
Interoperability with Moby 1.0çIt’s
better than sharing your toothbrush!
The BioMoby Consortium*
Submitted: 16th November 2007; Received (in revised form): 2nd January 2008

Abstract
The BioMoby project was initiated in 2001 from within the model organism database community. It aimed to
standardize methodologies to facilitate information exchange and access to analytical resources, using a consensus
driven approach. Six years later, the BioMoby development community is pleased to announce the release of the
1.0 version of the interoperability framework, registry Application Programming Interface and supporting Perl and
Java code-bases. Together, these provide interoperable access to over 1400 bioinformatics resources worldwide
through the BioMoby platform, and this number continues to grow. Here we highlight and discuss the features of
BioMoby that make it distinct from other Semantic Web Service and interoperability initiatives, and that have been
instrumental to its deployment and use by a wide community of bioinformatics service providers. The standard,
client software, and supporting code libraries are all freely available at http://www.biomoby.org/.

Keywords: semantic web; web services; interoperability; data integration; biomoby; schema

INTRODUCTION
Discovery of, and easy access to, biological data and

bioinformatics software is the critical bottleneck for

systems biologists, resulting in missed scientific

opportunities and lost productivity due to expensive

and unsustainable efforts in data warehousing, or the

design of ad hoc and transient Web-based analytical

workflows. Workflow-design itself is neither trivial

nor reliable for most systems biology researchers since,

often, a high level of prior-knowledge and under-

standing of available Web-based resources is required

from the biologist. Indeed, in his article ‘Creating

a Bioinformatics Nation’ [1], Lincoln Stein suggests

that it is the lack of interoperable standards that

has hindered the integration of scientific datasets

worldwide. Conversely, in her keynote address to

the EGEE ‘06 conference, Carole Goble purposely

misquoted Michael Ashburner [2] when she stated

‘Scientists would rather share their toothbrush than

their data!’ These statements highlight the two

somewhat opposing requirements that must be

considered when designing interoperable systems for

the bioinformatics domain. On one hand, the

bioinformatics service provider community is com-

posed of individuals with a wide variety of different

expertise, thus any interoperability proposal must be

limited in complexity and must focus on comprehen-

sibility to non-computer-scientists; on the other

hand, the functionality gained by participating in

the interoperability framework must be sufficiently

compelling for individual providers to be willing to

openly share data that is, in some cases, personally

precious. These considerations were key in establish-

ing the technologies and practices defined by

*Full authorship: Mark D Wilkinson, Martin Senger, Edward Kawas, Richard Bruskiewich, Jerome Gouzy, Celine Noirot, Philippe

Bardou, Ambrose Ng, Dirk Haase, Enrique de Andres Saiz, Dennis Wang, Frank Gibbons, Paul M.K. Gordon, Christoph W. Sensen,

Jose Manuel Rodriguez Carrasco, José M. Fernández, Lixin Shen, Matthew Links, Michael Ng, Nina Opushneva, Pieter B.T.

Neerincx, Jack A.M. Leunissen, Rebecca Ernst, Simon Twigger, Bjorn Usadel, Benjamin Good, Yan Wong, Lincoln Stein, William

Crosby, Johan Karlsson, Romina Royo, Iván Párraga, Sergio Ramı́rez, Josep Lluis Gelpi, Oswaldo Trelles, David G. Pisano, Natalia

Jimenez, Arnaud Kerhornou, Roman Rosset, Leire Zamacola, Joaquin Tarraga, Jaime Huerta-Cepas, Jose Marı́a Carazo, Joaquin

Dopazo, Roderic Guigo, Arcadi Navarro, Modesto Orozco, Alfonso Valencia, M. Gonzalo Claros, Antonio J. Pérez, Jose Aldana,

M. Mar Rojano, Raul Fernandez-Santa Cruz, Ismael Navas, Gary Schiltz, Andrew Farmer, Damian Gessler, Heiko Schoof, Andreas

Groscurth.

Corresponding author. Dr Mark Wilkinson, Room 166, 1081 Burrard St. The Heart and Lung Research Institute at St. Paul’s

Hospital, Vancouver, BC, Canada, V6G 1Y3. Tel: +1 604 682 2344 �62129; Fax: +1 604 806 9274; E-mail: markw@illuminae.com

BioMoby is a project within the larger Open Bioinformatics Foundation. The BioMoby Consortium consists of more than 40

participants spanning 13 nations, and participation is free and open to all.

BRIEFINGS IN BIOINFORMATICS. VOL 9. NO 3. 220^231 doi:10.1093/bib/bbn003
Advance Access publication January 31, 2008

� The Author 2008. Published by Oxford University Press. For Permissions, please email: journals.permissions@oxfordjournals.org

http://www.biomoby.org/

the BioMoby project [3–5]. Now, with the release

of the 1.0 version of the BioMoby Application

Programming Interface (API) and supporting code-

bases and end-user applications, it is useful to examine

the successes and failures of the BioMoby project as

it explored this question. We intend this manuscript

and the Supplementary Material provided with it,

to be a comprehensive and canonical description of

the defining features of BioMoby, and its behaviors.

An example of the utility of BioMoby
for the biologist
The semi-fictitious story below describes one

example of the type of day-to-day data exploration

activities undertaken by biologists. The difficulty

they experience in pursuing these activities, due to

the large amounts of data and the disparity between

resource interfaces, provided the motivation for

BioMoby’s invention and development. The work-

flow described below does, in fact, exist and is

currently being prepared for publication elsewhere.

