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Abstract

Chronic Helicobacter pylori infection is a critical risk factor for gastric cancer (GC). However, only 1–3 % of people
with H. pylori develop GC. In gastric carcinogenesis, non-H. pylori bacteria in the stomach might interact with H.

pylori. Bacterial dysbiosis in the stomach can strengthen gastric neoplasia development via generating tumor-
promoting metabolites, DNA damaging, suppressing antitumor immunity, and activating oncogenic signaling
pathways. Other bacterial species may generate short-chain fatty acids like butyrate that may inhibit carcinogenesis
and inflammation in the human stomach. The present article aimed at providing a comprehensive overview of the
effects of gut microbiota and H. pylori on the development of GC. Next, the potential mechanisms of intestinal
microbiota were discussed in gastric carcinogenesis. We also disserted the complicated interactions between H.

pylori, intestinal microbiota, and host in gastric carcinogenesis, thus helping us to design new strategies for
preventing, diagnosing, and treating GC.
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Background

Helicobacter pylori infection is the critical risk factor for

gastric cancer (GC) [1–4]. Inflammation and injury in-

duced by H. pylori can continuously damage the func-

tion and architecture of the gastric epithelium [5].

However, it should be mentioned that the successful re-

moval of H. pylori does not necessarily inhibit the GC

development [6]. Thus, there may be other factors in-

volved in the carcinogenesis of GC which require further

research. Numerous intestinal and gastric microbes have

been known as procarcinogens in colorectal cancer and

GC [7–11], or probiotics that increase patients’ im-

munotherapy response with cancer [12]. However, there

are few reports about microbiota composition in precan-

cerous lesions.

Normal intestinal flora (IF) has been indicated to ac-

celerate the beginning of gastrointestinal intraepithelial

neoplasia (GIN) and increase its development [13]. Non-

H. pylori bacteria, pathogenic or commensal IF, may

colonize the stomach and show the excessive risk of gas-

tric adenocarcinoma, especially in susceptible patients

with H. pylori [14, 15]. INS-GAS (insulin-gastrin) trans-

genic mice with high levels of circulating gastrin develop

spontaneous atrophic gastritis and GIN with an 80 %

prevalence 6 months after H. pylori infection. Evaluation

of this model revealed that commensal intestinal bacteria

may promote GC. [16, 17]. Male restricted ASF (a re-

stricted microbiota confined to three species of Altered

Schaedler’s Flora) and IF INS-GAS mice presented gas-

tric pathology as the Correa model, even without H. pyl-

ori infection [18]. Although ASFs are beneficial for mice

[19], it appears that their colonization in the stomach

may be involved in the production of various oxidizing

agents, oxygen radicals, nitrosamines, and genotoxic
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compounds and mutagens. Various studies have shown

that human gastric colonization with bacteria other than

H. pylori such as Actinobacteria, Proteobacteria, Fuso-

bacteria, Firmicutes, and Bacteroides (many are colo-

nized normally in the lower intestine) can affect the

gastric adenocarcinoma risk [17, 20–22]. Lactobacillus is

a facultative anaerobe representing a gut microbiota

component and is in general a probiotic in-transit pas-

senger. The gastric mucosa colonization by Lactobacillus

shows an alteration in cancerous patients with gastric

microenvironment. A study in Taiwan showed that

Lactobacillus is abundantly found in GC patients. This

seems to be due to the use of probiotic microbes as a

dietary supplement [23].

Gastritis can change the fecal microbiome compos-

ition, which might possibly be aggravated by H. pylori

infection [24]. The gut microbiome changes could be as-

sociated with chronic gastrointestinal diseases, the close

interaction of H. pylori infection, gut microbiome, and

gastritis [24]. Numerous pieces of evidence show that

bacteria and host response interplay may form com-

mensal microbiota composition though the precise

mechanism of gastric inflammation leading to fecal

microbiota variations is not indicated properly. Gastric

microbiota and luminal pH changes may drive the com-

munity structure of gut microbiota [25].

Previous studies stated that colonization with non-H.

pylori bacteria, gut commensals, changes the ‘resident’

gastric microbiota and the host equilibrium [11]. This

article mainly reviewed the influence of intestinal micro-

biota on GC. Next, it discussed the potential mecha-

nisms of intestinal microbiota in carcinogenesis.

Moreover, the interactions between H. pylori, intestinal

microbiota, and host in cancer induction were disserted.

In the last part of this review, the effects of H. pylori and

gut microbiota on metabolic pathways were discussed.

Main text

Gut microbiota in GC

Lactobacillus, Lachnospiraceae, Escherichia-Shigella,

Nitrospirae, and Burkholderia are enhanced in GC pa-

tients compared with controls [8], confirming previous

results with respect to the fact that Lachnospiraceae and

Lactobacillus are abundantly found in GC [15, 26–28].

