp has failed when this to etcile had occurréd). To guarantee the
autonomy of etoile again, the true clause is terminates the definition of the dependency that always
succeeds, even all the specified manipulations of bnp have failed. Again here, the update
dependency only checks for logical evaluation to true. The actual updates to the database may be at
a different time depending on the implementation of the underlying system.

5.4. Updates of transformed values
In the multidatabase environment, heterogeneous data values should frequently be converted or
combined to a value type defined by the user. This is one of the facets of the value type autonomy.
MRDSM provides for this purpose the concept of a concept of a dynamic attribute, letitbe D ; D =
F (A); where F is a transtorm of values of some actual attributes A. Usually F is an arithmetical
formula, like a value expression in SQL. Dynamic attributes are defined by the user in queries and
disappear once the query is processed or, at most, at the end of the session. Virtual attributes are
intended for the same purpose in view definitions. While the concept of a virtual attribute has been
known for sometime, MRDSM is the only system to provide dynamic attributes.
The transform F is defined for retrievals. However, one may also need to update D. As far as
we know, updates of virtual attributes were in general not considered in the literature or one could
understand that they are impcssible (eg [Dat86], p. 187). MRDSM provides a solution for dynamic

attributes that naturally applies to view update as well. Its principle is as follows [Lit87b]:

-36-

- the formula F has to be defined by a computable function thatis transformed to an equation whose
roots are new values of A. The system passes F to MACSYMA which is a large symbolic calculus
system. If MACSYMA finds the symbolic solution, it passes it back to MRDSM. If several
solutions exist, MRDSM chooses that matching the values of D and of A before the update.

- Otherwise MACSYMA sends factorized formulas back to MRDSM. MRDSM then applies a
numerical method (the Bairstow method).

For F that is not a computable function, MRDSM in general requires the user to provide the
transform F’: D -> A. : :

Note that the above cooperation betweén MRDSM and MACSYMA is an example of
interoperability between information systems of different types that as far as we know, had not
been previously integrated together. Note also that although MACSYMA is a mainframe system,
the proposed approach applies to systems entirely on workstations as well. Equation solvers are
indeed becoming available on workstations, including MACSYMA, and may be even cheap on PCs
(TK, Eureka etc.). The capabilities of cheaper versions are more limited, but are sufficient for

many applications and are extend rapidly with new releases.

5.5. Query processing

Multidatabase languages introduced new capabilities whose optimization is an open research
area. The following problems seem particularly important. .
- Traditional work on the distributed query decomposition considered that the necessary
capabilities are available within each participating system. The multidatabase query processing may
however need sophisticated services like a thesaurus, an equation solver, rule processing, outer-
joins etc. It is unreasonable to consider that these services are available universally. There is a need
for the self-description of a database system not only with respect to data schemas, but also with
respect to operational capabilities. The object oriented approach seems useful for this purpose. The
query decomposer has to take into account the availability of capabilities as additional constraints.
A knowledge base may be used to check and disambiguate multidatabase queries in presence of
semantic conflicts [Rus88]. |
- Different types of formulas F for value conversion lead to different optimal algorithms.
Furthermore, the most efficient algorithm for a few tuples, may be not the optimal one for many
tuples. For instance, if F is a polynomial, then the Horner algorithm is the optimal one for a single
tuple. If however several tuples are involved, then the Knuth algorithm, preprocessing the
coefficients, outperforms it [Kro87].
- The multiple queries are evaluated in MRDSM as sets of queries resulting from the substitutions
of the unique identifiers to the multiple ones and to semantic variables. The resulting querics may

-37-

have common subexpressions. Factorization of these subexpressions may be useful, as duplication
of retrievals or some intersite transfers may be avoided [Ros88], [Sel88]. '

- Similar problems may occur for interdatabase queries, where data selected from some source
database should be dispatched to several databases. Basically, such interdatabase query is'a set of
subqueries each one performing a selection from the source database(s) and some kind of insertion
into one target database. Target tables may in particular differ to some extent. The factorization
may avoid replicated selections between subqueries and may speed up other selections. It may use
as the source, a small temporary relation produced by the selection expression of another subquery,

.

instead of large base relations.

