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Abstract

Motivation: Developing a robust and performant data analysis workflow that integrates all neces-

sary components whilst still being able to scale over multiple compute nodes is a challenging task.

We introduce a generic method based on the microservice architecture, where software tools are

encapsulated as Docker containers that can be connected into scientific workflows and executed

using the Kubernetes container orchestrator.
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Results: We developed a Virtual Research Environment (VRE) which facilitates rapid integration of

new tools and developing scalable and interoperable workflows for performing metabolomics data

analysis. The environment can be launched on-demand on cloud resources and desktop com-

puters. IT-expertise requirements on the user side are kept to a minimum, and workflows can be

re-used effortlessly by any novice user. We validate our method in the field of metabolomics on

two mass spectrometry, one nuclear magnetic resonance spectroscopy and one fluxomics study.

We showed that the method scales dynamically with increasing availability of computational

resources. We demonstrated that the method facilitates interoperability using integration of the

major software suites resulting in a turn-key workflow encompassing all steps for mass-

spectrometry-based metabolomics including preprocessing, statistics and identification.

Microservices is a generic methodology that can serve any scientific discipline and opens up for

new types of large-scale integrative science.

Availability and implementation: The PhenoMeNal consortium maintains a web portal (https://por

tal.phenomenal-h2020.eu) providing a GUI for launching the Virtual Research Environment. The

GitHub repository https://github.com/phnmnl/ hosts the source code of all projects.

Contact: ola.spjuth@farmbio.uu.se

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Biology is becoming data-intensive as high throughput experiments

in genomics or metabolomics are rapidly generating datasets of mas-

sive volume and complexity (Marx, 2013; Schadt et al., 2010), pos-

ing a fundamental challenge on large scale data analytics.

Currently, the most common large-scale computational infra-

structures in science are shared High-Performance Computing

(HPC) systems. Such systems are usually designed primarily to sup-

port computationally intensive batch jobs—e.g. for the simulation

of physical processes—and are managed by specialized system

administrators. This model leads to rigid constraints on the way

these resources can be used. For instance, the installation of software

must undergo approval and may be restricted, which contrasts with

the needs in the analysis where a multitude of software components

of various versions—and their dependencies—are needed, and where

these need to be continuously updated.

Cloud computing offers a compelling alternative to shared HPC

systems, with the possibility to instantiate and configure on-demand

resources such as virtual computers, networks and storage, together

with operating systems and software tools. Users only pay for the

time the virtual resources are used, and when they are no longer

needed they can be released and incur no further costs for usage or

ownership. For scientists, this constitutes a shift from owning com-

puter hardware, to starting up Infrastructure-as-a-Service (IaaS)

nodes with virtual machines on cloud resources, with the explicit

need to then install all necessary software for the analysis which in

many cases constitutes a demanding and time-consuming task

(Langmead and Nellore, 2018). Along with infrastructure provision-

ing, software provisioning—i.e. installing and configuring software

for users—has also advanced. Consider, for instance, containeriza-

tion (Silver, 2017), which allows entire applications with their

dependencies to be packaged, shipped and run on a computer but

isolated from one another in a way analogous to virtual machines,

yet much more efficiently. Containers are more compact, and since

they share the same operating system kernel, they are fast to start

and stop and incur little overhead in execution. These traits make

them an ideal solution to implement lightweight microservices, a

software engineering methodology in which complex applications

are divided into a collection of smaller, loosely coupled components

that communicate over a network (Newman, 2015). Microservices

share many properties with traditional always-on web services

found on the Internet, but microservices are generally smaller, port-

able and can be started on-demand within a separate computing en-

vironment. Another important feature of microservices is that they

have a technology-agnostic communication protocol, and hence can

serve as building blocks that can be combined and reused in multiple

ways (da Veiga Leprevost et al., 2017).

Microservices are highly suitable to run in elastic cloud environ-

ments that can dynamically grow or shrink on demand, enabling

applications to be scaled-up by simply starting multiple parallel

instances of the same service. However, to achieve effective scalabil-

ity a system needs to be appropriately sectioned into microservice

components and the data to be exchanged between the microservices

needs to be defined for maximum efficiency—both being challenging

tasks.