The findings pose a hypothesis; gastric colonization

through non-H. pylori bacteria affects the GC risk, and

many of them also colonize the intestine. The study by

Ferreira et al. approved a notable decline in the abun-

dance of Helicobacter and a significant increase in the

genera Achromobacter, Clostridium, Citrobacter, Rhodo-

coccus, and Lactobacillus in Portuguese patients with

GC in comparison with chronic gastritis, the ORs were

20.5 (95 % CI 7.4–59), 5.7 (95 % CI 2.2–15), 9.9 (95 % CI

4.3–23), 4.2 (95 % CI 1.7–11), and 6.3 (95 % CI 2.9–14),

respectively [11]. These members of microbiota are

present as commensals in the intestinal mucosa but

might be opportunistic pathogens [29, 30]. Evaluations

on gastric microbiota show that Lactobacillus is highly

abundant in progressive histological phases of gastric

carcinogenesis and in GC patients [8, 10, 11, 26]. A

study in Sweden found that Lactobacillus was one of the

predominant genera in GC patients [15]. Increase of

Lactobacillus sp from non-atrophic gastritis, to intestinal

metaplasia and to GC was characterized in Mexican pa-

tients’ stomach microbiota using the microarray G3

PhyloChip [26]. In another study from Taiwan, Lactoba-

cillus was a highly abundant species in GC patients [23].

Some commensal bacteria were overrepresented in GC.

A large amount of Klebsiella pneumoniae and Escheri-

chia–Shigella (belonging to Enterobacteriaceae taxa) was

detected in GC patients’ gastric mucosa [7, 8]. A study

in China showed that the dominant phyla in the feces of

patients with gastric lesions were Firmicutes, Bacteroi-

detes, and Proteobacteria that accounted for the 99.05 %

of all fecal bacteria, and Bacteroides, Escherichia-Shi-

gella, Prevotella_9, and Ruminococcus_2 were the pre-

dominant genera [31]. Another study showed that there

existed 12 bacterial genera enriched in GC, involving

Prevotella_9, Klebsiella, Lactobacillus, Escherichia–Shi-

gella, Streptococcus, Veillonella, Alistipes, Bifidobacter-

ium, Christensenellaceae_R-7_group, Ruminococcaceae_

UCG − 002, Prevotella_2, and Parabacteroides. Entero-

bacteriaceae and Lachnospiraceae had to be considered

at the family level [32]. Veillonella, Lactobacillus, and

Streptococcus of GC were increased, in terms of relative

abundance, by 32.38-fold, 58.92-fold, and 15.93-fold, and

Tyzzerella_3 and Lachnospira were declined by 8.85-fold

and 3.37-fold, respectively. These reports show that the

genera Lactobacillus, Streptococcus, Veillonella, Tyzzer-

ella_3, and Lachnospira were employed to predict GC

[32]. A study in China has shown that some Actinobac-

teria and Firmicutes species were considerably decreased

in patients’ feces with esophageal cancer or GC com-

pared to healthy individuals (P < 0.05) (Table 1) [33]. In

comparison with normal and peritumoral tissues, Prevo-

tella copri and Bacteroides uniformis showed a reduction

while Propionibacterium acnes, Streptococcus anginosus,

and Prevotella melaninogenica experienced an enhance-

ment in tumor tissues [34]. Based on a recent study on

various GC subtypes, Patescibacteria, Bacteroidetes, and

Fusobacteria were enhanced in signet-ring cell carcin-

oma, while Acidobacteria and Proteobacteria showed an

incremental trend in adenocarcinoma [35].

Potential mechanisms of gut microbiota in carcinogenesis

Gut microbiota mechanisms contributing to carcinogen-

esis are not clear yet. Dysbiotic microbial community

may increase the risk for gastric carcinoma by sustaining
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the gastric inflammatory process and triggering immune

responses [11]. Also, microbial dysbiosis can increase in-

flammation and dysregulate the immune response, caus-

ing DNA mutations, hence, hastening the induction

and/or progression of cancers. Such a mechanism may

be due to interactions between fecal microbiota, H. pyl-

ori infection, and host responses [31]. It is well known

that gastritis activity is correlated with H. pylori infec-

tion. Subsequent studies also confirmed such an associ-

ation between gastritis activity and fecal microbiota.

Intestinal flora could also increase the inflammatory re-

sponses in the mice stomach infected by H. pylori, pro-

moting the development of neoplasia and gastric

atrophy [36].

Chronic inflammation

Inflammation aggravates the progression of tumor and

hastens metastasis and invasion. Inflammatory cytokines

damage DNA in the epithelium directly and induce

inflammation-associated cancers [37]. The inflammation

associated factors can stimulate oncogenes (e.g., KRAS

mutation) and inactivate tumor-suppressor genes (e.g.

p53 mutation) [38, 39]. Investigations show that there

exists an association between detrimental alterations in

the composition of fecal microbiota and the increase in

proinflammatory cytokines that induces the disease. K.

pneumoniae and Colibactin-producing Escherichia coli

can cause chronic inflammation, DNA damage, and mu-

tation [40, 41]. Biagi et al. correlated the Firmicutes and

Bacteroidetes reduction and Proteobacteria proliferation

with IL-6 and IL-8 increases [42]. IL-11 and IL-6 can

sensitize signal transducer and activator of transcription

3 (STAT3) activator, exerting a considerable effect on

epithelial cells’ transformation [43]. The symbiont Bac-

teroides fragilis, which expresses polysaccharide A, is

able to suppress proinflammatory IL-17 generation

which is developed via Helicobacter hepaticus [44]. In-

testinal commensals, segmented filamentous bacteria

(SFB) in particular, were correlated with the gut immune

maturation regulation and IL-17 generation (Fig. 1A).

[45]. Lipoteichoic acid (LTA) also binds to CD14 or

Toll-like receptor 2 (TLR2), inducing the excessive se-

cretion of proinflammatory factors [46, 47].