5.6. Incremental access of multiple database servers _ ‘

The system termed ADMS+- proposes an architecture for the frequent case of workstations that
manage private data and share those in databases on servers [Rou86]. ADMS+- has two
subsystems. One termed ADMS+ runs on each server and manages the shared database. The other,
called ADMS-, runs on the workstations and manages a local database consisting of a) private
non-shared relations, and b) downloaded subsets of the shared server databases. Private relations
are created and managed only locally on the workstation. The downloaded shared subsets are
acquired as a result of running queries against the server databases. From then on, they are
incrementally maintained on the local database as materialized views [Rou87]. Therefore, by
running the workstation's application, the data that is pertinent to those applicaﬁons incrementally
migrate to the workstation. The communication of data is only between the workstations and the
servers ie there is no direct communication between workstations. However, extensions of the of
ADMS+- principles to more distributed topologies is a subject of current research.

ADMS+ is a full-fledged system that keeps track of the downloaded subsets of the database to
the workstations through self-description and self-documentation. ADMS- is a trimmed version of
ADMS+ that has neither a security nor a concurrency control subsystem because it operates in a
single-user mode. ADMS- can be thought of as an intelligent cache database access subsystem that
capitalizes on the locality of the downloaded data and the ability to process it independently from
ADMS+. The user can even introduce to the local database additional access aids such as local
indexing.

The design goal of the ADMS+- architecture is to download to each workstation a tailored
subset of the database to be processed locally by special-purpose transactions running on the
workstation. The servers maintain the interoperable databases and additional access aids for
subsets shared by several workstations. The user can combine private and shared data in relational
views derived from shared and private relations. This gives him the autonomy to run SQL as if they
were only the local database. Another benefit is that the download of the share database subsets

-38-

provide quicker access to data, as most of the transactions run locally. This not only increases the
- overall throughput, as all workstations do parallel processing, but also reduces the servers' load
considerably.

Updates to the shared databases are only allowed on the servers. A deferred, periodic, or
immediate broadcasting update strategy can be selected for the downloaded portions. When an
update of a downloaded object is decided, incremental update techniques are used to minimize data
transmission and message traffic. Downloaded portions can be discarded if they are no longer
useful. This has no effect on the performance, other than space saving on the local disk, if the
deferred update strategy is specified. ‘o

The most attractive feature of ADMS+- architecture is its efficiency with re.spect to the
multidatabase management of private and shared databases. The local database integrates private-
and downloaded views from the shared server databases. ADMS-+- provides, however, at the‘
same time the overal! interoperability of the shared parts to enforce their consistency. ft also -
provides the workstation site autonomy, as the local databases may run even when the servers are
down The ADMS+- techniques for dealing with queries involving private and shared data through-
exported views are in particular a promising approach to efficient processing of distributed

multidatabase queries.

5.7. Logic multidatabase systems

Future databases will frequently be knowledge bases using the concept of logic programming,
especially Prolog. This will obviously lead to the situation of autonomous knowledge bases to be
manipulated together. These bases will differ with respect o names, values and predicate structures
for similar models. Functions will be needed for the corresponding non-procedural logic
multidatabase manipulations.

Probably the first attempt to solve this problem is described in {Kuh88]. The presented system
called VIP-MDBS, extends the actual Prolog database system VIP-DBS. The latter system is also
built by the authors, on the top of the Vienna Integrated Prolog, designied by the same team as well.
VIP-MDBS provides several functions transposing those of MSQL to the logic multidatabase
environment. It is shown that to build multidatabase manipulation functions in this environment
may be surprisingly hard. One reason is that Prolog alone lacks semantics and thus the existence of
a conceptual schema over the set of predicates constituting a database is necessary. Another reason
is that Prolog statements basically use the mapping by position of the data designators which are in
addition arbitrary variable names. In contrast, SQL and relational languages in general, use the

mapping by data object names.
The language of VIP-MDBS described in [Kuh88] overcomes these structural properties of
Prolog databases for most MSQL multidatabase functions. It also provides features that does not

-39 -

exist in MSQL, since a relational system does provide them in practice. Most significant feature are
intentional relations and the transitive closure. VIP-MDBS allows its usage, in multidatabase
queries, to define multidatabase views (called recursive semantic relations), and to formulate
multidatabase integrity constraints. This feature allows. to handle practical problems such as of a
bank seeking to find the companies among its customers which are controlled by a holding X,
given that X may have shares of a company Y, but also of a company Z in some other bank, that is
a shareholder of company Y etc. The corresponding integrity constraint may be that the sum of

shares of a company owned by X can never exceed 100 %.