One of the omics fields that faces challenges by data growth is

metabolomics which measures the occurrence, concentrations and

changes of small molecules (metabolites) in organisms, organs, tis-

sues, cells and cellular compartments. Metabolite abundances are

assayed in the context of environmental or dietary changes, disease

or other conditions (Nicholson and Wilson, 2003). Metabolomics

is, as most other omics technologies, characterized by the use of

high-throughput experiments performed using a variety of spectro-

scopic methods such as Mass Spectrometry (MS) and Nuclear

Magnetic Resonance (NMR) that produce large amounts of data

(Montenegro-Burke et al., 2017). With increasing data size and

number of samples, the analysis process becomes intractable for

desktop computers due to requirements on compute cores, memory,

storage, etc. As a result, large-scale computing infrastructures have

become important components in scientific projects (Liew et al.,

2016). Moreover, making use of such complex computing resources

in an analysis workflow presents its own challenges, including

achieving efficient job parallelism and scheduling as well as error

handling (Suplatov et al., 2016). In addition, configuring the neces-

sary software tools and chaining them together into a complete

re-runnable analysis workflow commonly requires substantial IT-

expertise, while creating portable and fault-tolerant workflows with

a robust audit trail is even more difficult. Metabolomics has already

benefited from cloud-based systems enabling the users certain
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preprocessing and main downstream analysis on e.g. MS data.

Examples of such systems are XCMS ONLINE (Warth et al., 2017),

MetaboAnalyst (Xia et al., 2012), Chorus (chorusproject.org) and

The Metabolomics Workbench (Sud et al., 2016) (www.metabolo

micsworkbench.org) which provide tools that scale with computa-

tional demands.

In this manuscript, we present a method that uses components

for data analysis encapsulated as microservices and connected into

computational workflows to provide complete, ready-to-run, repro-

ducible data analysis solutions that can be easily deployed on desk-

top computers as well as public and private clouds. Our work

contrasts to previously reported research environments, sometimes

termed Virtual Research Environments (Allan, 2009; Candela et al.,

2013), Scientific Gateways (Lawrence et al., 2015) and Virtual Labs

(Waldrop, 2013), in that it encompasses the complete setup of the

computational infrastructure and frameworks to run analysis in a

wide range of environments; however our approach requires virtual-

ly no involvement in the setup and no special IT skills from the user.

The methodology provides a framework for rapid and efficient inte-

gration of new tools and developing scalable, and interoperable

workflows, supporting multiple workflow engines such as Galaxy

(Goecks et al., 2010) and Luigi (https://github.com/spotify/luigi).

We validate the method on four metabolomics studies and show

that it enables scalable and interoperable data analysis.

2 Materials and methods

2.1 Microservices

A detailed description of the methods is present in Supplementary

Method S1. Briefly, in order to construct a microservice architecture

for metabolomics we used Docker (Merkel, 2014) (https://www.

docker.com/) containers to encapsulate software tools. Tools are

developed as open source and are available in a public repository

such as GitHub (https://github.com/), and the PhenoMeNal project

containers are built and tested on a Jenkins continuous integration

(CI) server (http://phenomenal-h2020.eu/jenkins/). Containers are

assembled in different branches using the git versioning system.

Builds originating from the development branch of each container

repository give rise to container images tagged as ‘development’;

builds coming from the master branches result in release images. In

order for a container be pushed to the container registry, it must

pass a testing criteria which is defined by the developer of the tool.

All published containers are thus available for download and can be

used in any microservice architecture. Data is exchanged between

services by passing references to a shared local file system. The CI

system constitutes a key part of the methodology, as it ensures that

containers are continuously successfully packaged, versioned, tested

and that adequate reporting measures are in place to handle any

errors in this process over time.

2.2 Virtual Research Environment (VRE)

We developed a Virtual Research Environment (VRE) which uses

Kubernetes (https://kubernetes.io/) for orchestration of the contain-

ers, including initialization and scaling of jobs based on containers,

abstractions to file system access for running containers, exposure of

services, as well as rescheduling of failed jobs and long running serv-

ices. Kubernetes was chosen over other frameworks such as Docker

Swarm because of its larger momentum and that it is more widely

used in production environments. Docker also provides Kubernetes

as part of their Enterprise solutions (and even now the community

ones). To enable convenient instantiation of a complete virtual

infrastructure, we developed KubeNow (https://github.com/kube

now/KubeNow) (Capuccini et al., 2018) which includes instanti-

ation of compute nodes, shared file system storage, networks, con-

figure DNS, operating system, container implementation and

orchestration tools, including Kubernetes, on a local computer or

server. In order to deploy applications, we used two main classes of

services: long-lasting services, and compute jobs. Long-lasting serv-

ices were used for applications such as the user interface whereas

compute jobs were used to perform temporary functions in data

processing. The VRE includes Galaxy, Luigi workflow engine and

Jupyter notebook as user-facing services. In the PhenoMeNal CI

system, the VRE is instantiated and tested on all supported cloud

providers nightly in order to ensure a working system over time.