Microbial metabolites

Intestinal microbial dysbiosis has been associated with

cellular immunity and immune function, which affects

the GC development [48, 49]. NOD-like receptors

(NLRs) and TLRs [50] can bridge this interplay, eventu-

ally promoting carcinogenesis in a chronic process. TLRs

critically affect the innate immune system, assuming

their capability in differentiating host molecules from

Table 1 The relationships of Gut microbiota with GC in the world

Gut microbiota
(genera/species)

Related to increase
↑/decrease ↓ of GC

Country ASR-Both
sexes
(GLOBOCAN
2018)

Study
(Reference)

Lactobacillus, Lachnospiraceae, Escherichia-Shigella, Nitrospirae, and
Burkholderia

↑ China 20.7 Wang et al.,
2016
[8]

Lactobacillus and Lachnospiraceae ↑ South
Korea

39.6 Eun et al., 2014
[28]

genera Achromobacter, Clostridium, Citrobacter, Rhodococcus, and
Lactobacillus

↑ Portugal 11. 0 Ferreira et al.,
2018 [11]

Lactobacillus ↑ China 20.7 Coker et al.,
2018 [10]

genera Streptococcus, Lactobacillus, Veillonella, and Prevotella ↑ Sweden 3.3 Dicksved et al.,
2009 [15]

Lactobacillus sp. and Lachnospiraceae ↑ Mexico
City

5.6 Aviles-Jimenez
et al., 2018 [26]

Lactobacillus ↑ Taiwan - Hsieh et al.,
2018 [23]

Escherichia–Shigella and Klebsiella pneumoniae (belonging to
Enterobacteriaceae taxa)

↑ South
Korea

39.6 Jo et al., 2016
[7]

12 bacterial genera, includingPrevotella_9, Escherichia–Shigella, Klebsiella,
Lactobacillus, Streptococcus, Alistipes, Veillonella, Bifidobacterium,
Ruminococcaceae_UCG–002, Christensenellaceae_R-7_group,
Parabacteroides, and Prevotella_2

↑ China 20.7 Qi et al., 2019
[32]

Species ofFirmicutes and Actinobacteria ↓ China 20.7 Li et al., 2019
[33]
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microbial molecules. NLRs adjust the innate immune re-

sponse, correspondingly activating inflammasome-

mediated dysbiosis and modulating microbial compos-

ition (Fig. 1B). The gut microbiota can generate butyrate,

which can differentiate regulatory T cells and IL10, gen-

erating T cells via the activation of histone deacetylase

inhibition (HDACi), interactions with G protein-coupled

receptor 43 (GPR43), and IL10 up-regulation [51]. LTA

and short chain fatty acids (SCFAs) have opposite roles

in carcinogenesis [52]. LTA accelerates malignant trans-

formation. In contrast, SCFAs can mediate immunoreg-

ulation by Tregs, hence showing anti-carcinogenic and

anti-inflammatory effects [51, 53, 54]. TLRs can develop

gastrointestinal tract tumors by activating the STAT3

and NFKB signaling pathways [50]. The TLR4 activation,

the receptor for LPS generated by the gut microbiome in

the epithelial cells, can induce tumor development by

up-regulating prostaglandin-endoperoxide synthase 2

(PTGS2) and activating the epidermal growth factor re-

ceptor (EGFR) signaling pathway in mice receiving

AOM (Fig. 1C) [55]. In addition, the activation of the

STAT3 signaling pathway up-regulates the expression of

TLR2 in gastric epithelial cells, promoting tumor devel-

opment in mice stomach [56].

Fig. 1 The mechanism of gut microbiota in carcinogenesis. A). Chronic inflammation: Inflammation accelerates the invasion, metastasis, and
progression of the tumor. Inflammatory cytokines are directly involved in DNA damage and lead to inflammation-associated cancer. Inflammatory
factors can inhibit tumor suppressor genes such as p53, and activate oncogenes such as KRAS. Colibactin produced by Escherichia coli and
Klebsiella pneumoniae can cause DNA damage and mutations and trigger chronic inflammation. Proliferation of Proteobacteria is associated with
an increase in IL-6 and IL-8. Polysaccharide A (PSA) expressed by symbiont Bacteroides fragilis can suppress IL-17 induced by Helicobacter
hepaticus. Specific filamentous bacteria (SFB) are involved in the production of IL-17 and the regulation of gut immune maturation. B). Immune
regulation: Dysbiosis of the gut microbiota is associated with cellular immunity and immune function, which affects GC development. The innate
immune system can detect the structural components of gut microbiota such as flagellin, lipopolysaccharide (LPS), and peptidoglycans through
Toll-like receptors (TLRs) and NOD-like receptors and regulate the innate immune response. C). Microbial metabolites: Butyrate through
interaction with G protein-coupled receptor 43 (GPR43), up-regulating IL10 expression, and activating histone deacetylase inhibition (HDACi) can
induce the differentiation of IL10-producing T cells and regulatory T cells. The Lipoteichoic acid (LTA) produced by the gut microbiota specifically
binds to CD14 (cluster of differentiation 14) or TLR2 and causes the excessive secretion of proinflammatory agents, thus promotes malignant
transformation. LPS produced by intestinal microbiota enhances tumor development by regulating the high expression of prostaglandin-
endoperoxide synthase 2 (PTGS2) and activating the epidermal growth factor receptor (EGFR) signaling pathway
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Bacterial genotoxins

It has been shown that intestinal bacteria are able to po-

tentiate carcinogenesis by the specific toxins inducing

DNA damage. As the disturbed microbes overgrow, they

increase accumulating endotoxins and exotoxins, like

cytolethal distending toxin from Shigella dysenteriae,

cytolethal distending toxin and colibactin from E. coli,

hydrogen peroxide, extracellular superoxide from En-

terococcus faecalis, Enterotoxigenic B. fragilis toxin, a

virulence factor activating the NFKB and WNT signaling

pathways in epithelial cells [57–59], from B. fragilis, etc.