5.8. Dynamic Derivation of Persbnaliﬁzed Views

Traditionally, user interfaces to databases have either assumed complete knowledge of the
conceptual schema or they have relied on the utilization of predefined views, to restrict the universe
of discourse for end users or application programmers. This approach is appropriate if the scope of
the queries a user may want to formulate is known in advance. In the case a user wants to pose an
unexpected query or in a case of a new user, a predefined view is not the answer. One needs rather
functions for a dynamic derivation of views corresponding to the hypothetical (universal) view in
the user's mind. Such functions for multidatabase environment are proposed in [Neu8§].

The proposals considers the object oriented paradigm and applies the framework defined in
[Fan88]. It further transposes to this universe the principles of the universal scheme and the implicit
joins method. More specifically, it is observed that the algorithm in [Lit85] computes implicit joins
through adding to the incomplete query graph as few edges as possible to obtain at least one
connected spanning tree (the edges are selected from the database graph whose nodes are relations
and edges so-called natural dependencies). This minimization of the number of joins may not
always be the correct interpretation of a query, as the number of joins is merely a syntactic measure.

To refine answers, one proposes in [Neu88] to use an object oriented data model and a
""knowledge-based approach to complete the incomplete queries. The central idea is the concept of
message forwarding plan that defines at the class level how messages that cannot be handled
directly are to be forwarded to semantically related objects. The éorresponding forwarding paths
are for the method the equivalent of the natural dependencies. The most promising paths are
dynamically detected by an interactive knowledge navigator, that is an expert system using domain
knowledge base, various thesauri,...

The concept of a context of an object is introduced to capture the semantic surroundings of the
object classes visited on the message forwarding path, instead of making a selection from a
syntactic measure. The paths determined with help of these tools are finally selected and combined
to define the final view. The main problem for the combination algorithm is the detection of cyclic

paths. A rule based algorithm that is proposed ensures that only "useful” cycles are included in the

-'40-

- plan and that they can be expected to terminate during the actual execution of a query against the
plan. The whole technique is under implementation on Sun workstations for the construction of

dynamic personal views for multiple and multi-media databases.

6. CONCLUSION

The systems for the interoperability of multiple. autonomous databases are emerging. It is
likely that a database systefn which would not be a federated (multidatabase) one and distributed,
will soon be hard to find. The major commercial syStcms already evolved in this direction. The
perspectives of worldwide usage of systems like SQL Server, Distributed Ingres, Oracle V5, etc.
show that systems of this type will be among popular software toolis. ' '

The capabilitiés for the multidatabase manipulations already present in the commercial sYstems
are nonetheless only a limited subset of those proposed at research level. It seems most Tikely
that the new assumptions about the lack of global knowledge of all data and about user autonomy
will influence the design of future systems much more deeply. New principles will emerge at all
levels, starting from logical data definition and manipulation functions and going down to
concurrency and transaction management principles, as well as to the physical implementation and
distributed execution. , .

They will apply further to new types of information bases, in particular knowledge bases.
Finally, they will provide interoperability with respect to other types of information management
systems, broadly named services in the present terminology. They promise interesting perspectives
for both users and researchers running after exciting issues. They will be of fundamental
importance for the economical development of cur information based post-industrial societies.

REFERENCES

[Abb88] Abbott, K. R.; McCartiry, D. R. Administration and Autonomy in A Replication-Transparent
Distributed DBMS. 14-th Int. Conf. on Very Large Databases, Los Angeles, USA, (Aug. 1988), 195 - 205.

[Alo87] Alonso, R., Garcia-Molina, H., Salem, K. Concurrency Control and Recovery for Global Proccdures in
Federated Database Systems. IEEE Data Enginecering, (Sep. 1987), 10, 3, 5-11.

[Bat88] Batiri, C. Di Battista, G. A methodology for conceptual documentation and maintcnance. Inf. Syst. 13,
3, 1988, 297-318.