2.3 Demonstrators

We validated our method in the field of metabolomics using four

demonstrators. Demonstrators 1 and 2 showcase scalability and

interoperability of our microservice-based architecture whereas

Demonstrators 3 and 4 exemplify flexibility to account for new ap-

plication domains, showing the architecture is domain-agnostic.

Demonstrator 1: Scalability of microservices in a cloud environ-

ment. The objective of this analysis was to demonstrate the compu-

tational scalability of an existing workflow on a large dataset

[Metabolomics data have been deposited to the EMBL-EBI

MetaboLights database (Haug et al., 2013) with the identifier

MTBLS233 (Ranninger et al., 2016). The complete dataset can be

accessed here https://www.ebi.ac.uk/metabolights/MTBLS233]. The

experiment includes 528 mass spectrometry samples from whole cell

lysates of human renal proximal tubule cells that were pre-processed

through a five-step workflow (consisting of peak picking, feature

finding, linking, file filtering and exporting) using the OpenMS soft-

ware (Sturm et al., 2008). This preprocessing workflow was reim-

plemented using Docker containers and run using the Luigi

workflow engine. Scalability of concurrent running tools (on 40

Luigi workers, each worker receives tasks from the scheduler and

executes them) was measured using weak scaling efficiency (WSE),

where the workload assigned to each worker stays constant and

additional workers are used to solve a larger total problem.

Demonstrator 2: Interoperability of microservices. The objective

of this analysis was to demonstrate interoperability as well as to pre-

sent a real-world scenario in which patients’ data are processed

using a microservices-based platform. We used a dataset consisting

of 37 clinical cerebrospinal fluid (CSF) samples including thirteen

relapsing-remitting multiple sclerosis (RRMS) patients and 14 sec-

ondary progressive multiple sclerosis (SPMS) patients as well as

10 non-multiple sclerosis controls. 26 quality controls (19 blank and

7 dilution series samples) were also added to the experiment. In add-

ition, 8 pooled CSF samples containing MS/MS data were included

in the experiment for improving identification [Metabolomics data

have been deposited to the EMBL-EBI MetaboLights database with

the identifier MTBLS558. The complete dataset can be accessed

here https://www.ebi.ac.uk/metabolights/MTBLS558]. The samples

were processed and analyzed on the Galaxy platform (Goecks et al.,

2010), running in a VRE behind the Uppsala University Hospital

firewall to be compliant with local ELSI (Ethics, Legal, Social impli-

cations) regulations.

Demonstrator 3: 1D NMR-analysis workflow. The purpose of

this demonstrator was to highlight the fact that the microservice

architecture is indeed domain-agnostic and is not limited to a par-

ticular assay technology. This NMR-based metabolomics study was

originally performed by Salek et al. (2007) on urine of type 2

3754 P.Emami Khoonsari et al.
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diabetes mellitus (T2DM) patients and controls [Metabolomics data

have been deposited to the EMBL-EBI MetaboLights database with

the identifier MTBLS1. The complete dataset can be accessed here

https://www.ebi.ac.uk/metabolights/MTBLS1]. In total, 132 sam-

ples (48 T2DM and 84 controls) were processed using a Galaxy

workflow performing conversion, preprocessing, multivariate data

analysis and result visualization.

Demonstrator 4: Start-to-end fluxomics workflow. The purpose

of this demonstrator was to show the integrated use of separately

developed tools covering subsequent steps of the study of meta-

bolic fluxes based on 13C stable isotope-resolved metabolomics

(SIRM) (Buescher et al., 2015; King et al., 2015; Niedenführ

et al., 2015). Here we implemented the analysis of flux distribu-

tions in HUVEC cells under hypoxia [Metabolomics data have

been deposited to the EMBL-EBI MetaboLights database with the

identifier MTBLS412. The complete dataset can be accessed here

https://www.ebi.ac.uk/metabolights/MTBLS412], from raw mass

spectra contained in netCDF files, using a workflow implemented

in Galaxy including reading and extraction of the data, correcting

the evaluated mass spectra for natural isotopes and computing

steady-state distribution of 13C label as function of steady-state

flux distribution.

