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Abstract

At 1 AU there is a distinct boundary (the stream interface) at

the leading edge of a stream in the solar wind, characterized by an abrupt

drop in density, a similar increase in temperature and a small increase

in speed. In some cases this is a tangential discontinuity; in others

it is probably evolving into a tangential discontinuity. It is

suggested that stream interfaces form in the interplanetary medium as

a consequence of the non-linear evolution of streams generated by

an increase in temperature in the solar envelope. This evolution

eventually leads to the formation of a reverse shock behind the inter-

face and a forward shock ahead of it. Two instances in which both a

stream interface and a reverse shock had developed at 1 AU are presented.

Examples of flare-generated shocks which passed through a stream and

were observed near a stream interface are also presented. It is shown

that stream interfaces are definitely not the same structures that

others have identified as piston boundaries. It is noted that slow shocks,

like stream interfaces, always occur ahead of streams and may develop in

the interplanetary medium. The importance of small-scale interplanetary

dynamical processes, especially the development of discontinuities, is

emphasized.



Introduction

Since the earliest observations of interplanetary streams (Neugebauer

and Snyder, 1966), it has been known that the density and temperature are

enhanced at the leading edge of a stream. At 1 AU, the density peak is

observed ahead of the temperature peak (Burlaga et al., 1971), because

streams are produced by heating in the solar envelope and evolve non-

linearly as they move to the earth (Burlaga et al., 1971; Siscoe and

Finley, 1972; Hundhausen, 1972; Goldstein, 1973). This paper shows that

at 1 AU there is a thin boundary between the density and protan temperature

peaks, characterized by an abrupt decrease in density, a similar

increase in temperature, and a small increase in bulk speed. This

boundary is a striking, clearly recognizable, and apparently rather

general feature of streams which is distinct from most other discontin-

uities in the solar wind. It has an origin which can be understood in

terms of stream dynamics, and it may be the site of some interesting

instabilities and transport processes, because of the exceptionally

large gradients which can develop at the boundary. It also has a

special relation to interplanetary shocks. For these reasons, it is

appropriate to give the boundary a name. Let us call it the stream

interface.

Observations of stream interfaces are presented and some particularly

interesting features are noted in the following sections. Some theoreti-

cal aspects of stream interfaces and their relations to observations are

then discussed. Finally, the observed relations between stream

interfaces and shocks are examined.
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Observations of Stream Interfaces

Existence and Nature. An example of a stream interface is shown

in Figure 1. The data are from the GSFC instruments on Explorer 43,

which are described briefly in Burlaga and Ogilvie (1973). The inter-

face occurred at 1155 UT on March 23, when the bulk speed V began to

increase in front of a stream. At the interface, the density dropped

abruptly (in < 3 min) from (11.6 + 0.3) cm-3 to (5.6 + 0.2) cm-3 and

the temperature increased similarly from (4.0 + 3) x 104 0 K to (9.0 +

1.0) x 104 °K. The discontinuity separates a region of very dense

material (Figure 1) from an anomalously hot region (see Figure 1 and

Burlaga and Ogilvie, 1973). The magnetic field intensity, B, increased

across the interface; but as will be shown, this is not a general

characteristic of stream interfaces. The magnetic field direction also

changed across the interface, but the change is small. The pressure,

P = B2/( 8 ) + np k T + n k T + n k T , where T = 1.5. x 105 °K, is
p a a e e e

shown at the top of Figure 1. Since P is continuous across the inter-

face and since n, T, and B change appreciably, the stream interface is

most probably a tangential discontinuity. The slopes of P (t) and V (t)

are continuous across the interface.