[Bcl87) Bellcastro, E & all. DQS -Distributed Query System. (Sept. 1987), CRAI, Italy, 21. Int. Conf. on
Extcnding Database Technology, Springer Verlag, 1988.

[Bre87} Breitbart, Y., Silberschatz, A., Thompson, G. An Update Mcchanisin for Multidatabase Systems. IEEE
Data Engincering, (Scp. 1987), 10, 3, 12-18.

[Bur86] Burns, T. Fong, E. Jefferson, D. Knox, R. Reedy, C Reich, L. Roussopoulos, N. Truszkowski, W..
Reference Model for DBMS Standardization. ACM SIGMOD Records, (March 1986).

-41 -

[Ccs87] Consultative Committee for Space Data Syst; + Standard Formatted Data Units - Structure and Construction
Rules. Red Book, Issue 2, (Feb. 1987). Nat. Acronautics and Space Adm.

[Cer87] Ceri, S., Pemnici, B., Wicderhold, G. Distributed Database Design Methodologics. Proccedings of the
IEEE, (May 1987), 533-546.

[Chu87] Special Issue on Distributcd Database Systems. Chu, W. (ed). Proceedings of the IEEE, (May 1987),
532-735. '

[C2c87) Czejdo, B., Rusinkiewicz, M., Embley, D. A Unified Approach to Schema Integration and Query
Formulation in Federated Databases. Res. Rep. University of Houston, 1987, 25.

{Dai88] Distributed Aspects of Information Systems (DAISY Working Group Rep). Rescarch into Networks
and Distributed Applications. R. Speth (ed.). Elsevier Science Publ, 1988, 1029 - 1049.

[Dat84] Date, C., J. A Critique of the SQL Database Language. SIGMOD Record, 1984, 8-54.

[Dat86) Date, C., J. An Introduction to Database Systems. 4-th Ed. Vol. 1. Addison-Wesley, 1986, 639.
[Day85] Dayal, U. Query Processing in a Multidatabase System. Query Processing in Database Systcms, 1985,
Springer Verlag, 81 - 108, : _ . . -

[Dee87] Deen, M., S.,Amin, R., R. Taylor, M., C. Data Integration in Distributed Databases. IEEE Trans. on
Soft. Eng., 13, 7, (July 1937), 860-864.

{Eli87} liassen, F., Veijalainen, J. Language Support of Multi-database Transactions in a Cooperative,
Autonomous Environment, IEEE Region 10 Conf., Seoul, (Aug. 1987).

(Eim87] Elmagarmid, A, Leu, Y. An Optimistic Concurrency Control Algorithm for Heterogeneous Distributed
Databasc Systems. IEEE Data Engineering, (Sep. 1987), 10, 3, 26-32.

{Fan88] Fankhauser, P., Litwin, W., Neuhold, E., Schrefl, M. Global View Definition and Multidatabase
Languages : Two Approaches to Database Integration. Research into Networks and Distributed Applications. R.
Speth (ed.). Elsevier Science Publ. 1988, 1069-1082.

[Gar88] Garcia Molina, H., Kogan, B. Node Autonomy in Distributed Systems. IEEE Int. Symp. on Databases
in Parallel and Distr, Systems. 1988, 158-166.

[Gas87] Gash, B., Kelter, U., Kopfer, H., Weber, H. Reference Model for the Integration of Tools in the
"EUREKA Software Factory". ACM-IEEE Fall Joint Comp. Conf. (Oct. 1987), 183-190.

[(Ham79] Hammer, M., McLeod, D. On database management system architecture. MIT Lab. for Comp. Sc.
MIT/LCS/TM-141, (Oct 1979), 35.

Hei85] Heimbigner, D., McLeod, D. A Federated Architecture for Information Management. ACM Trans. on
Office Information Systems. (July 1985), 3, 3, 253-278.

[Hei87] Heimbigner, D. A Federated System for Software Management. IEEE Data Engineering, (Sep.1987), 10,
3, 39-45.

[Hew85] Hewitt, C., De Jong, P. Open Systems. On Conceptual Modeling. Springer Verlag, 1685, 147-164.
[Int87} Interoperable Database System. 1st International Symposium. INTAP, (May 1987), 167.
{Js087] Remote Database Access Protocol. 2-nd Working Draft. ISO/TC 97/SC 21/WG 3, 1987.

