
Complex Intell. Syst. (2016) 2:45–59

DOI 10.1007/s40747-016-0014-8

ORIGINAL ARTICLE

Interoperable multi-agent framework for unmanned
aerial/ground vehicles: towards robot autonomy

Willson Amalraj Arokiasami1 · Prahlad Vadakkepat1
·

Kay Chen Tan1
· Dipti Srinivasan1

Received: 18 November 2015 / Accepted: 2 April 2016 / Published online: 28 April 2016

© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Multi-agent architectures for autonomous robots

are generally mission and platform oriented. Autonomous

robots are commonly employed in patrolling, surveillance,

search and rescue and human-hazardous missions. Irre-

spective of the differences in unmanned aerial and ground

robots, the algorithms for obstacle detection and avoid-

ance, path planning and path-tracking can be generalized.

Service-oriented interoperable framework for robot auton-

omy (SOIFRA) proposed in this paper is an interoperable

multi-agent framework focusing on generalizing platform-

independent algorithms for unmanned aerial and ground

vehicles. As obstacle detection and avoidance are standard

requirements for autonomous robot operation, platform-

independent collision avoidance algorithms are incorporated

into SOIFRA. SOIFRA is behaviour based and is interoper-

able across unmanned aerial and ground vehicles. Obstacle

detection and avoidance are performed utilizing computer

vision-based algorithms, as these are generally platform

independent. Obstacle detection is achieved utilizing Hough

transform, Canny contour and Lucas–Kanade sparse opti-

cal flow algorithm. Collision avoidance performed utilizing

optical flow-based and expansion of object-based time-to-

contact demonstrates SOIFRA’s modularity. Experiments

performed, utilizing TurtleBot, Clearpath Robotics Husky,

AR Drone and Hector-quadrotor, establish SOIFRA’s inter-

operability across several robotic platforms.

This work was supported by the Singapore Ministry of Education

Academic Research Fund Tier 1 under the Project

R-263-000-A12-112.

B Willson Amalraj Arokiasami

willson@u.nus.edu

1 National University of Singapore, 4 Engineering Drive 3,

Singapore 117576, Singapore

Keywords Behaviour based multi-agent framework ·

Collision avoidance · Unmanned ground vehicle · Unmanned

aerial vehicle

Introduction

Unmanned autonomous vehicles are robots, capable of

intelligent actions and motions, operating without a guide

or teleoperator. Unmanned vehicles are aiding or replac-

ing humans in various tasks such as space and undersea

exploration [10,19], remote repair and maintenance [7],

remote sensing [35], disaster management [25] and mili-

tary reconnaissance [6]. The dynamic nature of autonomous

robot’s operating environments demand robots with rapid

online decision-making ability, fault tolerance and scal-

ability. Agent-oriented approaches, suitable for designing

unmanned robot systems, break down sequential top-down

programs into a set of simple, distributed and decentralized

processes that have direct access to sensors and actuators of

the robot [23]. An agent is a computational system that tries

to fulfil a set of goals in a complex and dynamic environment

[20,43]. Groups of several agents working cooperatively or

non-cooperatively to solve tasks form a multi-agent sys-

tem [28,41]. The inherent modular and distributed nature of

the mult-agent system offers scalability, fault tolerance and

parallelism [21,36]. Behaviour-based multi-agent architec-

tures improve the rapid online decision-making ability of a

robot by decomposing a system into subsystems with task-

achieving behaviours [22,39]. Multi-agent architectures for

service-oriented unmanned vehicle applications are gener-

ally platform oriented, leading to varied architectures for the

same applications [13–15,31,33,40]. Algorithms for service-

oriented unmanned vehicle applications are generalized and

it is possible to use these algorithms on various platforms irre-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-016-0014-8&domain=pdf


46 Complex Intell. Syst. (2016) 2:45–59

spective of the details of their implementations. The proposed

service-oriented interoperable framework for robot auton-

omy (SOIFRA) provides a framework for algorithms that

can be generalized and non-platform specific. Intelligence

and ability to detect and avoid obstacles are basic require-

ments for autonomous operation of unmanned vehicles. In

this work, SOIFRA provides a framework that includes non-

platform-specific collision avoidance algorithms.

Coupled layered architecture for robotic autonomy

(CLARAty) is a framework for heterogeneous robot plat-

forms with generic and reusable robotic components [27].

CLARAty provides a framework for generalized algorithms

applied to rover platforms irrespective of the implementa-

tion details. Agent design patterns defining common fea-

tures allow introduction of new hardware and software

components without modifying the architecture [3]. The

target-drives-means (TDM), behaviour-based interoperable

software framework for humanoid robots, supports flexible

behaviours [4]. The hybrid deliberative/reactive architecture

(HDRC3) is a distributed architecture for unmanned aircraft

systems [9]. In HDRC3, the essential generic functionalities

of a UAV are isolated for effective integration of low-level

(navigational subsystem, low-level control with motion plan-

ning) and high-level (mission planning and execution) func-

tionalities. The intelligent control architecture (ICA) [16]

is a generic capability-oriented architecture for autonomous

marine robots. ICA enables multiple collaborating marine

vehicles to autonomously carry out underwater intervention

missions. The proposed work SOIFRA is a behaviour-based

multi-agent framework for autonomous unmanned aerial and

ground vehicles.

Collision avoidance, which is crucial in mobile robot nav-

igation, comprises obstacle detection and avoidance [42].

Vision-based obstacle detection is powerful and popular in

unmanned aerial and ground vehicles [18,44]. Vision sen-

sors, in close proximity, provide detailed information about

an environment. Appearance-based and optical-flow-based

techniques are commonly used in mapless vision-based nav-

igation. Appearance-based methods rely on basic image

processing techniques to differentiate the obstacles from the

background. Optical-flow-based techniques utilize apparent

motion of objects in scenes [26]. Optical flow, a biologi-

cally inspired approach for obstacle avoidance, is the pattern

of apparent motion of pixels in successive image frames

[34]. The time derivative of positions of image points in

an image plane define a motion field. Temporal change in

an image sequence constitutes the optical flow field which

approximates the motion field. Optical flow can be com-

puted using spatio-temporal intensity derivatives (differential

method), feature matching techniques (correlation approach)

and velocity-tuned filters (frequency-based method) [44].

Lucas–Kanade method, a differential method for optical flow

estimation, is useful for sparse optical flow computation

[24]. For larger pixel motions, a pyramidal approach for

Lucas–Kanade method is suitable, where the standard algo-

rithm is applied recursively to re-sized versions of the image.