Another stream interface is shown in Figure 2, also based on

Explorer 43 data. This occurs near 0500 UT on March 31, at a time when

the speed began to increase ahead of a stream. The jumps in density

and temperature are large (from ~ (10.5 + .3) cm-3 to (4.5 + .2) cm-3

and from (1.25 + .10) x 105 oK to (2.8 + 0.1) x 105 °K, respectively),

but the boundary is thicker than in the previous case, the transition
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occurring in s 30 min. instead of <3 min. Another difference is that

the pressure diminishes continuously through this interface, so it

cannot be described as a tangential discontinuity. In this case, the

slopes of P (t) and V (t) do change across the interface. The magnetic

field intensity does not change through the interface, but the direction

fluctuates considerably.

In order to determine whether or not interfaces are a general

feature of the solar wind at 1 AU, plasma data from Ogilvie's instru-

ment on Explorer 34 for the period June 3 to December 16, 1967 were

examined in search of stream interfaces. Despite interrupted coverage

due to immersion of the spacecraft in the magnetosphere near perigee

and despite a great variety of stream patterns (see Burlaga and Ogilvie,

1970 a, Figure 2, for a macroscale plot of V and T), at least 11 stream

interfaces were present, i.e. an average of at least approximately two

per solar rotation.

Five of the Explorer 34 stream interfaces are shown in Figure 3.

The errors in density and temperature are appreciably larger in the

Explorer 34 data than in the Explorer 43 data, and the resulting errors

in P are so large that one cannot identify changes as accurately as

those in Figure 2. Consequently, only the basic parameters, V, n, T,

and B are shown in Figure 3. In every case one sees the characteristic

signature of a stream interface--a large, abrupt drop in density

accompanied by a similar increase in temperature, separating a dense

region from a hot one, and occuring at the leading edge of a stream.

The change usually occurs at the foot of the stream, but this is not

always so as demonstrated by the August 17, 1967, event in Figure 3.
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The profiles of B (t) in Figure 3 support our earlier conclusion

that B does not change in a characteristic way across an interface and

that one cannot identify a stream interface from magnetic field data

alone. Figure 3 shows a small change in IBI in some events, but no

change in others. Inspection of higher time resolution data revealed

that the direction of B can change discontinuously, smoothly, randomly,

or not at all across an interface. In most cases, it is not possible

to calculate a "normal" (1 x B ) for an interface using only a stream

interface because of fluctuations in B, but it is evident that B and

B tend to lie more nearly along the spiral direction than perpendicular

to it or radially. This is consistent with the stream interfaces being

surfaces which extend along the spiral direction.

One might expect that a stream interface would be recorded as an

SI- by geomagnetic observatories, since the decrease in density implies

a drop in momentum flux (see the review by Burlaga, 1972). However, an

examination of magnetograms from 12 stations for each of the events in

Figure 3 revealed that in no case did a distinct SI- occur at all

stations simultaneously.
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Theory

The observations just presented raise several theoretical questions.

Do the large gradients in n, T, and B cause instabilities? Is the bulk

speed jump across the interface due to a shear; and if so, can this

generate the Kelvin-Helmholtz instability? How is heat transported

across the interface? These interesting questions will be left

unanswered, but some basic questions concerning the speed of the inter-

face, the change in P and V across the interface, and its origin will

now be considered.

Motion. Let us approximate the interface by a discontinuity moving

with respect to the sun with speed U, and let the pressure be P1 ahead

(early time) and P behind (later time), respectively. Let V be the
2

solar wind speed with respect to the sun. Conservation of mass and

conservation of momentum flux give Q1 (V1 -U) = Q2 (V2 -U) and el (V1 -U)x

(V2 -V1 ) = P1 -P 2 (e.g., see Burlaga, 1971 -Eq. 5.1 and Eq. 5.3) from

which one obtains for the speed of the interface relative to the speed

of the plasma ahead of it

U-V (P- ) (1)

1 l (Q Q 2)

If Pi = P2 , as for the interface shown in Figure 1, then U = V,

and the interface is simply convected with the plasma, consistent with

the earlier statement that this interface is a tangential discontinuity.