Dr. Davies is an Antirrhinum (Snapdragon) researcher.
He is studying a new class of mutations but has so far been
unable to clone any of the loci. Moreover, he is constantly
frustrated by the lack of a complete Antirrhinum genome
sequence, though there are a large number of mapped muta-
tions and ESTs.The taxonomically closest sequenced model
organism is Arabidopsis, however there are no explicit
links between the Arabidopsis data in The Arabidopsis
Information Resource (TAIR), and the Snapdragon data
inDragonDB. In an attempt to bootstrap his cloning efforts,
he decides to look-up which loci from Arabidopsis have
mutant phenotypes that share characteristics with his loci of
interest; whether or not these have been mapped; or if there
may be homologous ESTs from Snapdragon available for
him to attempt a co-segregation analysis. He knows that
bothTAIR (in the USA) and DragonDB (in Germany)
have provided many of their resources as BioMoby services,
so he begins. He first asks Moby Central if DragonDB
provides keyword phenotypic lookup, which it does.With a
single click, he has gathered the list of loci matching his
phenotypic criteria. He then asks the same question from
TAIR, and with a single click has gathered all matching
Arabidopsis loci. BioMoby alerts him thatTAIR can pro-
vide the sequences for these loci if he wishes, and in a single
click he has retrieved all of these sequences. BioMoby then
alerts him that DragonDB is capable of executing a
BLASTanalysis on those sequences, and with a single click
he sends all sequences into theBLASTservice.Thereturning
Blast reports contain a myriad of ‘‘hits’’, and he becomes con-
cerned that he may need to do a large number of look-ups;
however BioMoby alerts him that DragonDB provides a

Blast parsing service thatwill extract the ‘‘hits’’, and he selects
this option. From the resulting list of ‘‘hits’’, he asks
BioMoby to retrieve the map locations for these sequences.
In addition, he queries if any services are capable of trans-
forming those sequence IDs into their associated locus IDs,
and such a service is automatically discovered and executed
for him.With this list of Antirrhinum Locus IDs resulting
from the Blast search, he then requests that it be cross-
referenced with the list of Antirrhinum locus IDs resulting
from the keyword search. BioMoby suggests a set-
intersection service available from the iCAPTURE Centre
in Canada, and with a single click he has now gathered the
list of loci that share both phenotypic and sequence similar-
ity. BioMoby suggests that he might also wish to retrieve
photographs of the associated mutants, and with a single
click he has retrieved these images. From this complex but
filtered set of data, gathered within just a few minutes, he
begins a biological assessment of whether any of his genes of
interest have been mapped and/or sequenced.

Workflows such as the one described above could be

constructed, utilized, visualized and executed using a

wide range of BioMoby-enabled end-user applica-

tions, and it is beyond the scope of this manuscript to

describe these interfaces in any detail; however a

series of screenshots have been made available in the

Supplementary Material Section 5 where a similar

workflow is constructed and executed using the

Gbrowse-Moby end-user interface. These screen-

shots demonstrate one way in which BioMoby could

be used to suggest next-steps in an analytical

pathway, and how it facilitates the automatic

execution and visualization of those analytical or

exploratory results.

Web services overview
The Web Services model is a framework for

communication between computer applications

over the World Wide Web [6]. Traditionally, they

expose Web-based application interfaces in the form

of a Web Services Description Language (WSDL)

document [7] describing the input(s), output(s),

function and location of a Web Service. The

limitation of traditional Web Services lies primarily

in that, while the WSDL interface definition is

machine-readable, the meaning of the input and

output, and the intent of the operations that are being
executed to derive that output—the ‘semantics’ of

the service—are opaque to the machine accessing it.

The barriers posed by these limitations are further

evidenced by a recent candidate specification for

the semantic markup of WSDL documents [8].

Currently, therefore, the creation of meaningful

Interoperability with Moby 1.0 221

workflows requires manual intervention to first select

appropriate services and then to accurately map the

output of one service into the input of the next;

automated service composition is an error-prone

computational task [9–14]. At least part of the

limitation results from traditional Web Services

consuming and producing their data in the form of

Extensible Markup Language (XML) documents

[15]. Until recently [16], there have been no

attempts to standardize the schemas of these XML

documents in the bioinformatics domain, and thus

software had to be specifically developed to access

each Web Service, by individuals familiar with the

Service interfaces. This software was generally task-

specific, and needed to be re-written for each new

analysis.

To overcome this limitation, the BioMoby

framework defines an extended set of formats and

conventions that allows the creation of ‘Semantic

Web Services’. Semantic Web Services have inter-

faces defined and/or annotated with terms grounded

in ontologies. As such, it is possible to create software

capable of utilizing the knowledge in these ontol-

ogies to support fully- or semi-automatic service

discovery and workflow composition [17]. Of

the three Semantic Web Services projects in wide-

spread use—myGrid, caBIO and BioMoby

(reviewed, compared and contrasted in [18, 19]),

BioMoby is unique in its utilization of ontologies to

define not only the biological intent and/or

semantics of the data that are passed into and

out of a service, but also to define the syntax of

that data. In much the same way that the HTML

standard syntax made it possible to develop generic

Web browsers, standards for Web Service represen-

tation (data-types, data syntaxes and interface

functional annotations) such as those developed

in the BioMoby initiative are enabling the dev-

elopment of generic Semantic Web Service

browsers [20]. Semantically-enhanced Web

Services are more interoperable, easier to pipeline

together, more semantically transparent, and

will empower the citizens of the bioinformatics

nation, allowing them to share their data more

intuitively [21].

RESULTS
Stylistic conventions
Here, we represent ontological class names using

Capitalized Bold, ontological class properties using

fixed-width font and ontological class rela-

tionships using bold italics.

Framework overview
This article describes the stable 1.0 version of the

BioMoby Semantic Web Service specification; the

culmination of 6 years of framework evolution and

revision based on early adopter’s feedback. The

BioMoby interoperability framework extends and

modifies the core Web Services specification by

further defining:

� An end-user-extensible, ontology-based data

representation syntax (Object Ontology).

� An end-user-extensible ontology of data domains

(Namespace Ontology).

� An end-user-extensible ontology of Web Service

operational descriptions (Service Ontology).

� A predictable Web Service message structure,

including explicitly defined locations and formats

for provision of metadata and cross-referencing

information, as well as structured and machine-

interpretable error messages.

� A Web Service registry in which all service

interface definitions are represented in terms of

the above ontologies, and which is able to utilize

these ontologies to aid discovery of task-

appropriate services.

These features work together to enable the

development of generic software systems that can

interact with myriad, diverse bioinformatics data and

analytical tool providers. The biologist using that

software requires little or no knowledge of the

existence of a tool, of the kinds of resources it

provides, or of the specific user interface through

which it functions [20, 21]. It is worth noting that,

although the three ontologies ‘define’ various

bioinformatics concepts, that they are world-editable

and constantly evolving. As such, they ‘define’

concepts based on the community’s consensus at

any given time, but are constantly adapting to new

ideas, new resources and new data-types as they arise

in the community.