Obstacle avoidance for autonomous robots based on optical

flow from a monocular camera is actively researched upon

[8,12,29,30,32,44]. In most cases, the translational part of

the optical flow field is utilized to estimate the distance to the

obstacle based on which obstacle avoidance is performed.

Obstacle avoidance algorithms generate motion instruc-

tions combining distance to the obstacle(s) and vehicle

motion information. Range sensors are often utilized to

obtain distance information from environment. Recent adva-

ncements have enabled computer vision algorithms to esti-

mate depth information utilizing multiple image frames.

Obstacle avoidance algorithms are of two categories: global

and local. Global approaches compute optimal robot tra-

jectory, off-line, utilizing a complete model of the robot’s

environment, while computationally efficient local or reac-

tive approaches generate sub-optimal robot trajectories.

Local approaches such as potential field method (PFM), vir-

tual force field (VFF), vector field histogram (VFH) and

dynamic window approach (DWA) are fast and computa-

tionally efficient, as only a small subset of obstacles close to

the robot is considered. In potential field method [17], a robot

is subjected to attractive force from the target and repulsive

forces from obstacles. Virtual force field and vector field his-

togram are extensions of PFM [38]. In the dynamic window

approach, robot dynamics is considered to compute admissi-

ble velocities for safe robot motions [11]. Stereo vision is a

common technique for obtaining 3D depth information from

2D planar images [1]. Two obstacle avoidance algorithms,

one analyzing optical flow fields from monocular 2D images

to obtain obstacle(s) distance information and the other uti-

lizing expansion of an object to obtain distance information,

are utilized in the proposed framework.

Research contributions

SOIFRA, an interoperable multi-agent framework for

unmanned aerial and ground vehicles proposed in this

work, provides a framework for generalized and platform-

independent algorithms. As collision avoidance is standard

for autonomous operation of unmanned robots, algorithms

for obstacle detection and avoidance are incorporated into

SOIFRA. For obstacle detection, the Lucas–Kanade sparse

optical flow algorithm, the Hough transform and the Canny

contour mapping algorithm are utilized. Two obstacle avoid-

ance methods, an optical flow-based method and expansion-

of-obstacle-based method, are utilized to demonstrate the

modular nature of the framework proposed. A case study is

presented where a robot is expected to navigate an unknown

area autonomously avoiding obstacles in its path. Error per-

formances of the obstacle avoidance methods are studied.

123



Complex Intell. Syst. (2016) 2:45–59 47

Fig. 1 Process flow for obstacle detection

The framework is tested on Parrot AR Drone, Hector Drone,

Clearpath Robotics Huskey and Turtlebot, in simulation and

Parrot AR Drone and TurtleBot in real-time environments.

The experiments illustrate the feasibility in utilizing the same

collision avoidance algorithm for autonomous unmanned

aerial and ground vehicles, performing identical tasks.

The paper is organized as follows. Sect. “Obstacle

detection” explains the obstacle detection proposed. Sec-

tion “Obstacle avoidance” elaborates on the obstacle avoid-

ance algorithm and the methods to estimate distance to the

obstacle detected. An overview of the multi-agent framework

proposed is explained in Sect. “Overview of SOIFRA”. Sim-

ulation results for the case study utilizing Clearpath Huskey,

Turtlebot, Hector-drone and AR drone are presented in Sect.

“Simulation results”. Experimental results for the case study

utilizing Turtlebot and AR drone are presented in Sect.

“Experimental results”. Conclusions and future directions of

the work are outlined in Sect. “Conclusion and future works”.

Collision avoidance

Collision avoidance is the ability of the robot to detect and

avoid obstacles along its path. Obstacle detection is per-

formed by applying Canny contours, Hough transform and

optical flow. Once it is established that the robot is in collision

course with the obstacle identified, the obstacle is tracked.

The algorithms to detect obstacle is explained in this section.

Obstacle detection

Obstacle detection is the first step in collision avoidance. The

process flow for static obstacle detection is shown in Fig. 1.

The simulation and real-time environment, where the robots

operate, are shown in Fig. 3a and b, respectively. Canny con-

tour, Hough transform and optical flow vectors are utilized

to detect obstacles. Contours in the image are identified uti-

lizing the Canny contour algorithm, and line segments in

(a) (b) (c)

(d)

Fig. 2 c Shows the optical flow vector generated from an obstacle as

the robot moves towards the obstacle and left and right optical flow

vectors generated from left side and right side of the obstacle. a and

b show the image frames utilized to generate the optical flow vectors

shown in c. d Is an illustration showing the line segments l
j

i obtained

for an image i . d line segments l i
j , obtained for an image i , are shown

in red, blue and green colors. L i
pl and L i

pr include the line segments

that are to the left (blue) and right (red) of the optical center. l i
Ol and

l i
Ol are the line segments (green) of L i

pl and L i
pr , that are the closest to

the optical center. Only line segments with αi
j + θt = 90◦ are shown

the image are isolated using Hough transform. The obstacle

detection algorithm (Algorithm 1) requires the optical center

of the camera (ox , oy) and image i at time t as its input. Let

L i be a set of n line segments l i
j , obtained through Hough

transform for image i as shown in Fig. 2d (l i
j is the j th line

segment obtained for image i). αi
j is the angle associated

with a line segment l i
j and θt is the roll angle of the robot

at time t of image i (θt is zero for ground vehicles). The

vertical edges of the objects in an image frame i are split

into L i
pr and L i

pl based on its location with respect to the

optical centre. If l i
j is to the left of the optical centre, it is

grouped into L i
pl and L i

pr if it is to the right. l i
Ol and l i

Or are

the line segments l i
j of L i

pl and L i
pr , which are the closest to

the optical center. O F i
Ol and O F i

Or are the optical flow vec-

tors generated due to the motion of l i
Ol and l i

Or with respect

to time. Lucas–Kanade Sparse optical flow algorithm is uti-

lized for obtaining the optical flow vectors. The obstacle to

be avoided is identified utilizing the concept that optical flow

vectors from edges of an object do not intersect if the robot is

in collision course with the obstacle (Fig. 4). If optical flow

123



48 Complex Intell. Syst. (2016) 2:45–59

Fig. 3 Image of simulation and real-time operational environments with multiple static obstacles. a Simulation environment, b real-time environ-

ment with Turtlebot and AR Drone

vectors in O F i
max and O F i

min do not intersect, then l i
max and

l i
min are identified as the edges of the obstacle to be avoided.