If P1 P2, the interface will move with respect to the plasma

ahead of it. This should be the case for the interface shown in

Figure 2. Putting the observed values of P1 , P2, 1, and e2 into (1),
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gives U - V1 = 35 + 6 km/sec. The observed speed change across

the interface is V2 - V = 56 + 7 km/sec. Thus, U - V1 is approximately

equal to the mean speed (V2 - V1 )/2. One can regard the motion of the

interface as a consequence of the overtaking of the slower part of the

stream by the faster part. If the steepening continues without resis-

tance, the interface will evolve from a boundary with thickness De 5 x

10 km at 1 AU to a discontinuity in a time on the order of D/(V2 - V1),

which is a few hours and corresponds to a distance of a few hundredths

of an AU beyond 1 AU. Thus, one expects the interface in Figure 2 to

evolve into one like that in Figure 1. This is one way in which tan-

gential discontinuities can form in the solar wind.

Jump condition. Figure 2 shows that the slopes of P (t) and

V (t) can change across stream interface. A relation between the change

in 3P/3t and 6V/3t is obtained as follows.

Since the interface passes a fixed observer in a matter of minutes,

which is much smaller than the characteristic time of the stream evolu-

tion, the pressure of a small volume element containing the interface

does not change significantly as it passes the observer, and

dP bP
t = y+ (v.V) P2 0

Thus, at a spacecraft,

P P- (V + V P + V P

E (Vx y aY z z

where (x, y, z) are solar ecliptic coordinates, x pointing toward the

sun and z toward the north ecliptic pole. In general, near 1 AU,

(P 3P but V << V so V 3P is small compared to V 3P . Similarly,
y y x y x
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V -- is probably negligible. Thus,
z az

-v P - - P

at x ax (2)

where V is the measured bulk speed. This simply says that the measured

time variations of P are actually the result of the convection of a

non-uniform but stationary pressure profile. A similar relation holds

for . The equation of motion gives

V x  + V + V vz  1 OP
x x y y z- ze x

vx 6vx vx
Now and - can be comparable to - , but V << V and V << V3 y x y x
Thus,

aY 1 aP
V i P
ax e 3x

Using (2) and the corresponding relation for 3V we obtain

v _ 1 aP

at ev at

which gives the desired jump condition

1 aP 12  6V 2- -(3)ev at 1 t I 1

v ap
In general, and can change across the interface even if

at at
bv

P and V do not. If there is no change in across the interface,

1 aP
then must be continuous across the boundary. This is the case

QV at
for the interface in Figure 1, where - and - are zero on both

sides of the boundary. In the case of the interface in Figure 2, -- <0

av 6V 6P
ahead of the interface and > 0 behind, so that < 0; -- <0

CP 1 3P 1
behind while - > 0 ahead, giving < 0. This agrees with

at QV at 1

(3). Quantitatively, using the slopes drawn in Figure 2, one finds

that the RHS of (3) is 30%0 smaller than the LHS, but the differences is
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within the uncertainties.

Origin. The explanation of the origin of stream interfaces is

implicit in the model results of Hundhausen (1973). This is the same

model which Burlaga et al. (1971) used to explain the separation between

the temperature peak and density peak in front of a stream, extended

to examine the evolution of a stream at ater times and larger distances

from the sun. It is based on the equations which Hundhausen ani Gentry

(1969) integrated to follow the motion of a shock, but uses a different

condition for the variation of the temperature at the inner boundary.

Hundhausen's solution for the density and speed, pressure, and tempera-

ture profiles (Hundhausen, 1973 Figures 2, 3, 4, and 5) show that three

discontinuities form somewhere between 1 AU and 1.5 AU. One, characterized

by an increase in n, T, and V, develops into a forward shock. This is

followed by a second discontinuity across which the density decreases

and temperature increases, and which occurs at the leading edge of the

stream, behind the velocity jump associated with the shock; this clearly

has the signature of a stream interface. The third discontinuity is

characterized by a decrease in n and T and an increase in V; this evolves

into a reverse shock. Unfortunately, Hundhausen's published results do

not show the detailed development of these discontinuities near 1 AU.