The namespace ontologyç‘What data
are we talking about?’
There is little consensus in the bioinformatics

community around how to identify records. Often,

records are simply numbered, and this requires

contextualization to imbue any meaning. To assist

222 The BioMoby Consortium

with this contextualization, these numeric identifiers

are sometimes prefixed, for example GO:0003487 for

a Gene Ontology (GO) term, or gi|163483 for a

GenBank record; however this is not done consis-

tently or reliably by all resources, nor is the separator

between the prefix and the identifier consistent

between different resource providers. For the biolo-

gist, this inconsistency can make it difficult to locate

records in the wide variety of interfaces available to

them, and can lead to problems with integrating data

from multiple sources that may use different conven-

tions for representing the same record identifier. The

BioMoby Namespace Ontology is an attempt to

resolve this inconsistency such that data records are

unambiguously and predictably identified in the

datasets returned to the biologist.

The Namespace Ontology (currently a simple,

flat controlled vocabulary) defines all valid data

‘namespaces’—the underlying source of a given data

record—in the BioMoby system. Examples include

KEGG_ID for KEGG records or NCBI_gi for

GenBank records. There are over 300 different

BioMoby Namespaces ranging from the most

prominent public resources such as PubMed, to

lesser known resources such as DragonDB. The

Namespace Ontology is, in fact, an extension of the

Cross-reference abbreviations list [22] from the Gene

Ontology consortium [23]. New resources that wish

to participate in the BioMoby framework simply

register the namespaces they consume and/or

generate in the Namespace Ontology, and any

BioMoby service provider can then interpret the

underlying source of data passed in that namespace.

The combination of namespace and identifier are

unique to each piece of data. Since not all data is

identified—for example, some data exists only

transiently during the process of an analysis—use of

a namespace is not always required in the BioMoby

framework.

The object ontologyç‘How is that
data represented?’
For the biologist, data is often presented to them in

ad hoc formats, or in formats that are governed by a

visual layout such as a web-page. This diversity of

data formats often forces biologists to undertake

copy/paste operations to extract data from their

query results into their local database or spreadsheet.

The purpose of the Object Ontology from the

perspective of the biologist is to create a consistent,

machine-readable data syntax such that the

transformation of data from one common format

to another, and the integration of that data, can be

automated.

The Object Ontology’s structure was designed to

resemble that of the GO, due to the elegant

simplicity of GO, and the familiarity and acceptance

of it within the target community. Like GO, the

Object Ontology is an asserted subclass (‘is-a’)
hierarchy, and includes two additional partite

relationships (‘has-a’ and ‘has’) representing parts in

cardinality ‘one’, or parts in cardinality ‘zero or

more’, respectively. The root class of the ontology—

Object—possesses three properties—namespace,
id and articleName—and is designed to

represent record identifiers (‘ID numbers’) from

well-known resources (e.g. GenBank, EMBL, GO,

etc) in a well-defined and predictable manner. The

value of the namespace property is a member of

the Namespace Ontology, the value of the id
property is the record-identifier within that resource,

and the value of the articleName property

indicates (as a human-readable phrase) the semantic

nature of the relationship between a given class and

a class that is in a has or has-a relationship to it.

Figure 1A shows a small portion of the Sequence-

branch of the BioMoby Object Ontology, revealing

how these various components are used to construct

new and more complex classes. Figure 1B shows the

XML representation of specific cases (‘instances’) of

these ontological classes. A more complete descrip-

tion of inheritance between classes in the Object

Ontology, and derivation of the XML representation

of instances of these ontological classes, is presented

in Section 2 of the Supplementary Material.

Perhaps the most important aspect of the Object

Ontology is that it is end-user extensible. Any

BioMoby service provider can create a new Object

class by simply registering its definition in the Object

Ontology in code via the Moby Central API or

through a freely available graphical ‘BioMoby

Dashboard’ application [24]. The new Object’s def-

inition includes a human-readable explanation of the

purpose of the data-type, and a technical description

of how this data-type relates to existing data-types in

the ontology. Thus, machines receiving this novel

data-type as part of a Web Service transaction need

only look-up the data-type in the Object Ontology

to determine its syntax. Moreover, since all sub-

components of all data-types are themselves

BioMoby Objects, generic re-usable software is

capable of extracting and/or assembling the data

Interoperability with Moby 1.0 223

A

Object

Object

Virtual
Sequence

Integer
ISA

ISA

HASA

Object

String

Virtual
Sequence

Integer

ISA

ISA

ISA

HASA

Generic
Sequence

ISA

HASA

Object

String

Virtual
Sequence

Integer

ISA

ISA

ISA

HASA

Generic
Sequence

ISA

HASA

DNA
Sequence

ISA

(a)

(b)

(c)

(d)

B

<Object namespace=‘NCBI_gi’id=‘111076’ articleName=‘’/>

<VirtualSequence namespace=‘NCBI_gi’id=‘111076’ articleName=‘’>
 <Integer namespace=‘’ id=‘’ articleName=“Length”>38</Integer>
</ VirtualSequence>

<GenericSequence namespace=‘NCBI_gi’id=‘111076’>
<Integer namespace=‘’ id=‘’ articleName=“Length”>38</Integer>
<String namespace=‘’ id=‘’ articleName=“SequenceString”><![CDATA[
 ATGATGATAGATAGAGGGCCCGGCGCGCGCGCGCGC
]]></String>

<DNASequence namespace=‘NCBI_gi’id=‘111076’>
<Integer namespace=‘’ id=‘’ articleName=“length”>38</Integer>
<String namespace=‘’ id=‘’articleName=“SequenceString”><![CDATA[
 ATGATGATAGATAGAGGGCCCGGCGCGCGCGCGCGC
]]></String>

(a)

(b)

(c)

(d)

</ GenericSequence>

</ DNASequence>

Figure1: Sequential construction of complexobjects in the BioMobyObjectsOntology, and the correspondingXML
serialization of their instances. (A) The creation of BioMobyObject Classes starting from the root object ‘Object’ (a),
to aVirtualSequence (b) which inherits fromObject and has-a Integer (Length), to a GenericSequence (c) which inher-
its from VirtualSequence, and adds a String (SequenceString) through the has-a relationship, and finally a
DNASequence (d) which simply inherits from and thus further specializes the GenericSequence Object semantically.
(B) The serialization of the objects (a^ d) from above.The outermost XML tag is the ontological class name.Child tags
are addedby thehas or has-a relationships (b), or are inherited fromparentclasses (c). Specialization of anexisting class
(d) simply changes the outermost tag name.