The obstacle detection method proposed is more suitable for

detecting structured obstacles that may have vertical edges;

for example, walls, pillars and tables.

Obstacle avoidance

Obstacle avoidance is the second phase of collision avoid-

ance. Once it is determined that the robot is in a collision

course with an obstacle detected, the distance to that obsta-

cle from the robot is estimated continuously. Distance to the

0 50 100 150 200

Time (s)

(a)

−60

−40

−20

0

20

40

60

80

A
n
g
le

o
f

th
e

O
F

V
(d

eg
re

es
)

Change in Direction of Optical Flow Vector(OFV)

OFV from right edge

OFV from left edge

0 50 100 150 200

Time (s)

(b)

−80

−60

−40

−20

0

20

40

60

A
n
g
le

o
f

th
e

O
F

V
(d

eg
re

es
)

Change in Direction of Optical Flow Vector(OFV)

OFV from right edge

OFV from left edge

Fig. 4 Change in direction of optical flow vectors, associated with left

edge (l i
Ol ) and right edge (l i

Or ) of the obstacle while a robot is moving

forward. The optical flow vectors from the left and right edges do not

intersect if the robot is in a collision course with the obstacle. a Change

in direction of the optical flow vectors identified from the left and right

edges of an obstacle in collision path of the robot, b change in direction

of the optical flow vectors identified from the left and right edges, when

the robot is not in collision course with any obstacle

obstacle estimated based on optical flow and expansion of

objects are explained in this Section.

123



Complex Intell. Syst. (2016) 2:45–59 49

Fig. 5 Projections of a point P onto image planes S1 and S2

Estimation of time-to-contact

Time-to-contact (TTC), a quantitative measure, is useful

for obstacle avoidance. The 3D information from optical

flow fields of 2D images, extracted by time-to-contact, is

utilized for obtaining the distance to the obstacle(s). Time-

to-contact is estimated utilizing optical flow and expansion

of objects-based methods. The error performances of both

the methods for the operation environment under considera-

tion are presented in Sect. “Experimental results”. Once the

time-to-contact is estimated, the distance to the obstacle is

obtained by

Time-to-contact =
Distance to the obstacle

Velocity of the robot
. (1)

Estimating time-to-contact utilizing optical flow (TTC-OF)

Time-to-contact of an obstacle is determined utilizing the

translational component of the optical flow. Time-to-contact

estimation is independent of velocity of the robot and dis-

tance to the surface of the obstacle [29]. Let f be the

focal length of the camera on a robot, facing the direc-

tion of motion. For N (X, Y, Z), a point on the obsta-

cle, p1(xs1 , ys1 , zs1) and p2(xs2 , ys2 , zs2) are projections on

image planes S1 and S2, at time instances t1 and t2 (Fig. 5).

The robot undergoes translation along Ze with a velocity

V = − δZ
δt

over a distance �z = z2 − z1, approaching the

focus of expansion (FOE). From similar triangles,

ys1

f
=

Y

Z
⇒ ys1 = f

Y

Z
. (2)

Differentiating (2) with respect to time provides

δys1

δt
= f

(

δY
δt

Z

)

− f Y

(

δZ
δt

Z2

)

. (3)

In (3) δY
δt

= 0, as Y does not change with time. Substituting

(2) in (3) and δZ
δt

= −V , we get

δys1

δt
= −ys1

(

−V

Z

)

⇒
ys1

δys1
δt

=
Z

V
= TTC. (4)

For a point N , on the obstacle, the distance from its projec-

tion, p1, on an image plane to the focus of expansion ys1 and

length of the optical flow vector
δys1
δt

are required to estimate

the time-to-contact Eq. 4. These calculated optical quantities

are adequate in estimating the time-to-contact a point N on

the obstacle.

FOE corresponds to the dynamic ambient optical array,

which is a single point in space where all the optical flow vec-

tors should emerge. Estimating FOE of an optical flow field

is important in calculating the time-to-contact of an obstacle

Eq. 4. FOE is estimated by discrete, differential and least-

squares-based methods, and performances of these methods

are good only when the robot is in pure translation. Theo-

retically, FOE is the point of intersection of two optical flow

vectors. In reality, noise and other errors arising from the

steps in computing optical flow vectors affect FOE. In this

work, FOE is estimated using least squares solution (Eqs. 5,

6) of all the optical flow vectors identified [37].

FOE = (AT A)
−1

AT b, (5)

A =

[

a00 a01

an0 an1

]

, b =

[

b0

bn

]

, (6)

where for each pixel pi = (x, y) on the image, the associated

optical flow vector V = (u, v) gives ai0 = v, ai1 = u and

bi = xv − yu.

Estimating time-to-contact utilizing expansion

of an obstacle (TTC-EO)

Visual information obtained by monitoring the expansion of

an object in visual field is utilized to obtain time-to-contact

[5]. If expansion E is defined as the rate of growth of an

object in the visual field of a robot, then time-to-contact is

123



50 Complex Intell. Syst. (2016) 2:45–59

given by,

TTC ≡
1

E
. (7)

In Fig. 5, W is the width of the object, zs2 is the distance

between the lens (pinhole) and the object normal to the focal

plane at time t2 and �z is the distance travelled between t1
and t2. δxs1 and δxs2 are the width of the object projected

onto image planes S1 and S2, respectively. Time-to-contact

at t1 is

TTC1 =
zs2

�z
, ⇒ zs2 = TTC1 ∗ �z. (8)

From the pinhole camera model,

δxs1 = f
W

zs2

, δxs2 = f
W

zs1

= f
W

zs2 − �z
. (9)

The expansion rate is given by

E =
δxs2 − δxs1

δxs1

=
δxs2

δxs1

− 1. (10)

Substitution of (8) and (9) in (10) results in

E =
1

TTC1 − 1
. (11)

Re-arranging (11),

TTC1 =

(

1 +
1

E

)

(t2 − t1), and, (12)

TTC2 =
1

E
(t2 − t1), (13)

where TTC2 is the time-to-contact at time t2. Further expla-

nation on implementations of TTC-OF and TTC-EO are in

Sect. “Experimental results”. Experimental results and error

performances of both the methods are shown in Fig. 15 and

Table 1 respectively.