Nevertheless, the results show that a discontinuity with characteristics

of a stream interface is a natural consequence of the dynamical evolution

of a stream which originates from an increase in temperature near the

sun (0.133 AU = 28 Ro) and moves into a quiet solar wind.

From the results of Hundhausen (1973), one expects that beyond z 1.5

AU, stream interfaces will always be associated with shock pairs. The
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three discontinuities need not form simultaneously, however. For example,

Formisano and Chao (1972) show how the reverse shock can form before the forward

shock. Thus, the sequence of development is likely to be stream interface-

reverse shock-fast shock (see Figure 4). The actual positions at which

the discontinuities form will change from one event to the next.

The data which we examined showed that stream interfaces are usually

not observed in association with shocks at 1 AU. Our interpretation

implies that somewhere beyond 1 AU but 4 1.5 AU reverse shocks will

always be observed with stream interfaces. One might expect to see

such a result occasionally even at 1 AU. Such observations and other

shock associations are discussed in the next section.

-9-



Relations between Stream Interfaces and Shocks

Reverse Shocks and Stream Interfaces. Burlaga (1970) identified a

reverse fast MFD shock in Explorer 34 data and noted that this occurred

at a fast stream. These observations are shown in Figure 5. Formisano

and Chao (1972) suggested that this formed by the steepening of a stream,

essentially by the same process described in more detail by Hundhausen

(1973). They suggested that a forward shock was also developing, con-

sistant with the general idea that shock pairs should form at streams.

The orientation of this shock surface (along the spiral direction) is

consistent with this mechanism. Here we make the additional observation

that ahead of the shock (at -0700 UT on September 28, 1967) there is

another boundary, having the signature of a stream interface. The

boundary is actually quite distinct, the density and temperature changing

appreciably in less than three minutes.

Chao et al. (1973) haverecently published evidence of another

reverse fast shock which they suggested is associated with a discontinuity

that is developing into a forward fast shock (see Figure 6). The two

"shocks" are at the two ends of the pressure pulse ahead of a stream,

and the reverse shock is oriented in the spiral direction. Thus, the

two discontinuities appear to be formed by the interaction of the stream

with the material ahead of it, as suggested by Chao et al. Here we

make the additional observation that between the reverse shock and the

developing forward shock is a stream interface.

The two examples just discussed are clearly consistent with our

view that stream interfaces originate in the solar wind as the result
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of the steepening of a stream.

Stream Interfaces and Flare Associated Shocks. Since fast, forward

shocks can be generated by flares as well as by streams, and since flare-

generated shocks can move through streams.(Ogilvie and Burlaga, 1974),

one might expect to find "coincidental!"" associations between stream

interfaces and fast forward shocks, thereby complicating the interpre-

tation of shock ensembles. Here we show two such coincidental associations.

Figure 7 shows a stream interface at 0345 UT on November 29, 1967

which is followed by a fast, forward, MFD shock. The shock was not

produced by the stream, since it did not occur ahead of the stream and

the pressure pulse. Evidently, the shock simply happened to be propa-

gating through the stream.

Another example of a forward fast shock associated with a stream

interface is shown in Figure 8. In this case, the shock precedes the

interface, so it is possible that they are causally related. However,

Ogilvie and Burlaga (1974) concluded from a detailed analysis of this

event that the shock was probably generated by a flare and simply passed

through the stream. Thus, the association of the fast shock and stream

interface is coincidental in this case, too.

Slow Shocks. Here we digress briefly to discuss another feature

in Figure 8. Behind the stream interface in Figure 8 is a discontinuity

which has the signature of a slow, forward MID shock, i.e., B decreases

while n, T, U, and P increase (e.g., see Burlaga, 1971 for a general

discussion of such shocks). However, a detailed analysis of this event,

using several sets of parameters consistent with the measurements and
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their uncertainties for the states before and after the discontinuity,

shows in every case that the flow speed does not exceed the slow mode

speed of the discontinuity. Thus, the event is not a slow shock. Since

there is no other MFD discontinuity with such a signature and with P1 ,

P2, we must conclude that either MFD is not applicable or the structure

is not a stationary discontinuity. There is no strong reason to deny

the applicability of MFD on this scale, since it satisfactorily describes

many of the discontinuities that have been observed (Burlaga, 1971). On

the other hand, the structure is rather broad and occurs in a very

dynamic situation, so it is reasonable to consider that it is just

evolving into a slow shock.