224 The BioMoby Consortium

components of any possible BioMoby object, includ-

ing objects that did not exist when that software was

created. The ability to create generic object parsers

and assemblers significantly reduces the software’s

anticipated legacy problems and update/patch-cycles.

The Object Ontology currently consists of over

300 different data syntax definitions, including many

of the common legacy flat-file formats, as well as

novel objects that have been constructed de novo by

participating service providers.

The service ontologyç‘What types of
things can I dowith this data?’
Biologists are faced with thousands of analytical tools

both in their local applications as well as on the Web.

Many of these tools are redundant and/or do very

similar tasks, and it is the responsibility of the

biologist to know (i) that a tool exists; (ii) what it is

called in order to locate it and (iii) what kinds of

operations that tool is capable of performing. The

Service Ontology is an attempt to organize bioinfor-

matics tools into a categorization system, such that

tools of similar function are grouped together, and

can be discovered by the biologist using a consistent

naming system.

The Service Ontology is a simple, asserted subclass

(is-a) hierarchy that defines a set of data manipulation

and/or bioinformatics analysis types. These include

classes such as Retrieval for retrieval of records from
a database, Parsing for the extraction of information

from various flat-file formats, or Conversion for

data-type syntax changes. Sub-classing is used to

define more precise types of service operation. For

example, an instance of a BLAST Service may have

service type Pairwise_Sequence_Comparison,
which is a sub-class of Analysis. The BioMoby

Service Ontology serves a purpose similar to the

Bioinformatics Task Ontology from the myGrid

project [25].

BioMobyWeb Servicesç‘What
resources are out there?’
When interacting with analytical tools, biologists are

often required to learn a new interface for each tool

they wish to use, and the lack of standardization

results in different layouts even for functionally-

identical tools. Moreover, most Web-based tools

are not amenable to bulk-uploads or automation,

since the interfaces are designed specifically for

human end-users. BioMoby Web Services attempt

to standardize these interfaces through defining a

machine-readable messaging structure that can be

utilized by all analytical tools, and through utilizing

the Object Ontology to define the syntax of the

input and output data. Thus, the interaction between

the biologist and any analytical tool exposed as a

BioMoby service can be accomplished through a

single, common interface.

BioMoby Services, for example a database

lookup, a ClustalW alignment tool, or a BLAST

report parser, are globally distributed and perform a

single operation each. Input and output messages

follow a well-defined message format (described in

Section 3 of the SupplementaryMaterial). Services

consume one or more instances of an Object within

this message; they execute a single operation on that

Object as described by an appropriate Service

Ontology term; and finally, the output is returned

to the caller as one or more instances of another

Object within a well-defined output message

structure. These details are registered in the

BioMoby Central Service registry, along with the

service endpoint (URLþ service name) and a textual

description of the service function for the end-user.

There is library support in Java, Perl and to a more

limited extent Python, to support the extraction of

input data from BioMoby messages, and to construct

appropriate output messages. As such, the service

provider’s primary concern is the business logic of

their Service, with none to only modest additional

code required. To be compliant with existing

standards, service providers can report a wide variety

of error conditions in a standardized way using the

Life Sciences Analysis Engine (LSAE [26]) frame-

work. Software designed to minimize service

provider effort in setting up new Services is available

for both Java (MobyServlet [27], MoSeS [28]) and

Perl (MoSeS).

Unlike other successful Web Service interoper-

ability systems [29], BioMoby services are standalone,

and are not overtly designed to be inter-dependent;

there is no over-arching BioMoby standard defining

what types of Services can exist, what functions they

must provide, or how they will interoperate.

Moreover, Services are highly modular, each

executing a single straightforward function (e.g.

record retrieval, or file parsing), such that a service

provider approaching BioMoby for the first time can

have a simple compliant Service running within

minutes. The service provider can therefore gradu-

ally migrate their host resources, piecemeal, into the

BioMoby framework over time or re-present their

Interoperability with Moby 1.0 225

existing resources in parallel. Complex operations in

BioMoby are achieved by chaining together multiple

Services, or running multiple Services in parallel to

extract the individual pieces of data required, and this

is well-supported by existing client applications such

as Taverna [17].

The BioMoby central registryç‘How
do I find the resource provider I want?’
‘Moby Central’ is a registry for BioMoby-compliant

Web Services. For the biologist, it acts as a

‘search engine’, helping them discover all resource

providers capable of executing the operation they

wish to undertake. Moreover, the search can be

made ‘context sensitive’, such that only those

providers who can operate on the data that the

biologist has in-hand are discovered.

Moby Central provides a Simple Object Access

Protocol (SOAP [30]) based API that allows addition

of new Services to the registry, removal of Services

from the registry and searching over registered

Services in a variety of ways. Importantly, the

registry is aware of all three BioMoby ontologies,

and can thus optionally utilize the semantics

embedded in these ontologies to enhance search

success. For example, searching for Services that

generate b64_encoded_GIF would, if semantic

searching were enabled, also discover BioMoby

Services that generated the more complex

annotated_b64_encoded_GIF through traversal of

the Object Ontology towards its leaf nodes.

Similarly, and perhaps more importantly, searching

for Services that consume specific, sometimes

very complex data-types, for example an

annotated_FASTA object, would also discover

Services that consumed the more simplistic FASTA
objects, or even base Object (i.e. a simple ID

number) through traversal of the Object Ontology

towards its root. Complex or provider-specific data-

types therefore do not (necessarily) thwart automated

discovery of Services that can consume that data,

since the ontologies allows the registry (or the client)

to infer the semantics of that data-type and thereby

infer which Services can operate on it. Moreover,

the ontologically-governed XML schema that is used

to represent data in BioMoby allows service

discovery based on any sub-component of a data-

type. For example, a MultipleAlignment contains
several instances of GenericSequence, each

representing one of the aligned sequences. A

generic client application can reliably decompose

the MultipleAlignment object and use the

GenericSequence objects in queries to Moby

Central to discover Services that operate on them.