These toxins directly or indirectly cause genomic in-

stability, DNA damage, and the invasion of adenocarcin-

omas [40, 60–62]. Colibactin in E. coli can induce DNA

damage, influence genomic instability [40, 63], and pro-

mote carcinogenesis. Colibactin-producing K. pneumo-

niae can induce chronic inflammation, DNA damage,

and mutation [41]. Cytolethal distending toxin produced

by the Helicobacter species and E. coli can induce DNA

damage in mammalian cells [64–67]. The accumulation

of base excision repair (BER) intermediates and unre-

paired DNA cause genomic instability and carcinogen-

esis [68, 69].

Mechanism of H. pylori in carcinogenesis

Genetic diversity can be defined as a leading characteris-

tic of H. pylori strains due to intra-/intergenomic recom-

bination and point mutations [70] which is correlated

with the H. pylori pathogenicity, affecting the risk of ma-

lignancy [71]. H. pylori can regulate many signaling

pathways, stimulate inflammation and immune re-

sponses, and trigger epithelial atrophy, achlorhydria, and

dysplasia cancer [72]. H. pylori infection induces both

innate and adaptive immune responses [73]. Upon rec-

ognition of H. pylori pathogen-associated molecular pat-

terns (PAMPs) by the pattern recognition receptors

(PRRs) of host cells, the initial stages of the innate im-

mune responses are triggered [74]. As the main compo-

nent of PRRs, TLRs have the ability to bind the LPS,

CpG repeats, unmethylated nucleic acids, flagellin,

double-stranded RNA, lipoteichoic acid, and lipoproteins

of H. pylori [75]. Upon recognition of PAMPs, by ac-

tivating activator protein (AP)-1, interferon regulatory

factor (IRF), and NF-kB, TLRs manage to promote

the expression of inflammatory mediators like TNF-α,

IL-1, IL-2, IL-6, IL-8, IL-12, and IFN-γ [76, 77]. H.

pylori is able to escape the recognition by the host

PRRs of the innate immune response, which may lead

to its long-term survival [78]. Concerning adaptive

immunity, CD4+ T cells mediate the host immune re-

sponse toward H. pylori infection [79]. CD4+ T cells

have a higher abundance in GC samples than the

peritumoral and normal tissues, while CD8+ T cells

exhibited the opposite trend [80].

Inflammatory cytokines are highly accumulated in H.

pylori-infected individuals’ stomach, including

interferon-c, IL-1, TNF-α, IL1b, IL-7, IL-6, IL-8, IL-18,

and IL-10. The oncogenic pathways’ activity containing

ERK/MAPK, NF-kB, sonic hedgehog, PI3K/Akt, Ras,

Wnt/beta-catenin, and STAT3 is up-regulated with H.

pylori carrying cytotoxin-associated gene A (CagA). In

contrast, with induced P53 mutations, tumor suppressor

pathways become inactivate [81, 82]. H. pylori infection

can induce methylations on E-cadherin CpG islands [83]

and tumor-suppressor genes, consisting of those which

encode a forkhead box transcriptional regulator

(FOXD3) and the trefoil factor 2 (TFF2), which markedly

increase the adenocarcinoma risk in the stomach [84].

The oncoprotein CagA and vacuolating cytotoxin A

(VacA) are critical pathogenic factors of H. pylori infec-

tion [1, 85–87]. H. pylori expresses the CagA protein,

which is a virulence factor that promotes cell prolifera-

tion by the activation of the signaling pathways of WNT,

PI3K-AKT, and NF-kB [88–90], and reduces epithelial

cell apoptosis by inhibiting TP53 [91]. Also, CagA has

been approved to activate stemness features and stimu-

late the epithelial-mesenchymal transition (EMT) in gas-

tric cells [92–96]. By acting on gastric epithelial cells,

CagA promotes carcinogenesis through inflammation,

proliferation induction, apoptosis inhibition, cell-cell

bonding disruption, and loss of cell polarity [97]. The

VacA toxin suppresses host immunity via inhibiting the

activation of T-cells and inducing regulatory T cells

[98–101]. The host immune response can be also modu-

lated by VacA through inhibition of immune cell prolif-

eration and stimulation of mast cells to produce

proinflammatory cytokines; further promoting the devel-

opment of gastritis associated with H. pylori, peptic ul-

ceration, and GC [102]. It induces cell vacuolation [87,

103–105] and autophagy in human-derived gastric epi-

thelial cells [106, 107] through directly affecting mito-

chondria [108–110], activating vascular endothelial

growth factor [111, 112], up-regulating MAP kinase and

ERK1/2 expression [113], up-regulating Wnt/beta-ca-

tenin pathway necessary for cell differentiation and

growth [114], and suppressing GSK3 by the PI3K/Akt

signaling pathway [115].