2.4 Availability and implementation

The PhenoMeNal consortium maintains a web portal (https://portal.

phenomenal-h2020.eu) providing a GUI for launching VREs using

KubeNow (Capuccini et al., 2018) on a selection of the largest pub-

lic cloud providers, including Amazon Web Services, Microsoft

Azure and Google Cloud Platform, or on private OpenStack-based

installations. The Wiki containing documentation is also hosted on

GitHub https://github.com/phnmnl/phenomenal-h2020/wiki. The

PhenoMeNal Portal can be reached at https://portal.phenomenal-

h2020.eu. The public instance of Galaxy is accessible at https://pub

lic.phenomenal-h2020.eu. The containers provisioned by

PhenoMeNal comprise tools built as open source software that are

available in a public repository such as GitHub, and are subject to

continuous integration testing. The containers that satisfy testing

criteria are pushed to a public container repository, and containers

that are included in stable VRE releases are also pushed to

Biocontainers (da Veiga Leprevost et al., 2017). The GitHub reposi-

tory https://github.com/phnmnl/hosts the source code of all develop-

ment projects. Source code and documentation are available under

the terms of the Apache 2.0 license. Integrated open source projects

are available under the respective licensing terms. The

Demonstrators can be obtained from: Demonstrator 1: https://

github.com/phnmnl/MTBLS233-Jupyter; Demonstrator 2: https://

public.phenomenal-h2020.eu/u/phenoadmin/w/metabolomics-lcmsms-

processing-quantification-annotation-identification-and-statistics-1;

Demonstrator 3: https://public.phenomenal-h2020.eu/u/phenoad

min/w/metabolomics-nmr-rnmr1d-metabolights-data-processing-and-

plot; Demonstrator 4: https://public.phenomenal-h2020.eu/u/phenoad

min/w/fluxomics-stationary-13c-ms-iso2flux-with-visualization

3 Results

We developed a VRE based on a microservices architecture encapsu-

lating a large suite of software tools for performing metabolomics

data analysis (see Supplementary Table S1). Scientists can interact

with the microservices programmatically via an Application

Programming Interface (API) or via a web-based graphical user

interface (GUI), as illustrated in Figure 1. To connect microservices

into computational workflows, the two frameworks Galaxy

(Goecks et al., 2010) and Luigi (https://github.com/spotify/luigi)

were adapted to execute jobs on Kubernetes. Galaxy is a web-based

interface for individual tools and allows users to share workflows,

analysis histories and result datasets. Luigi on the other hand focuses

on scheduled execution, monitoring, visualization and the implicit

dependency resolution of tasks (Leipzig, 2017). These basic infra-

structure services, together with the Jupyter notebook (Kluyver

et al., 2016) interactive programming environment, are deployed as

long-running services in the VRE, whereas the other analysis tools

are deployed as transient compute jobs to be used on-demand.

System and client applications were developed for launching the

VRE on desktop computers, public and private cloud providers,

automating all steps required to instantiate the virtual

infrastructures.

Demonstrator 1: Scalability of microservices in a cloud environ-

ment. The Diagram of scalability-testing on the metabolomics data-

set is illustrated in Figure 2. The analysis resulted to WSE of 88%

with an execution time of approximately four hours (online meth-

ods, Supplementary Fig. S2), compared with the ideal case of 100%

where linear scaling is achieved if the run time stays constant while

the workload is increased. In addition, the final result of the work-

flow (online methods, Supplementary Fig. S3) was identical to that

presented by the original MTBLS233 study (Ranninger et al., 2016)

in negative ionization mode. However, in the positive ionization

mode, one m/z feature was found in a different group (m/z range

400–1000) than it was originally reported by Ranninger et al. (m/z

range 200–400).

Demonstrator 2: Interoperability of microservices. We devel-

oped a start to end workflow for pre-processing and statistical ana-

lysis of LC-MS metabolomics data (Fig. 3). The workflow allows

seamless integration of six major metabolomics data analysis com-

ponents (26 steps) each was already implemented in independent

software suites: noise reduction and filtering [OpenMS (Rost et al.,

2016)], quantification, alignment and matching [XCMS

Fig. 1. Overview of the components in a microservices-based framework.