Summary
Through adoption of these extensions to traditional

Web Services, it is possible to design software

systems that enable bench scientists and other non-

programmers to automate the discovery and con-

nection of independent Web Services into large

analytical pipelines without any task-specific tooling,

nor any deep understanding of BioMoby, Web

Services or any of the individual BioMoby Web

Service interfaces. Generic workflow environments

such as Taverna [17, 31], MOWServ [32], Remora

[33], Gbrowse-Moby [20], Bluejay [34] and

Seahawk [35] can (and do) suggest, and automatically

connect, appropriate Web-based resources into

complex pipelines without requiring any technical

knowledge by the end-user. Rather, they rely on the

expert knowledge of the biologist to select appro-

priate Services from the limited number of sugges-

tions provided through queries to the BioMoby

registry based on their stated requirements.

Currently, more than 40 data and/or analytical

service providers worldwide are using the BioMoby

interoperability framework to provide over 1400

interoperable Services, and this number continues to

grow almost daily.

DISCUSSION
BioMoby has made several key decisions, which

distinguish it from other prominent Web Service

frameworks in the bioinformatics domain, and result

in the interoperable behaviors observed when using

it in practice. Some of these decisions are part of the

BioMoby specification, while others have simply

arisen as a community-consensus on best practices for

Web Service provision.

Closed world
The first distinguishing feature of BioMoby is that it

operates in an extensible, but closed-world of data

semantics. The XML Schema within a traditional

WSDL document defines valid XML tags for any

given service, but these are not (predictably) bound

to any standard external machine-readable interpreta-
tion. Thus the XML tags, and the content of these

tags, from one Web Service are not reliably

compatible with the XML tags or content from

226 The BioMoby Consortium

another arbitrarily chosen Web Service. As a result,

automated pipelining of non-coordinated services is

extremely difficult using traditional Web Services.

In contrast, the Object, Namespace and Service

Ontologies provide a common binding for all

services and client software in the BioMoby frame-

work such that a given XML tag appearing in any

BioMoby message has one and only one interpreta-

tion, and this interpretation is available for automated

look-up through shared ontologies. In this way,

BioMoby finesses the extremely complex problem of

open-world Web Service composition by defining

the allowable world of data syntax and semantics via

publicly extensible ontologies.

Nevertheless, it can equally be argued that

operating in a closed world is artificial, unsustainable

and overly-limiting. In constraining itself to its three

boutique ontologies, BioMoby does not natively

take advantage of the wealth of knowledge captured

in third-party ontologies such as those provided by

the Open Biological Ontologies (OBO) [36] con-

sortium. Indeed, a partner project that has branched-

off from the original BioMoby project is the Simple

Semantic Web Architecture and Protocol (SSWAP

[37]). SSWAP proposes to use an open world of data

semantics, relying on third-party ontologies to define

the nature and syntax of the inputs and outputs

of Web resources, and defining only a minimal

messaging structure within the project itself. SSWAP

has shown exciting early success in achieving

interoperability between a small number of partici-

pating providers. It remains to be seen, however, if

the complexity of reasoning over an open-world

system, and/or the potential dilution of compatibility

between resources due to the increasing number

of ontological possibilities, will interfere with the

desired goal of straight-forward, maximal interoper-

ability between bioinformatics Web resources.

Modularity
The second distinguishing feature is that BioMoby

services tend to be extremely lightweight, highly

modular and execute very fine-grained operations on

incoming data. This was not a behavior mandated

within the project specification; however it has

become a convention among the majority of

BioMoby service providers. This may be because it

is more straight-forward and/or is more advanta-

geous to do so (i.e. promoting code re-use at the

level of the Service, rather than duplicating func-

tionally similar code fragments between sets of

similar but more complex Services), but it is also at

least in part due to the constraints arising from the

simplistic Moby ontologies.

Data-types defined in the Object Ontology

tend to be quite straightforward, seldom merging

more than two or three related data elements into

any given Object. Contrast this with other com-

monly used Web Service systems such as the

NCBI e-Utilities [38]. Input of a gene identifier,

for example [39], to the e-Fetch Web Service returns

an XML document containing a single record of

250 kb that includes 120 distinct XML tags ranging

from organism and taxonomy information to

detailed gene structure, cross-references and even

PubMed identifiers and GO terms. While this is

efficient and likely useful for software applications

that have been designed specifically to utilize e-fetch

data, the nonspecific ‘give me everything’ operation

that happens within e-Fetch Web Services is difficult

to semantically describe, and therefore hard to

integrate using any ‘generic’ Web Service software.

The extreme modularity of BioMoby services

reduces message size in many cases, reduces compu-

tational load, simplifies service description, enables

the creation of generic parsers and yet allows retrieval

of arbitrarily complex data-sets through a ‘Lego

block’ approach of combining operations of high

granularity.

Modularity of services has another more impor-

tant consequence in simplifying service discovery.

An operation performed by a given BioMoby service

must be unambiguously described by a single term
from the Service Ontology (e.g. Parsing). This

severe restriction forces service providers to

make their services highly granular. At this level of

granularity, the semantics of a service become nearly

transparent, with the intent of making automated

discovery of appropriate or desired services easier and

more accurate. In practice, however, the Service

Ontology is hopelessly insufficient to adequately

describe many even straightforward services built

within the BioMoby framework. A Web Service can

seldom be described in a single word or phrase, and

thus many service providers put the full semantics of

their service functionality into the human readable

service name and description. This creates a barrier to

fully-automated service pipeline composition; never-

theless, despite being the most obvious weaknesses of

the BioMoby system, users (bioinformaticians and

biologists) seem comfortable choosing an analytical

strategy from the limited set of sensible possibilities

Interoperability with Moby 1.0 227

presented to them through more general registry

queries, rather than having the precise choice made

for them by the system itself.

Extensibility
The fact that the closed-world of BioMoby

ontologies is end-user extensible was, we believe,

critical to its adoption by a community that embraces

open-world behaviors. While BioMoby encourages

consensus on data models, it does not dictate them;

end-users are allowed to construct, register and use

alternative data models as they see fit (though they

limit their interoperability with other resources by

doing so).