Fig. 6 Architectural overview of the proposed framework (SOIFRA)

Overview of SOIFRA

This section presents the conceptual and structural overview

of the multi-agent framework proposed (Fig. 6). The frame-

work is made up of deliberation, behaviour and execution

layers. Goal generator, planner–matcher and agents per-

forming various services constitute the deliberation layer.

Behaviour layer comprises services, orchestration and chore-

ography of services. Execution layer executes the actions

carried out by agent services.

Deliberative layer

The deliberative layer consists of the goal generator, planner–

matcher and agents. The goal generator block generates

several sub-goals to accomplish a mission. Sub-goals are

completed through predefined plans. The mission goal for

the case study is to steer a robot towards a target in an

unknown environment with obstacles. The goal generator

block generates two goals to achieve this mission: a goal to

detect and avoid obstacles and a goal to reach the target. Each

goal is further divided into sub-goals. For example, a goal to

avoid collision is divided into obstacle detection and obsta-

cle avoidance, while the goal to reach a target is divided into

a navigation sub-goal. Sub-goals are accomplished through

Table 1 Comparison among

mean error, mean absolute error

and mean-squared error of

distance to the obstacle,

computed utilizing TTC-OF and

TTC-EO

True distance to the obstacle (m) TTC-OF (m) TTC-EO (m)

ME MAE MSE (m2) ME MAE MSE (m2)

4.5–4.0 −3.762 3.762 14.170 0.780 0.800 2.451

4.0–3.5 −3.255 3.255 10.625 0.801 0.801 0.797

3.5–3.0 −2.717 2.717 7.401 0.066 0.080 0.0104

3.0–2.5 −2.194 2.194 4.839 −0.073 0.073 0.063

123



Complex Intell. Syst. (2016) 2:45–59 51

the plans generated by the planner–matcher module (Sect.

“Planner–matcher”). The planner–matcher module helps to

achieve a sub-goal by allocating agents to sub-goals based

on the services offered by the agents. Agents can collabo-

rate or act independently. Collaborative agents offer services

to achieve one or more sub-goals, while non-collaborative

agents offer services to achieve only one sub-goal. The

steering agent, providing services to achieve the sub-goals,

obstacle avoidance and navigation, is a collaborative agent.

The obstacle detection agent is a non-collaborative agent that

offers services to achieve one sub-goal, obstacle detection.

Further explanation on the working of agents and their struc-

ture is explained in Sect. “Agent structure”.

Planner–matcher

The planner–matcher module in the deliberation layer (Fig. 6)

allocates agents to sub-goals based on the plans generated.

Built-in plans are used to generate plans based on the system

ontology (Fig. 7). At any point, based on the prevailing states,

a competent predefined plan is retrieved from the ontological

database and executed. Predefined plans are executed using

a sequence of queries as shown below.

– Check if the robot has a predefined plan to complete a

goal. If not, notify the planner that the system is not com-

patible. If it has a predefined plan, then proceed to the next

query. The formal query statement associated is shown

in Listing 1.

– Check if there are agents that are functionally capable of

accomplishing a goal. If not, notify the planner that the

robot is functionally not competent. If it is functionally

compatible, proceed to the next query. The formal query

statement associated is shown in Listing 2.

– Check if the services offered by agents are used by other

sub-goals. If they are used by other sub-goals, check if the

agents are collaborative. If not, intimate the planner that

compatible agents are not available. If they are collab-

orative, request the agent identified for its services. The

formal query statements associated is shown in Listings 3

and 4.

Fig. 7 System ontology

Agent structure

Multi-agent architecture for autonomous robots are of two

types: architectures that model an autonomous robot as a

single agent and architectures composed of multiple dis-

tributed and independent agents to control a robot. The

second approach provides modularity and improves fault

tolerance of the architecture. The proposed framework fol-

lows the second approach where several agents are imple-

mented to achieve a functionally modular agent framework.

Autonomous operation of agents in a multi-agent frame-

work requires knowledge about the environment. A world

model in an autonomous agent is a representation of knowl-

edge. The world model is made up of internal and external

123



52 Complex Intell. Syst. (2016) 2:45–59

Fig. 8 Illustration of the goal

allocation sequence. SGM and

AGT refer to sub-goal

planner–matcher and agent,

respectively. Agents

(collaborative and

non-collaborative) register with

the DF agent. The

planner–matcher queries the DF

agent to get a list of services

offered by the agents. If the

planner–matcher requires the

service of an agent, it sends a

request. The agent accepts or

rejects it based on its availability

and its collaborative nature

models. The internal model describes the self-knowledge of

an agent. Information about the internal operations and ser-

vices of the agent form the internal model. Knowledge about

surroundings and knowledge in social context represent the

external model. Interactions among agents and effects of

agent’s services on the environment form the external model.

Information about events in the operating environment of

an agent is obtained directly from sensors or agent’s ser-

vices. Internal and external world models form the belief of

the agents in the belief–desire–intention model (BDI) -based

framework developed. Desire of an agent is represented by

the services and actions offered by the agent to carry out

the predefined plans allocated by the planner–matcher. The

directions of the planner–matcher to achieve a sub-goal rep-

resent agent’s intentions.

Agents in the proposed framework are implemented

using the Java Agent Development Framework (JADE).

FIPA protocol is used for communication among agents.

Agents register their services with a directory facilitator

agent (DF agent), enabling the planner–matcher to allocate

agents to sub-goal(s). This framework has collaborative and

non-collaborative agents. Collaborative agents offer services

that may be utilized to achieve single or multiple sub-

goals. Non-collaborative agents achieve only one sub-goal.

Sequences of operations by planner–matcher for allocating

collaborative and non-collaborative agents to sub-goals are

illustrated in Fig. 8. Collaboration among agents is achieved

through a priority index. The priority index of a collaborat-

ing agent is updated through the parameter server of robot

operating system (ROS), utilizing the dynamic_reconfigure

package. Obstacle avoidance and navigation agents are non-

collaborative, achieving their respective sub-goals through

collaboration with the steering agent. The steering agent

assigns higher priority to the navigation agent when colli-

sion is not detected. The priority index of the steering agent

changes when a collision is detected and higher priority is

assigned to the obstacle avoidance agent. Once the obstacle is

avoided, the priority index is updated, resulting in navigation

agent attaining higher priority.

Behaviour layer

Services performed by agents and orchestration and chore-

ography of services are a part of the behaviour layer. Services

depict the functional capacity of an agent. Services are imple-

mented by combining various actions performed by an agent.