Complex applications are divided into smaller, focused and well-defined

(micro-) services. These services are independently deployable and can com-

municate with each other, which allows to couple them into complex task

pipelines, i.e. data processing workflows. The user can interact with the

framework programmatically via an Application Program Interface (API) or

via a graphical user interface (GUI) to construct or run workflows of different

services, which are executed independently. Multiple instances of services

can be launched to execute tasks in parallel, which effectively can be used to

scale analysis over multiple compute nodes. When run in an elastic cloud en-

vironment, virtual resources can be added or removed depending on the

computational requirements

Interoperable data analysis with microservices 3755
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(Smith et al., 2006)], filtering of biological non-relevant signals (R),

annotation of signals [CAMERA (Kuhl et al., 2012)], identification

[MetFrag (Wolf et al., 2010)], statistics [Workflow4Metabolomics

(Giacomoni et al., 2015)]. The result of the workflow (multivariate

analysis) showed a clear difference in the metabolic constitution be-

tween the three disease groups of RRMS, SPMS and non-multiple

sclerosis controls (Fig. 4A). In addition, the univariate analysis

resulted in a total of three metabolites being significantly altered

(p<0.05) between multiple sclerosis subtypes and control samples,

namely alanyltryptophan and indoleacetic acid with higher and lino-

leoyl ethanolamide with lower abundance in both RRMS and SPMS

compared to controls (Fig. 4B).

Demonstrators 3 and 4: Domain agnosticity (NMR and fluxo-

mics workflows). We developed a workflow for analysis of 1D

NMR data. The workflow consisted of automatic downloading

NMR vendor data (and metadata) from MetaboLights database fol-

lowed by format standardization, spectral processing and statistical

analysis. We processed a NMR dataset (demonstrator 3) resulting to

quantification of a total of 726 features which were used to perform

Orthogonal Projections to Latent Structures Discriminant Analysis

(OPLS-DA). This resulted in a clear separation between T2DM and

controls (Fig. 5), similar to that of previous findings (Salek et al.,

2007). Lastly, we designed a workflow for analyzing metabolite

metabolic fluxes. The workflow integrated four main steps including

data extraction, data correction, calculation of flux distribution and

visualization. Using this workflow (Fig. 6), we achieved detailed de-

scription of the magnitudes of the fluxes through the reactions

accounting for glycolysis and pentose phosphate pathway.

4 Discussion

Implementing the different tools and processing steps of a data ana-

lysis workflow as separate services that are made available over a

network was in the spotlight in the early 2000s (Foster, 2005) as

service-oriented architectures (SOA) in science. At that time, web

services were commonly deployed on physical hardware and

exposed and consumed publicly over the internet. However, it soon

became evident that this architecture did not fulfill its promises as it

was hard to scale from a computational and maintainability per-

spective. In addition, the web services were not portable and mirror-

ing them was complicated (if at all possible). Furthermore, API

changes and frequent services outage made it frustrating to connect

them into functioning computational workflows. Ultimately, the

ability to replicate an analysis on local and remote hardware (such

as a computer cluster) was very difficult due to heterogeneity in the

computing environments.

At first sight microservices might seem similar to above men-

tioned SOA web services, but microservices can with great benefit

be executed in virtual environments (abstracting over OS and hard-

ware architectures) in such a way that they are only instantiated and

executed on-demand, and then terminated when they are no longer

needed. This makes such virtual environments inherently portable

and they can be launched on demand on different platforms

Fig. 2. Diagram of scalability-testing on a metabolomics dataset

(MetaboLights ID: MTBLS233) in Demonstrator 1 to illustrate the scalability of

a microservice approach. A) The preprocessing workflow is composed of 5

OpenMS tasks that were run in parallel over the 12 groups in the dataset

using the Luigi workflow system. The first two tasks, peak picking (528 tasks)

and feature finding (528 tasks), are trivially parallelizable, hence they were

run concurrently for each sample. The subsequent feature linking task needs

to process all of the samples in a group at the same time, therefore 12 of

these tasks were run in parallel. In order to maximize the parallelism, each

feature linker container (microservice) was run on 2 CPUs. Feature linking

produces a single file for each group, that can be processed independently by

the last two tasks: file filter (12 tasks) and text exporter (12 tasks), resulting in

total of 1092 tasks. The downstream analysis consisted of 6 tasks that were

carried out in a Jupyter Notebook. Briefly, the output of preprocessing steps

was imported into R and the unstable signals were filtered out. The missing

values were imputed and the resulting number of features were plotted. B)

The weak scaling efficiency plot for Demonstrator 1. Given the full MTBLS233

dataset, the preprocessing was run on 40 Luigi workers. Then for 1/4, 2/4, 3/4

of MTBLS233, the analysis was run again on 10, 20 and 30 workers respect-

ively. For each run, we measured the processing time T10, T20, T30 and T40,

and we computed the WSEn ¼ T10/Tn for n¼ 10, 20, 30, 40. The WSE plot

shows scalability up to 40 CPUs, where we achieved �88% scaling efficiency.