H. pylori virulence factors are involved in the host im-

mune response [79]. The release of inflammatory media-

tors can activate Th1/Th17 cell responses and stimulate

the production of TNF-α, IL-17, and IFN-γ [116]. There-

fore, Th1/Th17 cells contribute to mediating the inflam-

matory response of patients suffering from H. pylori

infection [116]. Inflammation may result in loss of acid-

secreting parietal cells, hence, increasing the stomach

pH, giving rise to declined H. pylori levels and incremen-

tal colonization of other bacteria [117]. H. pylori and

chronic inflammation can promote the generation of
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both reactive nitrogen species (RNS) and reactive oxygen

species (ROS), leading to DNA damages and induction

of apoptosis or autophagy in the gastric epithelial cells

[118]. Therefore, H. pylori can induce gastric carcino-

genesis through genetic instability. Moreover, ROS in-

duces DNA mutations in H. pylori, promoting its

adaption to the host environments [119]. H. pylori-de-

rived LPS can also cause specific impacts on GC cells

through TLR4. H. pylori LPS stimulation activates the

TLR4 signaling pathway in GC cells through affecting

the expression of soluble factors or surface molecules

which might help their evasion from CTLs or NK

cells by IFN-γ–mediated cellular immune reaction

[120]. Low induction of cellular immune response by

H. pylori LPS can promote the host susceptibility to-

ward GC development [120]. Based on Kidd et al., H.

pylori LPS showed a specific mitogenic influence on

gastric enterochromaffin-like cell neoplasia. LPS may

exhibit poor virulence in evoking an inflammatory re-

sponse while showing high potential in augmenting

cell growth [121]. The enhanced LPS biosynthesis

pathway of GC samples promoted microbiota-induced

inflammations [122, 123].

Interplays between H. pylori and gut microbiota

H. pylori infection can affect gut microbiota [122, 124].

It is associated with altered gastric microbiota and dys-

biosis implicated in gastric disease pathogenesis [10, 11].

Wang et al.’s study showed that H. pylori infection was

related with variations in human intestinal microbial

composition and function in Chinese people [125].

Colonization of the stomach with IF (intestinal flora)

promotes H. pylori-associated GC. IF effect in develop-

ing GC during H. pylori infection has been confirmed in

previous studies [36]. Some bacteria, including Bacter-

oides, Clostridium histolyticum, Prevotella spp., and

Lactobacilli have been associated with H. pylori infection

in animal models and human trials [126–128]. Prevotella

copri is known as a gut microbe that plays a role in the

immune system. It was enriched significantly in H. pyl-

ori-positive patients. The continuous H. pylori

colonization in the stomach brings about the host im-

mune response [128, 129]. A study on a high-risk popu-

lation showed that the genera Gemella, Rhodococcus,

Acidovorax, and Erysipelotrichaceae_UCG-004 in fecal

samples were associated with current H. pylori infection

[31]. The relative abundances of dominant phyla in the

gut of patients with positive H. pylori infection, involving

Firmicutes, Bacteroidetes, and Proteobacteria are mark-

edly different from those of individuals with negative H.

pylori infection and may be associated with gastric le-

sions. The average relative abundances, for Proteobac-

teria and Firmicutes, showed high trends in the past H.

pylori infection group (47.11, 20.53 %) in comparison

with the negative group (23.44 and 9.05 %, respectively)

although the p-values (0.068 and 0.246, respectively) re-

vealed no meaningful variations [31]. A study on 1,123

Japanese adults approved more Lactobacillus in patients

with H. pylori-infected patients suffering from severe

atrophic gastritis [130]. According to Iino et al., infection

with H. pylori initially affected the Lactobacillus species’

composition ratio in the gut microbiota prior to the pro-

gression of atrophic gastritis and proposed a greater

Lactobacillus abundance in patients with H. pylori who

suffered from severe atrophic gastritis [130]. Based on a

German study, H. pylori increased the lactobacilli

growth in fecal microbiome [126]. In the study by Yang

et al., fecal microbiome was investigated in children with

H. pylori-positive/-negative gastritis and healthy control

groups. It was shown that at family and genus levels, the

relative abundances of Enterobacteriaceae and Bacteroi-

daceae were common in gastritis with and without H.

pylori infection, while the relative abundances of Lacto-

bacillaceae, Bifidobacteriaceae, and Lachnospiraceae

were high in healthy control group. To evaluate the H.

pylori effect on gut microbiome among children, the

fecal microbiome was analyzed in H. pylori-positive and

-negative gastritis groups. The higher abundance of Lac-

tobacillales and Betaproteobacteria and the lower abun-

dance of Alphaproteobacteria were observed in H.

pylori-positive group. Higher Streptococcus and Collin-

sella abundance was found at the genus and family levels

in H. pylori-positive group relative to H. pylori-negative

group [24]. The H. pylori-infected children also showed

increased the number of gut microbiota including Firmi-

cutes, Proteobacteria, Prevotella, and Clostridium com-

pared with those without the infection [131]. In a study

by Maldonado-Contreras, microbial community in H.

pylori-positive subjects indicated an increase in the

counts of Proteobacteria, Acidobacteria, and Spiro-

chaetes [17]. In another study, the gut microbiota of in-

dividuals infected with H. pylori was reported to elevate

in members of Succinivibrio, Enterococcaceae, Coriobac-

teriaceae, and Rikenellaceae. The greater abundance of

these genera in individuals with H. pylori infection may

be associated with the early stages of cancer develop-

ment and H. pylori pathogenesis [132].