Giving end-users the ability to define their own

data-types, service-types, and namespaces was con-

sidered a risky approach in the early days of the

project, particularly since ontology-development has

historically been undertaken by a curation team of

domain experts [40]. However, in the past 5 years,

the Object ontology has only required significant

curation twice, and one of these was to accom-

modate a change in the core BioMoby API. No

‘organized’ curation has been done on either the

Namespace or Service ontologies. As such, the

BioMoby ontologies, while imperfect, have required

no centralized investment of time or money, and are

largely self-curating through an open and public

API. The open model takes advantage of the ‘passive

altruism’ of a collaborative community of providers

acting on their shared desire to enhance interoper-

ability for their own individual purposes.

BioMoby versus peer semantic and
schema technologies
The development of BioMoby was influenced

significantly by the growth in popularity of Web

Services, WSDL and XML Schema in 2001/2002,

but developed independently of, and was largely

uninfluenced by, the emergent Semantic Web

activity taking place within the World Wide Web

Consortium (W3C) between 2001 and 2004. Thus, it

is interesting to compare the semantic aspects of

various peer technologies, and examine where the

benefits and/or limitations of each approach might lie.

BioMoby versusW3CXMLSchema
The W3C XML Schema (XSD) specification

describes the structure of an XML document, but

not its intent or its semantics. In this sense, as

described in Table 1, XSD are class-like, but are not

grounded in a semantic definition of what that a class

‘means’, and thus are semantically opaque to software

applications. Other limitations of XSD are that,

while XSD are modular (in that it is possible to refer

to an external or third-party XSD fragment from

within a local Schema document) XSD are not

natively extensible; inheritance is not part of the

XSD specification, and one must use non-standard

extensions [41] to describe the semantic relationship

between embedded schema fragments. Projects such

as HOBIT [16] are attempting to add more semantics

into XSD by providing a universal grounding for a

curated set of XSD such that both the intent and the

syntax are shared by all consumers and providers.

Unfortunately, this is occurring through manual

curation, and is limited only to the ‘outer-most’

element of the XML document; embedded XML

tags, while representing real-world identifiable data-

types, are not included in this semantic annotation,

and thus cannot be utilized in a generic way to

construct novel inputs to downstream Web Services,

as can be achieved by ‘decomposing’ BioMoby

Objects. BioMoby achieves schema specification

through its Object Ontology; however, the sub-

classes and embedded classes within these schema are

Table 1: Comparison of the features of the BioMoby Object Ontology versus that of an OWL ontology and their
respective instances

Feature OWL/RDF BioMoby objects W3CXML schema

Declared classes Yes Yes Sort of
Classes have class properties Yes Yes Sort of
Classes have literal properties Yes Yes Sort of
Extensible class definitions Yes Yes Sort of
Heritable class definitions Yes Yes No
Reasoning over instances based on asserted ontological subclasses Yes Yes No
Reasoning over instances based on instance properties Yes No No

A comparisonwith XML Schema is also included to show the gains achievedbymoving towards ontologically-based data structures.

228 The BioMoby Consortium

grounded in the same Ontology and the semantic

relationships between embedded classes are indicated

by the articleName property. Thus many of the

limitations, in particular the lack of heritability and

the semantic opacity of XML Schema-based data

definitions, are overcome within the BioMoby data

typing framework.

BioMoby versus OWL/RDF
In early 2004, the World Wide Web Consortium

(W3C) formally announced the two core Semantic

Web technologies: Web Ontology Language (OWL

[42]) and Resource Description Framework (RDF

[43]). OWL is an abstract language for defining

classes and their properties. Many OWL ontolo-

gies are ‘decidable’, meaning (simplistically) that a

Description Logic (DL) reasoner (FaCTþþ [44],

RACER [45], Pellet [46]) can computationally infer

both the internal consistency of the ontology as well

as computationally classify instance data to be

members of a particular OWL class(es). RDF is an

abstract language for describing resources as subject-

predicate-object graphs. Resources described in

RDF can be grounded as instances of an OWL

class definition either by direct assertion or by

computationally inferred DL-based classification.

OWL ontologies can be represented in RDF, and

RDF has a defined serialization into XML (called

RDF-XML), which are among the most common

representation formats for both OWL and RDF on

the Semantic Web.

Although the early releases of BioMoby preceded

the W3C’s formal announcement of OWL/RDF by

several years, BioMoby nevertheless exhibits many of

the behaviors that are expected from the emergent

Semantic Web, such as automated discovery of

appropriate resources, interoperability between

them, and the ability to automatically compose and

decompose data types in novel and meaningful

combinations. In fact, the BioMoby framework

resembles the OWL/RDF duo of Semantic Web

technologies in several key respects, and these are

detailed in Table 1.

The ‘semantics’ of ontologically-based systems

arise in three ways. The first is through the human-

readable definition of the class, which can be used as

grounding for all software that utilizes that ontology.

In this aspect, OWL, BioMoby, and many of the

other ontologies in the bioinformatics domain

(e.g. most of the OBO ontologies) are identical

in that all three allow for human-readable class

definitions. The second way of adding semantic

meaning into an ontology is through asserting

subclass (is-a) relationships. Again, OWL,

BioMoby and most other bioinformatics ontologies

share this level of complexity. The final level of

semantics comes from the explicit elaboration of the

properties that define a given class. While many of

the most commonly used bioinformatics ontologies

do not take this final step of semantics, BioMoby

does; however to maintain simplicity and robustness

within the Web Service use-case, property defini-

tions in BioMoby are managed differently than those

in OWL/RDF, which leads to both positive

outcomes as well as limitations. Though a compre-

hensive discussion of this topic is provided in

Section 4 of the Supplementary Material, it can

be summarized in the observation that BioMoby

achieves its interoperability largely through agree-

ment between humans, rather than through

machine-interpretation. In BioMoby, individuals

(people) agree on (i) the meaning/intent of a partic-

ular class/concept, and (ii) the syntax by which that

shared concept will be represented. Therein the

system achieves its semantic behaviors. There is little,

if any, computational reasoning over the semantics

of BioMoby messages, and it seems that for an

important subset of existing bioinformatics problems,

machine interpretation is simply not required. So

long as all service providers output a FASTA file in a

FASTA Object, another service provider can safely

interpret that an incoming FASTA Object contains

a FASTA file, and ensure that their software parses it

as such. In essence, the semantics of BioMoby resides

in the brains of the service providers themselves.