The running time for the full dataset (a total of 1092 tasks) on 40 workers was

�4hours

Fig. 3. Overview of the workflow used to process multiple-sclerosis samples

in Demonstrator 2, where a workflow was composed of the microservices

using the Galaxy system. The data was centroided and limited to a specific

mass over charge (m/z) range using OpenMS tools. The mass traces quantifi-

cation and retention time correction was done via XCMS (Smith et al., 2006).

Unstable signals were filtered out based on the blank and dilution series sam-

ples using an in-house function (implemented in R). Annotation of the peaks

was performed using CAMERA (Kuhl et al., 2012). To perform the metabolite

identification, the tandem spectra from the MS/MS samples in mzML format

were extracted using MSnbase and passed to MetFrag. The MetFrag scores

were converted to q-values using Passatutto software. The result of identifica-

tion and quantification were used in ‘Multivariate’ and ‘Univariate’ containers

from Workflow4Metabolomics (Giacomoni et al., 2015) to perform Partial

Least Squares Discriminant Analysis (PLS-DA)
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(e.g. a laptop, a powerful physical server or an elastic cloud environ-

ment). A key aspect is that workflows of microservices are still exe-

cuted identically, agnostic of the underlying hardware platform.

Container-based microservices provide a wide flexibility in terms of

versioning, allowing the execution of newer and older versions

of each container as needed for reproducibility. Since all software

dependencies are encompassed within the container, which is ver-

sioned, the risk of workflow failure due to API changes is mini-

mized. An orchestration framework such as Kubernetes further

allows for managing errors in execution and transparently handles

the restarting of services. Hence, technology has caught up with

service-oriented science, and microservices have taken the method-

ology to the next level, alleviating many of the previous problems

related to scalability, portability and interoperability of software

tools. This is advantageous in the context of omics analysis, which

produces multidimensional datasets reaching beyond gigabytes, on

into terabytes, leading to ever-increasing demand on processing

performance (Marx, 2013; Schadt et al., 2010). However, contain-

erization does not address how services communicate with each

other, but this has to be implemented inside the container itself.

Traditional web services addressed this by standardizing the messag-

ing protocol and public-facing interfaces (e.g. SOAP and WSDL)

(Stockinger et al., 2008), while in a containerized environment

Representational State Transfer (REST) (Fielding, 2000) or passing

files by reference to a shared file system is more common. In

Demonstrator 1, we showed that microservices enable highly effi-

cient and scalable data analyses by executing individual modules in

parallel, and that they effectively harmonize with on-demand elasti-

city of the cloud computing paradigm. The reached scaling effi-

ciency of �88% indicates remarkable performance achieved on

generic cloud providers. Furthermore, although our results in posi-

tive ionization model was slightly different to that of Ranninger

et al. (2016), the results of our analysis were replicable regardless of

the platform used to perform the computations.

In addition to the fundamental demand for high performance,

the increased throughput and complexity of omics experiments has

Fig. 4. The results from analysis of multiple sclerosis data in Demonstrator 2,

presenting new scientifically useful biomedical knowledge. A) The PLS-DA

results suggest that the metabolite distribution in the RRMS and SPMS sam-

ples are different to controls. B) Three metabolites were identified as differen-

tially regulated between multiple sclerosis subtypes and control samples,

namely Alanyltryptophan and Indoleacetic acid with higher and Linoleoyl

ethanolamide with lower abundance in both RRMS and SPMS compared to

controls. Abbr., RRMS: relapsing-remitting multiple sclerosis, SPMS: second-

ary progressive multiple sclerosis

Fig. 5. Overview of the NMR workflow in Demonstrator 3. The raw NMR data

and experimental metadata (ISATab) was automatically imported from the

Metabolights database and converted to open source nmrML format. The

preprocessing was performed using the rnmr1d package part of nmrprocflow

tools. All study factors were imported from MetaboLights and were fed to the

multivariate node to perform an OPLS-DA
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led to a large number of sophisticated computational tools (Berger