Various studies have shown that H. pylori infection af-

fects the structure of the gut microbiota population. In

contrast, some have reported that gut microbiota affects

H. pylori colonization. As the diversity of intestinal flora

microbiota increases, the level of H. pylori colonization

decreases [36]. H. pylori eradication also incremented

microbial diversity of the stomach [133]. Study of sub-

jects at different gastric carcinogenesis histologic stages

(gastritis, intestinal metaplasia, and GC) showed an in-

verse association between H. pylori load and microbial

diversity of non-cancer gastric biopsies, whereas GC
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showed a lower diversity in comparison with other sam-

ples having the same H. pylori abundance; the difference

could be assigned to antibiotic treatment [133]. Lactoba-

cillus casei has been reported to inhibit the growth and

colonization of H. pylori in the stomach [134]. Other

studies have proved contradictory results about Lactoba-

cillus. A study on H. pylori and Lactobacillus coisolates

from humans did not prove a significant effect of lacto-

bacilli on H. pylori strains [135]. A study on the gut

microbiota of children with negative H. pylori showed

the higher relative abundance of bacteroidia, gammapro-

teobacteria, clostridia, and betaproteobacteria, and a

greater bacterial diversity and richness [136]. A study in

China on children’s stool samples showed that at the

genus and family levels, the lower abundances of Erysi-

pelotrichaceae, Pseudomonadaceae, and Megasphaera

were seen in H. pylori-positive group relative to H. pyl-

ori-negative group. It was also shown that the frequency

of Faecalibacterium and Roseburia in the H. pylori-posi-

tive group was reduced compared to the healthy control

group [24]. Many groups have employed sequencing-

based and PCR-based methods to show that individuals

with negative H. pylori have a very diverse gastric micro-

biota that is dominated by five predominant phyla: Pro-

teobacteria, Bacteroidetes, Firmicutes, Actinobacteria,

and Fusobacteria [16, 17, 137]. Conversely, H. pylori is

the utmost abundant bacterium in the stomach and in-

volves the 97 and 72 % of all sequence reads among the

subjects with positive H. pylori [16, 137]. In a study by

Maldonado-Contreras, the microbial community in in-

dividuals with positive H. pylori was known by a decline

in Bacteroidetes, Actinobacteria, and Firmicutes counts

[17]. Bik et al., reported that the individuals with nega-

tive H. pylori carry the higher abundant phyla of Bac-

teroidetes, Firmicutes, and Actinobacteria [16].

Conversely, a study from China showed that the relative

abundance of Bacteroidetes was greatly reduced from

H. pylori negative to past infection community

(66.16 %, 33.01 %, respectively; p = 0.007). Rhodococcus

and Acidovorax had slightly lower average relative

abundance at the genus level in patients that are cur-

rently infected with H. pylori compared with others that

are not currently infected (p = 0.017 and 0.016, respect-

ively). It was also shown that the average relative abun-

dance of the two genera (the phylum of Bacteroidetes;

Barnesiella and Parabacteroides) was decreased among

the groups having the different status of H. pylori infec-

tion (negative: 1.15 and 2.44 %, past infection: 0.58 and

1.27 %, respectively) [31].

H. pylori and gut microbiota interaction in cancer

The interactive associations between H. pylori and other

gastric bacteria have not been completely understood

[102]. H. pylori infection has been linked to altered

gastrointestinal microbiota and dysbiosis, all of which

have been linked to the pathogenesis of gastric diseases

[10, 11]. It is not, however, clear whether infection with

H. pylori itself approves the growth of unwanted micro-

organisms or an altered microbiota brings about benefi-

cial situations for the colonization of H. pylori [123].

Probably, there is a multifaceted interaction, where the

H. pylori colonization contributes to the growth of some

microbes and vice versa. It is likely that dysbiosis alters

gastric mucosa which is highly desired for the

colonization of H. pylori [124].

Some researchers believe that H. pylori is more of a la-

tent or opportunistic pathogen than a pathogenic bacter-

ium and can be considered a commensal organism. This

is important because we know that the majority of the

world’s population is infected with H. pylori and

colonization occurs with bacteria that carry or do not

carry critical virulence factors at an early age. However,

it should be noted that severe gastrointestinal diseases

or complications occur mainly in adults with age > 40

years and only in < 10 % of infected individuals. This low

incidence clearly showed that H. pylori is more of a la-

tent or opportunistic pathogen than a pathogenic bacter-

ium, and that virulence factors play little role in the

outcome of the disease [138]. Long-term colonization of

H. pylori and its interaction with other gastric micro-

biota appear to alter gastric mucosal dysbiosis and lead

to the development of severe gastrointestinal disease, in-

cluding GC, by inducing persistent and long-term in-

flammatory responses [31, 124].