BioMoby thus behaves much like a human language,

where the spelling of words and structure of a

sentence is sufficient to communicate between two

individuals since the meaning of those words and

structures is commonly held between them.

CONCLUSIONS
BioMoby has been running with open, public

participation for participation for more than 5

years, and its continued adoption by new bioinfor-

matics resources worldwide is testament to its

simplicity and successful use by third-party providers.

We believe the experiences of the BioMoby

development community offer significant insight

into successful approaches to Web Services inter-

operability platforms and best-practices in service

provision on the emergent Semantic Web. As Web

Interoperability with Moby 1.0 229

Services and Semantic Web Services increasingly

become the architecture for bioinformatics, we

believe that BioMoby and BioMoby-like frame-

works will have a significant role to play in

this future.

MATERIALSANDMETHODS
The BioMoby ontologies are available as RDF/

OWL documents and/or can be queried through the

BioMoby Central API. The Moby Central API is

implemented as a Perl SOAP service, and the

ontologies and service information is stored and

fetched from a MySQL database. Support libraries

for clients and service providers are available in Perl,

Java, and to a limited extent in Python. All code is

available under the Perl Artistic License, via the

BioMoby project homepage.

SUPPLEMENTARYMATERIAL
Supplementary Material is available at Briefings in
Bioinformatics Online.

Acknowledgements
The BioMoby project was established through an award from

Genome Prairie, and has continued with the support of Genome

Alberta and Genome Canada, a not-for-profit corporation

leading Canada’s national strategy on genomics. Significant

code development was undertaken in collaboration with the

myGrid project, and we would like to acknowledge the myGrid

team, in particular: the director of myGrid, Carole Goble; the

Taverna lead, Tom Oinn; Pinar Alper; Duncan Hull; Chris

Wroe; Robert Stevens and Phil Lord. The large community of

BioMoby service providers are thanked for their patience and

tolerance, especially during the transitional days when the API

was changing—hopefully you will never have to re-code your

services again! Funding was provided by Genome Prairie and

Genome Alberta ‘A Bioinformatics Platform for Genome

Canada’; Canadian Institutes for Health Research; The Natural

Sciences and Engineering Research Council of Canada; The

Heart and Stroke Foundation for BC and Yukon; The EPSRC

through the myGrid (GR/R67743/01, EP/C536444/1, EP/

D044324/1, GR/T17457/01) e-Science projects; The Spanish

National Institute for Bioinformatics (INB) through Fundación

Genoma España; The Generation Challenge Programme (GCP;

http://www.generationcp.org) of the Consultative Group for

International Agricultural Research.

References
1. Stein L. Creating a bionformatics nation. Nature 2002;417:

119–20.

2. Pearson, H. Biology’s Name Game. Nature 2001;411:631–2.
3. Wilkinson MD, Links M. BioMOBY: an open-source

biological web services proposal. Brief Bioinform 2002;3:
331–41.

4. Wilkinson MD, Gessler D, Farmer A, et al. The
BioMOBY project explores open-source, simple,
extensible protocols for enabling biological database
interoperability. Proc Virt Conf Genom and Bioinf 2003;3:
16–26.

5. Wilkinson M. BioMOBY: The MOBY-S platform for
interoperable data service provision. In: Richard P. Grant
(ed.). Computational Genomics. Wymondham: Horizon
Bioscience, 2004.

6. The World Wide Web Consortium. Web Services Activity.
http://www.w3.org/2002/ws (14 March 2007, date last
accesed).

7. The World Wide Web Consortium. WebServicesDescription
Language (WSDL) 1.1. http://www.w3.org/TR/wsdl
(14 March 2007, date last accessed).

8. The World Wide Web Consortium. SemanticAnnotations for
Web Services Description Language Working Group. http://
www.w3.org/2002/ws/sawsdl (14 March 2007, date last
accessed).

9. Narayanan S, McIlraith SA. Simulation, verification and
automated composition of web services. Proceedings of the11th
international conference onWorldWideWeb 2002; doi/10.1145/
511446.511457.

10. Wu D, Sirin E, Hendler J, et al. Automatic Web Services
Composition Using SHOP2. In: Proceedings of theWorldWide
Web Conference 2003. http://www2003.org/cdrom/papers/
poster/p226/p226-wu.html (14 March 2007, date last
accessed).

11. Korhonen J, Pajunen L, Puustjarvi J. Automatic composi-
tion of Web service workflows using a semantic agent. In:
Proceedings IEEE/WIC International Conference on Web
Intelligence 13^17 October 2003, pp. 566–9. doi/10.1109/
wi.2003.1241269.

12. Gekas J, Fasli M. Automatic Web Service Composition Using
Web Connectivity Analysis Techniques. W3C Workshop on
Frameworks for Semantics in Web Services 2005 Position Paper,
2005; http://www.w3.org/2005/04/FSWS/Submissions/
39/web_service_composition.pdf (14 March 2007, date
last accessed).

13. Carman MJ, Knoblock CA. Inducing Source Descriptions
for Automated Web Service Composition. 2005. http://www.
isi.edu/integration/papers/carman05-wswkshp.pdf
(14 March 2007, date last accessed).

Key Points
� BioMoby’s interoperability is achieved through a novel type of

XML schemawhich is derived from an ontology.
� The BioMoby ontologies were constructed through an open,

community-drivenprocess and are accessible for update through
an open API.

� Although it does not use the World Wide Web Consortium’s
Semantic Web technologies, BioMoby exhibits many behaviors
predicted for the Semantic Web.

� Tooling for BioMoby is now sufficiently rich that both providers
and consumers of BioMoby services arewell-supported.

230 The BioMoby Consortium

http://www.generationcp.org
http://www.w3.org/2002/ws
http://www.w3.org/TR/wsdl
http://
http://www2003.org/cdrom/papers/
http://www.w3.org/2005/04/FSWS/Submissions/
http://www

14. Thakkar S, Ambite L, Knoblock A. Composing, optimiz-
ing, and executing plans for bioinformatics web
services. VLDB J 2005;14:330–53. doi/10.1007/
s00778-005-0158-4.

15. The World Wide Web Consortium. Extensible Markup
Language. Available http://www.w3.org/XML (14 March
2007, date last accessed).