et al., 2013), which in turn necessitates integrative workflow engines

(Atkinson et al., 2017; Di Tommaso et al., 2017; Liew et al., 2016). In

order to integrate new tools in such workflow engines, compatibility of

the target environment, tools and APIs needs to be considered (Di

Tommaso et al., 2017). Containerization facilitates this by providing a

platform-independent virtual environment for developing and running

the individual tools. However, the problem of compatibility between

tools/APIs and data formats remains and needs to be tackled by inter-

national consortia (Wilkinson et al., 2016). Our methodology the cur-

rently non-trivial task of instantiating the complete microservice

environment through a web portal that allows for convenient deploy-

ment of the VRE on public cloud providers. Moreover, using this web

portal, microservices and VREs can be deployed on a trusted private

cloud instance or a local physical server on an internal network, such

as within a hospital network, allowing for levels of isolation and avoid-

ing transfer of data across untrusted networks which often are require-

ments in the analysis of sensitive data. This was exemplified in

Demonstrator 2, where a complete start-to-end workflow was run on

the Galaxy platform on a secure server at Uppsala University Hospital,

Sweden, leading to the identification of novel disease fingerprints in the

CSF metabolome of RRMS and SPMS patients. It is worth mentioning

that the selected metabolites were part of the tryptophan metabolism

(alanyltryptophan and indoleacetic acid) and endocannabinoids (lino-

leoyl ethanolamide), both of which have been previously implicated in

multiple sclerosis (Amirkhani et al., 2005; Baker and Pryce, 2008;

Centonze et al., 2007; Lim et al., 2017; Lovelace et al., 2016;

Zamberletti et al., 2012). However, since the cross-validated predictive

performance (Q2Y ¼ 0.286) is not much higher than some of the mod-

els generated after random permutation of the response (Fig. 4A), the

quality of the model needs to be confirmed in a future study on an in-

dependent cohort of larger size.

The microservice architecture is domain-agnostic and not limited

to a particular assay technology, i.e. mass spectrometry. This was

showcased in Demonstrator 3 and 4, where an automated 1D NMR

workflow and calculation of flux distributions (derived from the ap-

plication of stable isotope resolved metabolomics) were performed.

In Demonstrator 3, we showed that the pattern of the metabolite ex-

pression is different between type 2 diabetic and healthy controls,

and that a large number of metabolites contribute to such separ-

ation. In Demonstrator 4, we showed a high rate of glycolysis in

cells cultured in hypoxia, which is consistent with the one expected

for endothelial cells (Iyer et al., 1998) and with how these cells

maintain energy in low oxygen environments and without oxidative

phosphorylation (Eelen et al., 2015; Polet and Feron, 2013). These

two examples further show that complex workflows can be applied

with minimal effort on other studies (i.e. simply by providing a

MetaboLights accession number), leading to the capability to re-

analyze data and compare the results with the original publication

findings. Furthermore, it demonstrates the value of standardised

dataset descriptions such as nmrML (Schober et al., 2017) and ISA

format (Rocca-Serra et al., 2016; Sansone et al., 2012) for represent-

ing NMR based studies, as well as the potential of the VRE to foster

reproducibility. Furthermore, the data processing steps are trackable

and replicable as each container/tool is versioned for a specific re-

lease and data processing steps and the corresponding parameters

are taken care of by the workflow engine. In addition, the cli

KubeNow is using speciffic pinned versions of all dependant soft-

ware and all versions of software is stored in the user config dir cre-

ated by the init-command. The specific version of KubeNow used is

saved in user config directory.

While microservices are not confined to metabolomics and gen-

erally applicable to a large variety of applications, there are some

important implications and limitations of the method. Firstly, tools

need to be containerized in order to operate in the environment.