It can be speculated that the alterations of gut micro-

biota induced by H. pylori may affect the development

of GC since the composition of microbiota stimulates

immune responses at a systemic and local level; more-

over, the development of GC is affected by inflammatory

signaling [31]. The interaction between gut microbiota

and H. pylori is not known yet and literature reveals in-

consistent results [132]. The gastritis activity is perceived

for its tight correlation with H. pylori infection, which is

further approved by similar changes observed in the

fecal microbiota from the subjects with non-active gas-

tritis and past infection. Additionally, the same alteration

tendencies were found for major genera or phyla, includ-

ing reduced Bacteroidetes abundance and increased Pro-

teobacteria or Firmicutes abundances, with gastric lesion

severity and H. pylori infection status (particularly the

status of past infection). Furthermore, it states that

changes in intestinal microbiota may develop precancer-

ous gastric lesions related to H. pylori and carcinogen-

esis [31]. It has been suggested that lactic acid-

producing bacteria may promote gastric inflammatory

reactions induced by H. pylori [24]. Lactic acid bacteria

promote immune tolerance, providing the platform for

colonization of other carcinogenic bacteria [139].
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By modulating the acidity of the stomach, H. pylori

could change the gastric microbiome profiles, promoting

H. pylori-associated disorders. Alterations in the gastric

environment that decline acid secretion can encourage

the growth of NOC-producing bacteria, thus elevating

the chance of gastric carcinogenesis [102]. Th1/Th17

cells contribute to the inflammatory response of H. pyl-

ori-infected patients [116, 140] Inflammation increases

gastric pH, which decreases H. pylori levels and in-

creases non-H. pylori bacteria in the stomach [117].

There is a significant difference in the microbial profiles

and composition of early and advanced GC, reflecting

the changes related to GC progression. The gastric

microbiome alterations in early GC stages could be

assigned to host genetic changes, H. pylori infection,

bacterial virulence, and adaptation to the environment.

Constrained principal coordinate analyses indicated the

influence of H. pylori and cagA and vacA genotypes on

the gastric microbiome structure. The detected micro-

bial fingerprint can be regarded as a biomarker for clin-

ical evaluation of GC risk among high-risk cases [141].

Effect of H. pylori and gut microbiota on metabolic

pathways and carcinogenesis

Gut microbiota changes correlate with different inflam-

matory and metabolic illnesses. Little is known about

the effect of H. pylori on downstream gut microbiota

though many studies have examined the correlation be-

tween gastric microbiota and H. pylori [132]. Micro-

biome alterations are often followed by variations in

microbial functions. The relative abundance of 19 gut

microbial pathways differs significantly between H. pyl-

ori-negative and H. pylori-positive subjects [142]. Persist-

ent H. pylori infection can induce detrimental

inflammatory processes besides the impact on host mi-

crobes [143]. Epidemiological studies show that H. pylori

infection is related with the lower levels of vitamin B12

(VB12) in the blood [144, 145]. The H. pylori infection-

related intestinal microbiota dysbiosis can influence the

VB12 production. VB12 is a cobalt corrinoid. As humans

cannot produce VB12, it is generated exclusively by the

microorganisms, especially anaerobes [146]. In the study

of Wang et al., it was observed that the levels of plasma

VB12 and gut microbial VB12 biosynthesis were mean-

ingfully lower in the subjects with positive H. pylori in

comparison to the subjects with negative H. pylori (p <

0.05, Wilcoxon test). Lower VB12 biosynthesis module

was linked to the lower levels of VB12 concentrations in

subjects with H. pylori infection, manifesting that H. pyl-

ori infection-related gut microbiota dysbiosis enhances

the VB12 deficiency risk. This shows that some changes

in gut microbial species and functions correlate with H.

pylori infection, suggesting that the gut microbial shift in

the patients with H. pylori infection may raise VB12

deficiency indirectly [125]. In addition, previous studies

have inferred that gastric sinusitis, induced by H. pylori

infection, may develop type B chronic gastritis, followed

by reduced the secretion of gastric acid, leading to VB12

malabsorption [145, 147]. Thus, both the absorption

capacity and production of VB12 can be attenuated by

H. pylori infection, augmenting the VB12 deficiency risk.

Low serum vitamin B12 levels are significantly correlated

to the elevated risk of non-cardia gastric adenocarcin-

oma (NCGA) [148]. H. pylori infection has been also re-

lated to food-bound vitamin B12 malabsorption [149,

150] possibly because of the atrophic gastritis induction

which is accompanied by achlorhydria (increased gastric

pH). Furthermore, vitamin B12 absorption needs acid-

producing gastric mucosa, allowing for vitamin B12

cleavage from its binding proteins [151]. As a result, any

stimulus inducing chronic atrophic gastritis can enhance

the risk of NCGA, disturb vitamin B12 absorption, and

thus, declines its serum concentrations [148]. Since vita-

min B12 uptake necessitates intact gastric mucosa for

acid production, the findings proposed vitamin B12 as a

potential serologic marker of NCGA-preceding atrophic

gastritis [148].

A recent study on children has shown that altered in-

testinal microbiota, gastritis, and H. pylori interact with

each other. Possibly, H. pylori changes the gut micro-

environmental cues, like pH alterations that cause this

compositional shift between native communities to com-

pensate. This compensation will be translated into dis-

tinctive functional genes contributing to crucial

metabolic pathways [132]. It has also been shown that

gut microbiome influenced by gastritis and H. pylori in-

fection changes the body’s basal metabolic function [24].

Seventeen KEGG pathways revealed notable variations

in H. pylori-infected group and healthy control group.