[Jac88] Jakobson, G., Piatetsky-Shapiro , G. Lafond, C., Rajinikanth, M., Hernandez, J. CALIDA : A
Knowledge-Based System for Integrating Multiple Heterogencous Databases. 3-rd Int. Conf. on Data and Knowledge
Bases : improving usability and responsiveness. Jerusalem, (June 1988), Morgan Kaufmann Publ., 3-18.

[Kro87} Kronsjé L. Algorithms : Their Complexity and Efficiency, Jonh Wiley & Sons. 1987, 363.

{Kuh88} Kuhn, E,, Ludwig. Th. VIP-MDBS : A Logic Multidatabase System. IEEE Int. Symp. on Databases in
Parallel and Distr. Systems. 1988, 190-207.

{Lit82] Litwin W. et al. SIRIUS Systems for Distributed Data Management. Ed. H. J. Schncider. North-Holland,
1982, 311-366.

[Lit84] Litwin, W. MALPHA : A relational multidatabasc Manipulation Language. 1-st IEEE Conf. on Data
Engineering, Los Angeles {Feb 1984).

{Lit85] Litwin, W. Implicit Joins in the Multidatabase System MRDSM. TEEE-COMPSAC, 1985, 495-504.

L1t86} Litwin W., Abdcllatif, A. Multidatabase Interoperability. IEEE Computer, (Dec. 1986), 19, 12, 10-18.

-42-

[Lit87] Litwin W., Abdecllatif, A An Overview of thc Multidatabase Manipulation Language MDSL. Inv. paper.
Proc. of the IEEE, 75, 5, (May 1987), 621-632.

[LitB7a] Litwin W., et al. MSQL : a Multidatabase Language. INRIA Res. Rep. 695, (June 1987), 41. To appear
in Inf. Science - An International Journal, Special Issue on Databases.

[Lit87b] Litwin W., Vigier, Ph. New Functions for Dynamic Attributes in thc Multidatabase System MRDSM.
HLSUA Forum XLV, New Orleans, (Oct. 1987), 467-475. :

[Lit88] Litwin W., Timi. H. Flexible Concurrency Control using Value Dates. IEEE Distr. Proc. Techn.
Comm. Newsletter. Spec. Issue on Hctcrogoneous Distributed Database Systems, 10, 2, Nov, 1988, 42-49,
{(Man88] Mannino, M., V., Navathe, S., B. Effelsberg, W. A rule-based approach for merging gencralization
hicrarchics. Inf. Syst. 13,3, 1988, 257-272.

[Mar85] Mark, L., Roussopoulos, N., Chu, B., Update Dependencies. IFIP TC2 WG 2.6 Working Conference
on Database Semantics, (Jan. 1985), Belgium, ”

[Mar87] Mark, L. Roussopoulos, N. Information Interchange between Self-Describing Databascs. IEEE Data
Engineering, (Sep. 1987), 10, 3, 46-52.

{Mar87a] Mark, L., Roussopoulos, N. Operauonal Specifications of Update Dependencws SRC Res. Rep Univ.
of Maryland, (Feb. 1987) 44

[Mot87] Motro, A. Superviews : Virtual Integration of Multiple Databases. IEEE Trans. on Soft. Eng.;- 13, 7,
(July 1987), 785-798.

(Neu88] Neuhold, E., Schrefl, M, Dyaamic Derivation of Personalized Views. 14-th Int. Conf. on Very nge
Databases, Los Angeles, USA, (Aug. 1988), 183-194,

[Pug7] Pu, C. Superdatabases : Transactions Across Database Boundaries. IEEE Data Engineering, (Sep. 1987),
10, 3, 19-25

[Ros88] Rosenthal, A., Chakravarthy, U., S. Anatomy of a Modural Multiple Query Optimizer. 14-th Int. Conf.
on Very Large Databases, Los Angeles, USA, (Aug. 1988), 230 - 239.

[Rou82] Roussopoulos, N. Wallace, S. Self-Description vs. Self-Documentation. Workshop on Self- Describing
Data Structures, Univ. of Maryland, October 1932.

[Rou83] Roussopoulos, N. Intensional Semantics of a Self-Documenting Relational Model. Dept. of Computer
Science, Techn, Rep. 1264, (April 1983), Univ. of Maryland.