This is however not particularly complex, and an increasing number

of developers provide containerized versions of their tools on

public container repositories such as Dockerhub or Biocontainers

(da Veiga Leprevost et al., 2017). Secondly, uploading data to a

cloud-based system can take a considerable amount of time, and

having to re-do this every time a VRE is instantiated can be time-

consuming. This can be alleviated by using persistent storage on a

cloud resource, but the availability of such storage varies between

different cloud providers. Further, the storage system can become a

bottleneck when many services try to access a shared storage. We

observe that using a distributed storage system with multiple storage

nodes can drastically increase performance, and the PhenoMeNal

VRE comes with a distributed storage system by default. When

using a workflow system to orchestrate the microservices, stability

and scalability are inherently dependent on the workflow system’s

job runner. Workflow execution is dependent on the underlying

workflow engine, and we observed that a large number of outputs

can make the Galaxy engine unresponsive, whereas the Luigi engine

did not have these shortcomings. With clouds and microservices

maturing, workflow systems will need to evolve and further embrace

the new possibilities of these infrastructures. It is important to note

that microservices do not overcome the incompatibility between

tools with respect to using different data formats, and code resolving

such incompatibility is still needed. However, using a shared plat-

form makes such bridging components easier to maintain and makes

them reusable. There remains great challenges in establishing inter-

operable and agreed-upon standards and data formats that are wide-

ly accepted and implemented by tools, as well as achieving complete

support for the FAIR principles (Wilkinson et al., 2016). Further,

Fig. 6. Overview of the workflow for fluxomics, with Ramid, Midcor, Iso2Flux

and Escher-fluxomics tools supporting subsequent steps of the analysis. The

example refers to HUVEC cells incubated in the presence of [1,2-13C2]glucose

and label (13C) propagation to glycogen, RNA ribose and lactate measured by

mass spectrometry. Ramid reads the raw netCDF files, corrects baseline and

extracts the peak intensities. The resulting peak intensities are corrected (nat-

ural abundance, overlapping peaks) by Midcor, which provides isotopologue

abundances. Isotopologue abundances, together with a model description

(SBML model, tracing data, constraints), are used by Iso2Flux to provide flux

distributions through glycolysis and pentose-phosphate pathways, which are

shown as numerical values associated to a metabolic scheme of the model

by the Escher-fluxomics tool
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not all research can be easily pipelined, for example exploratory re-

search might be better carried out in an ad-hoc manner than with

workflows and the overhead this implies. A Jupyter Notebook as

used in in Demonstrator 1 or embedded in Galaxy (Grüning et al.,

2017) constitutes a promising way to make use of microservices for

interactive analysis. The serverless architecture, also called

Functions as a Service (FaaS) architecture, is an interesting method-

ology when deployed with microservices as it allow developers to

execute code in response to events without managing the underlying

infrastructure. While serverless technologies have irrupted strongly

in areas of software engineering closer to web development, this

doesn’t mean that their usage can be easily transferred to scientific

workloads. This is due to the far more complex network of depend-

encies that scientific software will have compared to web applica-

tions, where large applications can be managed for instance through

npm package resolutions only. On scientific software solutions one

will commonly find dependencies in different programming lan-

guages, different underlying libraries and even sometimes on differ-

ent incompatible versions of the same frameworks. This level of

complexity is not resolvable today through server less approaches

and requires more isolated approaches based on containers, such as

the one presented here.

In summary, we showed that microservices allow for efficient

horizontal scaling of analyses on multiple computational nodes, ena-

bling the processing of large datasets. By applying a number of data

[mzML (Martens et al., 2011), nmrML] and metadata standards

[ISA serializations for study descriptions (Rocca-Serra et al., 2016;

Sansone et al., 2012)], we also demonstrated a high level of inter-

operability in the context of metabolomics, by providing completely

automated start-to-end analysis workflows for mass spectrometry

and NMR data. In addition, many of the state-of-the-art tools such

as components of XCMS ONLINE (Warth et al., 2017) and

MetaboAnalyst (Xia et al., 2012) can be incorporated in the work-

flows, providing more refined workflows. The ability to instantiate

VREs close to large datasets, such as on local servers within a hos-

pital for Demonstrator 2, makes it possible to use the VRE on sensi-

tive data that is not allowed to leave the current environment for

ELSI reasons. While the current PhenoMeNal VRE implementation

uses Docker for software containers and Kubernetes for container

orchestration, the microservice methodology is general and not

restricted to these frameworks. Likewise, the choice of Luigi and

Galaxy was here used to demonstrate the capabilities of workflow

management microservices in cloud environments. In fact, our

microservice architecture supports other major workflow engines

such as Nextflow (Di Tommaso et al., 2017) or Snakemake (Köster

and Rahmann, 2012). Hence it is possible to use any of such work-

flow engines in our VRE and still produce reproducible results. In

addition, despite some of our workflows were novel in the context

of metabolomics (e.g. Demonstrator 2) and can be readily applied

on other datasets, their main contribution in this work is to show-

case scalability and interoperability of the microservices method-

ology. Finally, we emphasise that the presented methodology goes

beyond metabolomics and can be applied to virtually any field, low-

ering the barriers for taking advantage of cloud infrastructures and

opening up for large-scale integrative science.
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