The "slow shock" just described occurs at the leading edge of a

stream. In fact, all of the slow shocks which have been reported in

the literature occur at the leading edge of a stream. This point is

demonstrated in Figure 9 which shows plots of the bulk speed and the

location with respect to the streams of the slow shocks for each of

the five known slow shocks. The location of slow shocks suggests that

they are formed in the interplanetary medium by stream interactions.

The theory of this process has not been developed. The slow shocks

shown in Figure 9 are reported in Chao and Olbert (1970), Burlaga and

Chao (1974), Mikalov et al. (1973).
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Relations between Piston Boundaries and Interplanetary Stream

Interfaces. Several authors have suggested that some or all flare

associated shocks are driven by a jet of gas (the "piston") and that

the front of this jet is a sharp boundary. The model was formulated

quantitatively by Parker (1963). Observations of this boundary have

been elusive, however. Hirshberg et al. (1970) and Unti et al. (1973)

tentatively identified such a surface using plasma and magnetic field

data. Some papers on cosmic ray propagation (e.g. Quenby, 1971;

Barnden, 1973) attempt to identify this surface using only magnetic

field and cosmic ray data. Here we consider whether or not stream

interfaces are related to the piston boundaries.

Hirshberg et al. (1970) identified a piston boundary as an abrupt

increase in density, an increase in j/n , and a decrease in BI.

Unti et al. (1973) chose a discontinuity with a similar signature; an

increase in n, n /n and a small drop in IBI, and also noted an increase

in T. Barnden (1973) used only magnetic field data, but found that B

dropped across each of the several piston boundaries which he identified.

Quenby (1971), using only magnetic field observations, identified a pis-

ton boundary for one event as an abrupt decrease in B. All of the

above results are consistent in that they find a decrease in B across

the piston boundary. This alone, however, indicates that these

boundaries are probably not stream interfaces, because B does not

usually drop across an interface. The results of Hirshberg et al.

(1970) and Unti et al. (1973) are consistent in that both see a den-

sity increase, but this also excludes a stream interface, since the density
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always drops across an interface. Finally, while Hirshberg et al. and

Unti et al. find an increase in n/np , the two interfaces for which we

have a'-particle data show no such increase. In summary, the piston

boundaries which have been identified in the papers listed above are

not stream interfaces. This is consistent with the view that stream

interfaces are the result of interplanetary dynamical processes rather

than flares.
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Summary

It was shown that in general there is a distinctive boundary at

the leading edge of a stream at 1 AU, called the stream interface,

which separates a region of high density from one of high proton tempera-

ture. It is characterized by an abrupt drop in density, a similar

rise in temperature, and a small increase in bulk speed. In some

cases the interface is stationary and has the nature of a tangential

discontinuity. In other cases the pressure changes across the inter-

face, which presumably moves with respect to the plasma ahead of it;

it is suggested that such an interface evolves into a tangential dis-

continuity just beyond 1 AU. When the interface is in equilibrium,

the pressure P is constant across it but the slope of P (t) may change.

Stream interfaces probably originate in the interplanetary medium

as a result of the non-linear steepening of streams generated by an

increase of the temperature in the solar envelope. Such a process

separates the density and temperature pulses, between which the stream

interface forms (Burlaga et al., 1971), and it ultimately leads to a

pressure pulse within which the stream interface appears and which is

bounded by a shock pair (Hundhausen, 1973). Near 1 AU the shocks are

usually not yet developed, and only the stream interface is observed.

Presumably a reverse shock begins to form (Formisano and Chao, 1972)

slightly beyond 1 AU. Farther from the sun a fast forward shock also

develops.