Orchestration of services is the process where actions of

an agent are combined into a service forming the agent’s

behaviour. Activities, implemented as rosnodes, are com-

bined to form a service. Orchestration of services plays an

important role in achieving interoperability. Choreography

of services represent communication among agents through

messages. Choreography of services is implemented utiliz-

ing rostopics (named buses over which rosnodes exchanges

messages).

Execution layer

The execution layer comprises actions performed by agents.

Obtaining a video stream, detecting obstacles and comput-

ing time-to-contact are the actions performed by the obstacle

detection agent. Functional decomposition of actions helps

in improving agent modularity. For example, the method to

compute time-to-contact can be replaced without affecting

other actions of the obstacle detection agent or the structure

of the framework. This functionality is demonstrated by uti-

lizing two methods to compute time-to-contact separately for

the same mission. Basic actions may be required by more than

one agent. For example, obstacle avoidance and navigation

agents require the basic actions for controlling the velocity

and orientation of the robot. This is achieved through collab-

oration among agents as explained in Sect. “Agent structure”.

123



Complex Intell. Syst. (2016) 2:45–59 53

Fig. 9 Layout of the simulation environment (not drawn to scale). The

grey region indicates the target region and the white region indicates the

operational region. The mission is completed once the robot reaches the

grey target region

Results and discussion

This section presents the experimental and simulation results.

Both simulation and real-time experiments are performed to

demonstrate the interoperability and modularity of SOIFRA

in accommodating multiple platform-independent algorithms.

The robot’s mission is to reach a target destination in an

unknown environment while avoiding obstacles utilizing

SOIFRA. This mission helps to study the performance of

the obstacle detection agent and the collaboration between

the steering agent and obstacle avoidance agents. Figure 9

shows the layout of the simulation environment. Figure 3

shows the operational environments for the simulation and

real-time experiments. In Fig. 9, the white region corresponds

to the robot operation region and the grey region indicates

the target region. A and B (Fig. 9) are the robot starting loca-

tions. The mission is completed when the robot reaches the

target region.

Let Str:AGT and Det:AGT represent the steering agent

and the obstacle detection agent; PS:ROS and topic:ROS

denote the parameter server and rostopic, while Detc:SRV,

Video:SRV and TTC:SRV denote the obstacle detection

service, video stream service and time-to-contact service,

respectively. The obstacle detection agent, upon initiation,

starts the actions for video service and obstacle detection

service and publishes the control velocity for the robot. The

steering agent subscribes to the velocity commands from

the obstacle detection agent. When an obstacle is detected,

the detection agent initiates the time-to-contact service and

updates control velocity for the robot. Two experiments are

conducted with time-to-contact estimated utilizing optical

flow (TTC-OF) and expansion of the obstacle (TTC-EO) -

based methods separately to demonstrate the modularity of

SOIFRA. If the time-to-contact service estimates that the dis-

tance to the obstacle is less than the critical distance λ (the

minimum distance to the obstacle within which action must

be taken to avoid an obstacle), the obstacle detection agent

updates the ROS parameter server. As a result, the priority

index of the steering agent is updated resulting in initiating

obstacle avoidance process. If the distance to the obstacle is

more than the critical distance, the robot continues to follow

its previous path. The critical distance, determined based on

the size and linear velocity of the robot, is fixed at 2.5 m for

the current mission. Once the obstacle detected is avoided,

the steering agent informs the obstacle detection agent that

Fig. 10 Operational sequences for obstacle detection and avoidance.

AGT and SRV represent agent and service. The detection agent

(Det:AGT) obtains video stream utilizing video:SRV service and starts

detecting obstacles through the obstacle detection service, Detc:SRV.

When an obstacle is detected, Det:AGT initiates TTC:SRV to estimate

the distance to the obstacle. When the estimated distance to the obstacle

is less than the critical distance λ, Det:AGT updates on the parameter

server, PS:ROS. The steering agent (Str:AGT) informs Det:AGT after

the obstacle is avoided

123



54 Complex Intell. Syst. (2016) 2:45–59

Fig. 11 Visulization of robots

in the simulation environment. a

Turtlebot, b Clearpath Husky, c

Hector-quadrotor, d AR Drone

Fig. 12 Simulation of a

mission where two ground

robots and two aerial robots use

TTC-EO for obstacle avoidance.

Top view (bird’s eye view) of the

path taken by the robots is

shown. Hector-quadrotor and

Husky start from A, while AR

Drone and Turtlebot start from

B. Each mission is carried out

separately

the obstacle is avoided and the navigation agent directs the

steering agent to continue to follow a straight path. Figure 10

shows these sequences of operations for obstacle detection

and avoidance.

Simulation results

Simulations are carried out utilizing two ground robots

(Turtlebot and Clearpath Husky) and two aerial robots (AR

Drone and Hector-quadrotor). Fig. 11a–d shows the visu-

alizations of Turtlebot, Clearpath Husky, Hector-quadrotor

and AR Drone in the simulation environment. Turtlebot,

Clearpath Husky and Hector-quadrotor use the simulated

model of Microsoft Kinect as vision sensor, while AR Drone

uses a simulated camera. All the cameras produce images

with 640 × 480 resolution. Gazebo, a 3D simulator for

robots, is utilized for simulation. Gazebo offers the ability

to accurately and efficiently simulate populations of robots

in complex indoor and outdoor environments. Open dynam-

ics engine (ODE) and open source high-performance library

for simulating rigid body dynamics is utilized as the physics

engine.

Figures 12 and 13 show the best results for simulations uti-

lizing TTC-EO and TTC-OF obstacle avoidance algorithms,

respectively. Each simulation (obstacle avoidance with TTC-

OF and TTC-EO) is repeated five times separately. Figures 12

and 13 show the X–Y plane (top view) of the simulation

environment. The operating region is a 20 × 20 m square, as

indicated in Fig. 9. The robots start from starting locations

A or B. Clearpath Husky and Hector-quadrotor start from

A and Turtlebot and AR Drone start from B, utilizing TTC-

EO. The positions interchange while TTC-OF is utilzed for

obstacle avoidance (Clearpath Husky and Hector-quadrotor

start from B and Turtlebot and AR Drone start from A). If

the robots move out of the operating region (indicated by

the grey shade), the mission is complete. The ground robots

move with the same velocity and the aerial robots move with

the same velocity. The aerial robots move at a higher velocity

123



Complex Intell. Syst. (2016) 2:45–59 55

Fig. 13 Simulation of a

mission where two ground

robots and two aerial robots use

TTC-OF for obstacle avoidance.