{Rou84] Roussopoulos, N. Mark, L. Update Dependencies in Relational Databases. 1st International Conference
on Expert Database Systems, Kiawah Island, South Carolina, (Oct. 1984).

{Rou85] Roussopoulos, N. Mark, L. Schema Manipulation in Self-Describing and Self-Documenting Data
Models. Int. J. of Comp. and Inf. Sc., 14, 1, 1985, 1-28.

[Rou86] Roussopoulos, N., Kang, H. Principles and Techniques in the Desigri of ADMS\-. IEEE Computer
Magazine, Vol.19, No. 12, (Dec. 1986), pp. 19- 25.

[Rou87] Roussopoulos, N. Overview of ADMS: A High Performance Database Management System. Inv.
Paper, Fall Joint Comp. Conf., Dallas, Texas, October 25-29, 1987.

[Rus88] Rusinkiewicz, M et al. Query Processing in OMNIBASE : a loosely coupled multi-database System.
Tech. Rep. #UH-CS-88-05, Univ. of Houston, (Feb. 1988), 27.

(Sam88] Samy Gamal-Eldin, M., Thomas, G. Elmasri, R. Integrating Relational Databases with Support for
Updates. IEEE Int. Symp. on Databases in Parallel and Distr, Systems. 1988, 202 - 209,

[Sar87] Special Issue on Federated Database Systems. Sarin, S. (ed.). IEEE Data Enginecring, (Sep. 1987), 10,
3, 64.

{Sci88] Sellis, T. Multiple queries optimization. ACM-TODS, 1988.

[Tem87] Templeton, M. et al. Mermaid : A Front-End to Distributed Heterogencous Databases. Proceedings of the
IEEE, (May 1987), 695-708.

(Tem87a] Templeton, M., Lund, E., Ward, P. Pragmatics of Access Control in Mermaid. IEEE Data Engincering,
(Sep. 1987), 10, 3, 33-38.

(Wic87] Wiederhold, G., XiaoLei, Q. Modeling Asynchrony in Distributed Databases. 3rd IEEE Conf. oa Data
Engincering, Los Angcles, (March 1987), 246-250.

-43 -

[Wol89] Wolski, A. LINDA : A System for Loosely Integrated Databases. 5-th IEEE Conf. on Data
" Engincering, Los Angeles (Feb 1989). : .

-Easy'Net

Function Research Sybase Empress | D.Ingres | Oracle f
Multidatabase names MRDSM Y Y
Multidatabase data def. '

Unit & precision def. .

Elementary queries MRDSM Y Y Y
Multidatabase updates | MRDSM | "Y' Y

Interdatabase queries | MRDSM |. Y Y YY Y
Multiple queries MRDSM| P Y
Semantic variables MRDSM P

Implicit joins MRDSM Y

Dynamic attributes MRDSM

Updates of dyn. attr. MRDSM

Mdb aggr. functions MRDSM Y Y Y Y Y
Mdb transitive closure | VIP-MDBS

Maultidatabase views VIP-MDBS Y Y Y

Manipul. dependencies | MRDSM YY Y

Virtual databases Y Y

Heterog. data medels DQS P P Y
Distributed databases LINDA Y Y Y Y
RDA draft protocol LINDA

Self-descr. & docum. ADMS+-

Incremental views ADMS+-

Table ! Functions for multidatabase management in existing systems

DL
wberface
""""" meta schem |

. r
Data core DEMS i :
Management | | | =00 beccohcieeo.ao.
’Rxa)f Box :.. B ;
]]
o

Hata dictionary
schema

o ata dictionary

Fig3 Architecture of a self-describing database system

Fig4 SFDU 'syntax

External level

P ™ - e w = -

Conceplual
mullidatabase

leve!

- - = e w - -

Internal
level

PhS1

o

......

PhsS 2} ...

fos 1] {os]

Fig 1 Referencs architecture of a multidatabase

ES/PS

ES/PS

s

ES - Extarnal Schema

CS - Conceptual Schema

DS - Dependencies Schema
ILS - Internal logical Schema
PhS - Physical schema

-

system

iS - Import Schema
ES - Export Schema

PS - Private Schema

s
\

ES

T

PS

Fig 2 Federated Architecture