We showed two cases in which a stream interface preceded a reverse

fast shock. In one of these cases the stream interface and a
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reverse shock followed a discontinuity which appeared to be developing

into a forward shock. These results are consistent with the model

described in the preceding paragraph.

One must be careful in analyzing stream interfaces associated with

fast shocks, because in some cases the association may be coincidental.

In particular, we showed two cases in which a flare generated shock

happened to be passing through a stream near a time when a stream

interface was observed. There is also the possibility of confusing

stream interfaces with "piston boundaries" (e.g., Hirshberg et al., 1970),

but in all of the cases studied in this paper, stream interfaces have

characteristics which are distinctly different from those of piston

boundaries.

Our results indicate that a variety of ensembles of discontinuities

can be observed in the interplanetary medium. The basic results of this

paper are schematically illustrated in Figure 4, which shows a stream

interface, reverse shock, and forward shock developing ahead of a stream

(in that order) interacting with a driven flare-generated shock followed

by a "piston boundary." Even more complicated configurations are

possible in practice, since other discontinuities are normally present

in the solar wind (e.g., Burlaga, 1971) and still others can form as

shocks interact with all of the discontinuities that may be present

(Parker, 1963).

Finally, we stress the importance of dynamical processes on a

small scale. Although the microscale tends to be in equilibrium

(Burlaga and Ogilvie, 1970 b), this is not always the case. One

-16-



cannot always assume that an abrupt change can be identified with one

of the MFD discontinuities, since the later are derived for steady

state conditions whereas the former might be undergoing dynamical

changes. On the other hand, tangential discontinuities, forward and

reverse fast shocks, and slow shocks can form in the interplanetary

medium as a result of such processes.

-17-



Acknowledgements

The plasma and magnetic field data used in this study are from the

experiments of Drs. K. W. Ogilvie and N. F. Ness, respectively. Helpful

comments on a draft of this manuscript were provided by Drs. R. Lepping,

J. Scudder, K. Ogilvie, and E. Barouch. Dr. J. Chao contributed to the

analysis of slow shocks.

-18-



References

Barnden, L. R., The Large-Scale Magnetic field configuration associated
with Forbush decreases, to be published, 1973.

Burlaga, L. F., Directional Discontinuities in the Interplanetary
Magnetic Field, Solar Physics, 7, 54 1969.

Burlaga, L. F., A Reverse Hydromagnetic Shock in the Solar Wind, Cosmic
Electrodynamics, 1, 233, 1970.

Burlaga, L. F., Hydromagnetic Waves and Discontinuities in the Solar
Wind, Space Sci. Rev., 12, 600, 1971.

Burlaga, L. F., Discontinuities and Shock Waves in the Interplanetary
Medium and Their Interaction with the Magnetosphere, Solar Terres-
trial Physics/1970: Part II, 135, ed. Dyer, D. Reidel, Dordrecht-
Holland, 1972.

Burlaga, L. F. and J. K. Chao, Reverse and Forward Slow Shocks in the
Solar Wind, J. Geophys. Res., 76, 7516, 1971.

Burlaga, L. F. and K. W. Ogilvie, Heating of the Solar Wind, Astrophys.
J_, 159, 659, 1970a.

Burlaga L. F. and K. W. Ogilvie, Magnetic and Thermal Pressures in the
Solar Wind, Solar Physics, 15, 61, 1970 b.

Burlaga, L. F. and K. W. Ogilvie, D. H. Fairfield, M. D. Montogmery,
and S. J. Bame, Energy Transfer at Colliding Streams in the Solar
Wind, Astrophys. J., 164, 137, 1971.

Chao, J. K., Lepping, R. L., and J. Binsack, A Reverse Shock Associated
with a Stream-Stream Interaction: The February 29th, 1968, Event,
NASA/GSFC X-692-73-246, submitted to J. Geophys. Res., 1973.