Top view (bird’s eye view) of the

path taken by the robots is

shown. AR Drone and Turtlebot

start from A, while

Hector-quadrotor and Husky

start from B. Each mission is

carried out separately

compared to the ground robots. The robots move forward in

a straight line path if there is no obstacle detected or if the

distance to the obstacle is greater than the critical distance or

if the obstacle avoidance process is completed.

Figure 12 shows that all the robots avoid two obstacles

before they exit the operational region. There are differences

in the path taken by the ground and aerial robots, though they

follow the same direction. This is due to the inherent differ-

ences between a ground robot and an aerial robot. Ground

robots are more stable and can turn in a stabilized man-

ner, while the aerial robots need some time for stabilization

after a turning manoeuvre. Once the distance to the obstacle

detected is less than the critical distance, the robots perform

a turning manoeuvre to avoid the obstacle. If the robot has

moved 0.8 m from the point where a turning manoeuvre is

initiated and if there is no obstacle detected, the robot stops

the turning manoeuvre and moves forward in the same direc-

tion. The direction of the turn depends on the position of the

obstacle in the robot’s path. If the robot senses that obstacle

is located to its left, a right turn is performed and vice versa.

This is the reason for different turning directions when the

robots start from A and B, though the operational environ-

ment is symmetrical.

Figure 13 shows the simulation results when TTC-OF is

utilized for obstacle avoidance. Turtlebot and AR Drone start

from A and Clearpath Husky and Hector-quadrotor start from

B. Figure 13 shows that Clearpath Husky and AR Drone

avoid two obstacles, while Turtlebot and Hector-quadrotor

avoid only one obstacle before exiting the operating region.

This is due to performance differences between TTC-OF and

TTC-EO in estimating the distance to the obstacle. TTC-OF

tends to have a higher error than TTC-EO and can lead to

early obstacle avoidance, as indicated by the path travelled by

Turtlebot and Hector-quadrotor. Since the obstacle avoidance

is initiated early, the robots complete their turn manoeuvre

and start moving straight early. This is the reason for different

paths taken by the Turtlebot and Hector-quadrotor.

Experimental results

Figure 14 shows the layout of the environment for the real-

time experiments. The operational environment is 4 m wide,

and 14 m long. Turtlebot and AR Drone are used for real-

time experiments. Turtlebot uses a Microsoft Kinect as vision

sensor, while AR Drone utilizes its onboard camera. Both

Microsoft Kinect and AR Drone camera generate images

with 640 × 480 resolution. /odom topic of Turtlebot (combi-

nation of wheel odometry and IMU) is utilized for Tutlebot

position estimation, while localization of AR Drone is based

on its /ardrone/odometry topic (IMU). Figures 16 and 17

show the results for real-time experiments utilizing TTC-EO

and TTC-OF obstacle avoidance algorithms, respectively.

Both the robots start from the same starting location, and the

starting location is changed collectively when obstacle avoid-

ance algorithm is changed. Turtlebot and AR Drone travel

with different velocities, with the velocity of AR Drone being

higher. The experiments (obstacle avoidance using TTC-OF

and TTC-EO) are repeated three times separately.

123



56 Complex Intell. Syst. (2016) 2:45–59

Fig. 14 Layout of the environment for real-time experiments (not

drawn to scale). The grey region indicates the target region and the

white region indicates the operational region. The mission is completed

once the robot reaches the grey target region

Figure 16 shows the best experimental results when TTC-

EO is utilized for obstacle avoidance. Both Turtlebot and AR

Drone start from the start location (0,0) and move forward

(locations are expressed as Cartesian co-ordinates). Once

the distance to the obstacle estimated is less than the crit-

ical distance, robots undergo turning manoeuvre (obstacle

avoidance). It can be seen from Fig. 16 that both the robots

avoid two obstacles before exiting the operation region. But

AR Drone and Turtlebot travel in different directions while

avoiding the first obstacle, as the location of the obstacle

detected is different. Non-linear movement of AR Drone at

the final stage of obstacle detection process results in differ-

ent turning directions for the AR Drone. Figure 17 shows

the best experimental results when TTC-OF is utilized for

obstacle avoidance. Turtlebot and AR Drone start from the

start location (14,1.75) and move towards the negative X-

axis. AR Drone avoids two obstacles, one at (7,0) and the

other at (−1.5,−2), while the turtlebot avoids one obsta-

cle at (7,0), before exiting the operational region. Both the

robots have the same turning direction, but the obstacle avoid-

ance process is initiated earlier for the turtlebot. Figure 15

shows the distance to the obstace estimated utilizing TTC-

OF (Fig. 15a) and TTC-EO (Fig. 15b). It can be seen that

distance to the obstacle estimated utilizing TTC-EO follows

the true distance after 4.5 m, while the distance to the obstacle

estimated utilizing TTC-OF decreases closer to 3 m. Table 1

shows the mean error (ME), mean absolute-error (MAE) and

mean-squared error (MSE) performances of TTC-EO and

TTC-OF averaged over the three separate runs. To study

the relation between the performance of TTC-EO and TTC-

OF with respect to the distance to the obstacle, the error

performances are analysed in ranges of 0.5 m. The error per-

formance measures are calculated using the following:

ME =
1

n

n
∑

i=1

(d̂ − dtrue) (14)

(a)

(b)

Fig. 15 Comparison between distance to the obstacle estimated utiliz-

ing TTC-OF and TTC-EO. a Estimated utilizing optical-flow-based

time-to-contact algorithm (4), b estimated utilizing expansion-of-

obstacle-based algorithm (7)

MAE =
1

n

n
∑

i=1

|(d̂ − dtrue)| (15)

MSE =
1

n

n
∑

i=1

(d̂ − dtrue)
2, (16)

where n is the number of samples in the interval, d̂ is

the distance to the obstacle estimated and dtrue is the true

distance to the obstacle. It can be seen from the error mea-

sures that TTC-EO performs better compared to TTC-OF.

This is evident from the simulation and experimental results

(Figs. 12, 13, 16, 17). The error in distance to the obstacle

estimated utilizing TTC-OF decreases as the robot moves

closer to the obstacle as explained in [2]. It is noted that the

ability of the Canny contours algorithm to detect the edges

of the obstacle varies with respect to the lighting conditions

(inherent problem with most of the vision based algorithms).