16. Seibel PN, Krüger J, Hartmeier S, et al. XML schemas for
common bioinformatic data types and their application in
workflow systems. BMC Bioinformatics 2006;7:490. doi/
10.1186/1471-2105-7-490.

17. Kawas E, Senger M, Wilkinson M. BioMoby extensions to
the Taverna workflow management and enactment soft-
ware. BMC Bioinformatics 2006;7:523. doi/10.1186/
1471-2105-7-523.

18. Lord P, Bechhofer S, Wilkinson MD, et al. Applying
semantic web services to bioinformatics: experiences gained,
lessons learnt. Lect Notes Comput Sci 2004;3298:350–64.

19. Good B, Wilkinson MD. The life sciences semantic web is
full of creeps! Brief Bioinform 2006;7:275–86.

20. Wilkinson MD. Gbrowse Moby: a web-based browser
for BioMOBY Services. SCFBM 2006;1:4. doi/10.1186/
1751-0473-1-4.

21. Wilkinson MD, Schoof H, Ernst R, et al. BioMOBY
successfully integrates distributed heterogeneous bioinfor-
matics Web Services. The PlaNet exemplar case. Plant
Physiol 2002;138:5–17. doi/10.1104/pp.104.059170.

22. The Gene Ontology Consortium. GO Database
Abbreviations. http://geneontology.org/cgi-bin/xrefs.cgi
(14 March 2007, date last accessed).

23. Ashburner M, Ball CA, Blake JA, et al. Gene ontology:
tool for the unification of biology. The Gene Ontology
Consortium. Nat Genet 2000;25:25–9. doi/10.1038/75556.

24. Senger M. The BioMoby Dashboard. Available at http://
biomoby.open-bio.org/CVS_CONTENT/moby-live/
Java/docs/Dashboard.html (14 March 2007, date last
accessed).

25. Stevens RD, Robinson AJ, Goble CA. myGrid: persona-
lised bioinformatics on the information grid. Bioinformatics
2003;19(Suppl 1):i302–4.

26. Object Management Group. Life Sciences Analysis Engine
Specification. http://www.omg.org/technology/documents/
formal/lsae.htm (14 March 2007, date last accessed).

27. Gordon PMK, Trinh Q, Sensen CW. Semantic web service
provision: a realistic framework for bioinformatics pro-
grammers. Bioinformatics 2007;23:1178–80.

28. Senger M, Kawas E. MoSeS ^ Code Generators. http://
biomoby.open-bio.org/CVS_CONTENT/moby-live/
Java/docs/Moses-generators.html (14 March 2007, date last
accessed).

29. Phillips J, Chilukuri R, Fragoso G, et al. The caCORE
software development kit: streamlining construction of
interoperable biomedical information services. BMC Med
InformDecisMak 2006;6:2. doi/10.1186/1472-6947-6-2.

30. The World Wide Web Consortium. SOAP1.2 Specification.
http://www.w3.org/TR/soap (14 March 2007, date last
accessed).

31. Hull D, Wolstencroft K, Stevens R, etal. Taverna: a tool for
building and running workflows of services. Nucleic Acids
Res 2006;34:W729–32. doi/10.1093/nar/gkl320.

32. Navas-Delgado I, Rojano-Munoz Mdel M, Ramirez S,
et al. Intelligent client for integrating bioinformatics services.
Bioinformatics 2006;22:106–11. doi/10.1093/bioinformatics/
bti740.

33. Carrere S, Gouzy J. REMORA: a pilot in the ocean of
BioMoby web-services. Bioinformatics 2006;22:900–1. doi/
10.1093/bioinformatics/btl001.

34. Turinsky AL, Ah-Seng AC, Gordon PM, et al.
Bioinformatics visualization and integration with open
standards: the Bluejay genomic browser. In Silico Biol
2005;5:187–98.

35. Gordon PMK, Sensen CW. Seahawk: moving beyond
HTML in web-based bioinformatics analysis. BMC
Bioinformatics 2007;8:208.

36. Open Biomedical Ontologies Consortium. http://obo.
sourceforge.net (14 March 2007, date last accessed).

37. Simple Semantic Web Architecture and Protocol. http://
sswap.info. (14 March 2007, date last accessed).

38. Wheeler DL, Barrett T, Benson DA, et al. Database
resources of the national center for biotechnology informa-
tion. Nucleic Acids Res 2006;34:D173–80. doi/10.1093/nar/
gkj158.

39. NCBI e-Utilities Function Call. http://eutils.ncbi.nlm.
nih.gov/entrez/eutils/efetch.fcgi?db¼gene&mode¼xml&
id¼640 (14 March 2007, date last accessed).

40. Good BM, Tranfield EM, Tan PC, etal. Fast, cheap and out
of control: a zero curation model for ontology develop-
ment. In: Proceedings of the Pacific Symposium on Biocomputing
2006;128–39.

41. Wang G, Liu M. Extending XL Schema with nonmono-
tonic inheritence. Lect Notes Comput Science 2003;2814:
402–7. doi/10.1007/b13245.

42. World Wide Web Consortium. Web Ontology Language
(OWL). Available http://www.w3.org/2004/OWL
(14 March 2007, date last accessed).

43. World Wide Web Consortium. Resource Description
Framework (RDF). http://www.w3.org/RDF (14 March
2007, date last accessed).

44. Tsarkov D, Horrocks I. FaCTþþ Description Logic
Reasoner: System Description. In: Proceedings of the
International Joint Conference on Automated Reasoning (IJCAR
2006). 2006.

45. Haarslev V, Moller R. Racer: a core inference engine for
the semantic web. In: 2nd InternationalWorkshop onEvaluation
of Ontology-basedTools (EON-2003), Sanibel Island, FL, 2003.

46. Sirin E, Parsia B, Grau BC, et al. Pellet: a practical OWL-DL
reasoner. 2006. http://www.mindswap.org/papers/Pellet
JWS.pdf (9 November 2007, date last accessed).

Interoperability with Moby 1.0 231

http://www.w3.org/XML
http://geneontology.org/cgi-bin/xrefs.cgi
http://
http://www.omg.org/technology/documents/
http://
http://www.w3.org/TR/soap
http://obo
http://
http://eutils.ncbi.nlm
http://www.w3.org/2004/OWL
http://www.w3.org/RDF
http://www.mindswap.org/papers/Pellet