Chao, J. K. and S. Olbert, Observation of Slow Shocks in Interplanetary
Space, J. Geophys. Res., 75, 6394, 1970.

Formisano, V. and J. K. Chao, On the Generation of Shock Pairs in the
Solar Wind, Cosmic Plasma Physics, p. 103, ed. Karl Schindler,
Plenum Press, New York - London, 1972.

Goldstein, B., Nonlinear Corotating Solar Wind Structure, submitted to
Astrophys. J., 1973.

Hirshberg, J., A. Alksne, D. S. Colburn, S. J. Bame, and A. J. Hundhausen,
Observation of a Solar Flare Induced Interplanetary Shock and Helium -
Enriched Driver Gas, J. Geophys. Res., 75, 1, 1970.

-19-



Hundhausen, A. J., Coronal Expansion and Solar Wind, Springer-Verlag,
New York, 1972.

Hundhausen, A..J., Nonlinear Model of High-Speed Solar Wind Streams,
J. Geophys. Res., 78, 1528, 1973.

Hundhausen, A. J., and R. A. Gentry, Numerical Simulation of Flare-
Generated Disturbances in the Solar Wind, J. Geophys. Res., 74, 2908,
1969.

Mihlov, J. D., D. S. Colburn, B. F. Smith, C. P. Sonett, and J. H.
Wolfe, Pioneer Plasma and Magnetic Field Measurements in
Interplanetary Space during August 2-17, 1972, preprint, 1973.

Neugebauer, M. and C. W. Snyder, Mariner II Observations of the Solar
Wind, 1. Average Properties, J. Geophys.. Res., 71, 4469, 1966.

Ogilvie, K. W., and L. F. Burlaga, A Discussion of Interplanetary Post-
Shock Flows with Two Examples, J. Geophys. Res., In press, 1974.

Parker, E. N., Interplanetary Dynamical Processes, John Wiley, New York,
1963.

Quenby, J. J., The Mechanism for the Forbush Decreases in Particular for
the Event of February 26, 1969, Proc. 12th Intl. Conf. Cosmic Rays,
Hobart, 2, 730, 1971.

Siscoe, G. L., and L. T. Finley Solar Wind Structure Determined by
Corotating Coronal Inhomogeneities, 2, Arbitrary Perturbations,
J. Geophys. Res., 77, 35, 1972.

Unti, T., M. Neugebauer, and C. S. Wu, Shock System of February 2,
1969, J. Geophys. Res., 78, 7237, 1973.

-20-



Figure Captions

Fig. 1. A stream interface across which P does not change.
Note the decrease in n, the increase in T and V, and the position
with respect to the stream.

Fig. 2. A stream interface across which P, dP/dt, and dV/dt change.

Fig. 3. Additional examples of stream interfaces. In every case one
sees a decrease in n, an increase in T and V, and the stream
interface occurs in front of a stream. There is no systematic
change in B.

Fig. 4. Origin of stream interfaces. It is suggested that stream
interfaces originate in the interplanetary medium as a result of
the non-linear steepening of streams generated by an increase in
temperature in the solar envelope. This same process eventually
leads to the development of a reverse shock and a forward shock,
probably in that order. A flare-generated shock is also shown
propagating through the stream.

Fig. 5. This is a case where the process described in Figure 4 has
evolved to the point where two discontinuities have formed ahead of
a stream (the stream interface and a reverse fast shock).

Fig. 6. Another case of a reverse shock and a stream interface ahead
of a stream at 1 AU. In this case one might also be seeing a for-
ward fast shock in the process of development in a way consistent
with the model in Figure 4.

Fig. 7. An example of a flare-generated shock which is propagating
through a stream and happens to be near a stream interface.

Fig. 8. Another example of a flare-generated shock which is propagating
through a stream. In this case it has probably passed through the
stream interface which is shown. Another discontinuity is shown
which appears to be developing into a slow shock.

Fig. 9. This shows the position with respect to streams of all the
slow shocks reported in the literature. Slow shocks always develop
in front of a stream.
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