The low and high thresholds of the Canny contour algorithm

123



Complex Intell. Syst. (2016) 2:45–59 57

Fig. 16 Top view (bird’s eye

view) of the path taken by AR

Drone and Turtlebot while

completing the mission in real

time. TTC-EO is utilized for

obstacle avoidance. Each

mission is carried out separately

Fig. 17 Top view (bird’s eye

view) of the path taken by AR

Drone and Turtlebot while

completing the mission in real

time. TTC-OF is utilized for

obstacle avoidance. Each

mission is carried out separately

needs to be changed depending on day/night lighting condi-

tions.

In both simulation and real-time experiments, only the

service for obstacle avoidance is modified. The rest of the

services and the framework are not affected by this change.

Similarly, the obstacle detection service may also be modified

without affecting the rest of the framework. This demon-

strates the modularity of the framework designed. Successful

utilization of SOIFRA for collision avoidance on different

platforms such as aerial vehicle (AR Drone and Hector-

quadrotor) and ground vehicle (Turtlebot and Clearpath

Husky) prove the interoperable nature of SOIFRA.

123



58 Complex Intell. Syst. (2016) 2:45–59

Conclusion and future works

This work presents an interoperable framework for

autonomous robotic systems. The main focus of the SOIFRA

framework proposed is to generalize platform-independent

algorithms for unmanned aerial and ground robots. To

demonstrate this, two obstacle avoidance algorithms (TTC-

OF and TTC-EO) are utilized on aerial as well as ground

robots. The behaviour-based nature of SOIFRA allows the

agents to dynamically update their knowledge in real time,

leading to effective collision avoidance. Service-oriented

nature of SOIFRA helps to achieve this modularity, whereby

a service can be replaced with other similar services with-

out affecting other components of the framework. Though

the control mechanisms for aerial robots and ground robots

are completely different, the algorithms and mechanisms

for obstacle detection and obstacle avoidance are general-

ized. SOIFRA utilizes this concept to achieve interoperability

across diverse robotic platforms such as aerial and ground

robots. Interoperability of SOIFRA is established by utiliz-

ing the framework for completing the same mission on four

different robotic platforms (Turtlebot, Clearpath Husky, AR

Drone and Hector-quadrotor) for simulations and two diverse

robotic platforms (Turtlebot and AR Drone) for real-time

experiments.

The scope for improvement in SOIFRA is multifold.

The framework, at present, achieves collision avoidance

for unmanned aerial and ground vehicles. There are many

other standard requirements for autonomous robot operations

such as path planning, path tracking, simultaneous local-

ization and mapping. The framework is designed to make

way for these additional requirements. Platform-independent

path-planning and path-tracking algorithms can be eas-

ily incorporated as behaviours into the framework. Path

generation would require a non-collaborative agent while

path tracking would require a collaboration from obstacle

avoidance and navigation agents. With the incorporation of

pedestrian detection and tracking behaviours, SOIFRA can

be used for surveillance, search and rescue operations, etc.

This framework can also be improved to include autonomous

underwater vehicles in addition to ground and aerial vehicles.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecomm

ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit

to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made.

References

1. Alenya G, Nègre A, Crowley JL (2009) Time to contact for obstacle

avoidance. European Conference on Mobile Robotics

2. Arokiasami WA, Chen TK, Srinivasan D, Vadakkepat P (2015)

Impact of the length of optical flow vectors in estimating time-to-

contact an obstacle. In: Proceedings of the 18th Asia Pacific sym-

posium on intelligent and evolutionary systems, vol 2. Springer,

Berlin, pp 201–213

3. Badano BMI (2008) A multi-agent architecture with distributed

coordination for an autonomous robot. PhD thesis

4. Berenz V, Tanaka F, Suzuki K, Herink M (2011) Tdm: a soft-

ware framework for elegant and rapid development of autonomous

behaviors for humanoid robots. In: 11th IEEE-RAS international

conference on humanoid robots (Humanoids), 2011, IEEE, pp 179–

186

5. Browning NA (2012) A neural circuit for robust time-to-contact

estimation based on primate mst. Neural Comput 24(11):2946–

2963

6. Chen JY (2010) Uav-guided navigation for ground robot tele-

operation in a military reconnaissance environment. Ergonomics

53(8):940–950

7. Corke P, Hrabar S, Peterson R, Rus D, Saripalli S, Sukhatme G

(2004) Autonomous deployment and repair of a sensor network

using an unmanned aerial vehicle. In: Proceedings of the ICRA’04,

2004 IEEE international conference on robotics and automation,

IEEE, vol 4, pp 3602–3608

8. de Croon GC (2016) Monocular distance estimation with optical

flow maneuvers and efference copies: a stability-based strategy.

Bioinspiration Biomim 11(1):016004

9. Doherty P, Kvarnstrom J, Wzorek M, Rudol P, Heintz F, Conte G

(2015) HDRC3: a distributed hybrid deliberative/reactive architec-

ture for unmanned aircraft systems. In: Valavanis KP, Vachtsevanos

GJ (eds) Handbook of unmanned aerial vehicles. Springer, Nether-

lands, pp 849–952

10. Elfes A, Dolan JM, Podnar G, Mau S, Bergerman M (2006)

Safe and efficient robotic space exploration with tele-supervised

autonomous robots. In: AAAI spring symposium: to boldly go

where no human-robot team has gone before, pp 104–113

11. Fox D, Burgard W, Thrun S (1997) The dynamic window approach

to collision avoidance. IEEE Robot Autom Mag 4(1):23–33

12. Green WE, Oh PY (2008) Optic-flow-based collision avoidance.

Robot Autom Mag IEEE 15(1):96–103

13. Hennes D, Claes D, Meeussen W, Tuyls K (2012) Multi-robot col-

lision avoidance with localization uncertainty. In: Proceedings of

the 11th international conference on autonomous agents and mul-

tiagent systems, Vol 1, pp 147–154

14. Hennes D, Claes D, Meeussen W, Tuyls K (2012) Multi-robot col-

lision avoidance with localization uncertainty. In: Proceedings of

the 11th international conference on autonomous agents and mul-

tiagent systems, vol 1, International foundation for autonomous

agents and multiagent systems, pp 147–154

15. Hsu HH, Liu A (2007) A flexible architecture for navigation control

of a mobile robot. IEEE Trans Syst Man Cybern Part A Syst Hum

37(3):310–318

16. Insaurralde CC, Petillot YR (2015) Capability-oriented robot archi-

tecture for maritime autonomy. Robot Auton Syst 67:87–104

17. Khatib O (1986) Real-time obstacle avoidance for manipulators

and mobile robots. Int J Robot Res 5(1):90–98

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Complex Intell. Syst. (2016) 2:45–59 59

18. Ku CH, Tsai WH (1999) Obstacle avoidance for autonomous land

vehicle navigation in indoor environments by quadratic classifier.

IEEE Trans Syst Man Cybern Part B Cybern 29(3):416–426

19. Kunz C, Murphy C, Camilli R, Singh H, Bailey J, Eustice R, Jakuba

M, Nakamura KI, Roman C, Sato T et al. (2008) Deep sea underwa-

ter robotic exploration in the ice-covered arctic ocean with auvs.

In: IEEE/RSJ international conference on intelligent robots and

systems, 2008, IROS 2008, IEEE, pp 3654–3660

20. Lesser VR (1999) Cooperative multiagent systems: a personal view

of the state of the art. IEEE Trans Knowl Data Eng 11(1):133–

142

21. Li K, Zhang Q, Kwong S, Li M, Wang R (2014) Stable matching-

based selection in evolutionary multiobjective optimization. IEEE

Trans Evol Comput 18(6):909–923

22. Li X, Mabu S, Hirasawa K (2014) A novel graph-based estimation

of the distribution algorithm and its extension using reinforcement

learning. IEEE Trans Evol Comput 18(1):98–113

23. Liu J, Wu J (2001) Multiagent robotic systems. CRC Press, Boca

Raton

24. Lucas BD, Kanade T et al (1981) An iterative image registration

technique with an application to stereo vision. IJCAI 81:674–679

25. Maza I, Caballero F, Capitán J, Martínez-de Dios J, Ollero A

(2011) Experimental results in multi-uav coordination for disas-

ter management and civil security applications. J Intell Robot Syst

61(1–4):563–585

26. Muratet L, Doncieux S, Briere Y, Meyer JA (2005) A contribution to

vision-based autonomous helicopter flight in urban environments.

Robot Auton Syst 50(4):195–209

27. Nesnas IA, Wright A, Bajracharya M, Simmons R, Estlin T

(2003) Claraty and challenges of developing interoperable robotic

software. In: Proceedings of the 2003 IEEE/RSJ international con-

ference on intelligent robots and systems, (IROS 2003), vol 3, pp

2428–2435

28. Nwana HS (1996) Software agents: an overview. Knowl Eng Rev

11(03):205–244

29. O’Donovan P (2005) Optical flow: techniques and applications.

The University of Saskatchewan, TR 502425

30. Rezaei M, Saghafi F (2011) Optical flow-based obstacle avoidance

of a fixed-wing mav. Aircr Eng Aerosp Technol 83(2):85–93

31. Rockel S, Klimentjew D, Zhang J (2012) A multi-robot platform for

mobile robotsa novel evaluation and development approach with

multi-agent technology. In: 2012 IEEE Conference on Multisensor

fusion and integration for intelligent systems (MFI), pp 470–477

32. Sabo C, Cope A, Gurny K, Vasilaki E, Marshall JA (2016) Bio-

inspired visual navigation for a quadcopter using optic flow. In:

AIAA Infotech@ Aerospace, p 0404

33. Sišlák D, Volf P, Komenda A, Samek J, Pechouček M (2007) Agent-

based multi-layer collision avoidance to unmanned aerial vehicles.

In: International Conference on integration of knowledge intensive

multi-agent systems, 2007. KIMAS 2007, IEEE, pp 365–370

34. Tammero LF, Dickinson MH (2002) The influence of visual

landscape on the free flight behavior of the fruit fly drosophila

melanogaster. J Exp Biol 205(3):327–343

35. Tamminga A, Hugenholtz C, Eaton B, Lapointe M (2015) Hyper-

spatial remote sensing of channel reach morphology and hydraulic

fish habitat using an unmanned aerial vehicle (uav): a first assess-

ment in the context of river research and management. River Res

Appl 31(3):379–391

36. Tigli JY, Thomas M (1994) Use of multi agent systems for

mobile robotics control. In: 1994 IEEE international conference

on systems, man, and cybernetics, 1994. Humans, information and

technology, vol 1, pp 588–592

37. Tistarelli M, Grosso E, Sandini G (1991) Dynamic stereo in visual

navigation. In: Proceedings of the CVPR’91., IEEE computer soci-

ety conference on computer vision and pattern recognition, 1991,

pp 186–193

38. Ulrich I, Borenstein J (2000) VFH*: Local obstacle avoidance with

look-ahead verification. In: ICRA, pp 2505–2511

39. Vadakkepat P, Miin OC, Peng X, Lee TH (2004) Fuzzy behavior-

based control of mobile robots. IEEE Trans Fuzzy Syst 12(4):559–

565

40. Vallejo D, Remagnino P, Monekosso DN, Jiménez L, González C

(2009) A multi-agent architecture for multi-robot surveillance. In:

Nguyen NT, Kowalczyk R, Chen S-M (eds) Computational col-

lective intelligence. Semantic web, social networks and multiagent

systems. Springer, Berlin, Heidelberg, pp 266–278

41. Waibel M, Keller L, Floreano D (2009) Genetic team composition

and level of selection in the evolution of cooperation. IEEE Trans

Evol Comput 13(3):648–660

42. Willms A, Yang SX (2006) An efficient dynamic system for real-

time robot-path planning. IEEE Trans Syst Man Cyber Part B Cyber

36(4):755–766

43. Yeh CH, Yang CY (2015) Social networks and asset price dynam-

ics. IEEE Trans Evol Comput 19(3):387–399

44. Zingg S, Scaramuzza D, Weiss S, Siegwart R (2010) Mav navi-

gation through indoor corridors using optical flow. In: 2010 IEEE

international conference on robotics and automation (ICRA), pp

3361–3368

123


	Interoperable multi-agent framework for unmanned aerial/ground vehicles: towards robot autonomy
	Abstract
	Introduction
	Research contributions

	Collision avoidance
	Obstacle detection
	Obstacle avoidance
	Estimation of time-to-contact
	Estimating time-to-contact utilizing optical flow (TTC-OF)
	Estimating time-to-contact utilizing expansion  of an obstacle (TTC-EO)


	Overview of SOIFRA
	Deliberative layer
	Planner--matcher
	Agent structure

	Behaviour layer
	Execution layer

	Results and discussion
	Simulation results
	Experimental results

	Conclusion and future works
	References