The results of this study manifested the meaningful in-

crease of activity in children’s metabolic pathways, who

are H. pylori-positive [24]. However, peptidoglycan bio-

synthesis was depleted in the H. pylori-positive group as

metabolism-related pathways (fatty acid metabolism,

LPS biosynthesis, beta-lactam resistance, xenobiotics

metabolism by cytochrome P450, glycosphingolipid bio-

synthesis–ganglio series, glycosphingolipid biosynthesis–

globo series, N-glycan biosynthesis, and glycosaminogly-

can degradation) were enriched in the H. pylori-positive

group [24]. H. pylori is dependent on unsaturated fatty

acid (UFA) biosynthesis to maintain its membrane func-

tion and structure [152]. The microbial UFA level is

meaningfully increased in the blood of the patients de-

veloping H. pylori-induced peptic ulceration [153]. Based

on these results, it can be said that H. pylori is associated

with the high metabolism of lipid. According to the

microbiome’s functional analysis, lipid metabolism path-

way was increased in the gastritis group, showing that
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gut microbiome similarly affects H. pylori-induced gas-

tritis (Fig. 2) [24]. UFA biosynthesis plays a decisive role

in the integrity of membrane structure and function. H.

pylori can grow at anaerobic conditions [152], allowing

for H. pylori persistence and induction of carcinogenic

consequences within the gastric niche.

Effect of gut microbiota on cell metabolites and

carcinogenesis

Intestinal bacteria generate different metabolites affect-

ing the progression and development of gastrointestinal

tract tumors [154]. Polyamines, generated by gut bac-

teria and host cells, largely influence different pathologic

and biologic processes, such as translation, stress resist-

ance, gene regulation, and cell differentiation and prolif-

eration [155]. Polyamines suppress antitumor immunity

and promote cancer cells’ proliferation, invasion, and

metastasis [156]. SCFAs are dietary fiber fermentation

products generated by intestinal microbiota, such as pro-

pionate, acetate, and butyrate. They can maintain micro-

biota homeostasis and the intestinal barrier integrity and

suppress inflammation and cancer [157]. SCFAs such as

butyrate, generated by the gut microbiota, may inhibit

carcinogenesis and inflammation through blocking the

activation of the NFKB signaling pathway, and

differentiating IL10-producing T cells and regulatory T

cells [51, 158, 159]. Moreover, butyrate can act as a his-

tone deacetylase inhibitor to suppress the proliferation

of the cells, induce apoptosis, and suppress the develop-

ment of the tumor [160–162]. In contradiction, low bu-

tyrate concentrations may potentiate the tumor growth

that, in a mouse model, suppresses DNA mismatch re-

pair deficiencies (Fig. 3) [163].

Functional analysis of the gastric microbiome indi-

cated a significant reduction in the production of urease

and bacterial flagella synthesis at early GC stages,

whereas fructose glycolysis and glycosides hydrolysis

showed an enhancement. The frequency of glucose-6-

phosphate dehydrogenase exhibited a decrease, reflecting

a decrement in carbohydrate degradation. The relative

frequency of 6-phosphofructokinase (COG205) showed

a drastic reduction in advanced GC cases [141]. Numer-

ous bacteria (e.g. Nitrospirae, Lactobacillus, Neisseria,

Staphylococcus, Haemophilus, Clostridium, and Veillo-

nella) promote gastric carcinogenesis through stimula-

tion of the N-nitroso compounds (NOCs) production [8,

164]. Higher levels of lactic acid bacteria were found in

GC patients [165]. These bacteria may enhance the GC

risk by several mechanisms such as elevated generation

of ROS, NOCs, and lactate in addition to inducing EMT

Fig. 2 The H. pylori infection-related dysbiosis of gut microbiota correlates with the low levels of vitamin B12 (VB12) production. Gastric sinusitis
caused by H. pylori infection is also associated with the decreased production and absorption of vitamin VB12. KEGG (Kyoto Encyclopedia of
Genes and Genomes) pathways and pathways related to metabolisms (lipopolysaccharide (LPS) biosynthesis, beta-lactam resistance,
glycosphingolipid biosynthesis–globo series, glycosphingolipid biosynthesis–ganglio series, fatty acid metabolism, xenobiotic metabolism by
cytochrome P450, N-glycan biosynthesis, glycosaminoglycan degradation, and other glycan degradation) are increased in H. pylori infection, and
peptidoglycan biosynthesis pathways are decreased in infection with this bacterium. Both H. pylori infection and gut microbiota dysbiosis are
associated with the high metabolism of lipid
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and immune tolerance [102]. In vitro and in vivo investi-

gations suggested the stimulating role of lactic acid bac-

teria in ROS generation which may lead to DNA

damage. Enhanced the formation of NOCs can promote

mutagenesis, angiogenesis, and the expression of proto-

oncogenes, resulting in apoptosis inhibition [139, 166].

Lactic acid bacteria-produced lactate is a robust energy

source for cancer cells [167] with a regulatory role in

various carcinogenesis issues such as tumor angiogenesis

and metastasis [168]. These bacteria are capable of pro-

moting EMT with contributive roles in tumor invasion

and metastasis [169] through induction of multipotency

state [139].

Microbiome-based GC therapy

Conventional GC therapies such as surgery, chemother-

apy, and radiotherapy have not shown high efficacy

[102]. H. pylori eradication could be an effective ap-

proach to reduce the GC risk. Antibiotic treatment of H.

pylori has been shown to alter the gastric microbiome

composition [133, 164]. Regarding the increasing rate of

antibiotic resistance of H. pylori, novel H. pylori eradica-

tion strategies are urgently required. Some probiotics

have shown promises in the prevention of antibiotic-

induced adverse impacts, an increase in H. pylori

eradication rate, and the reduction of fluctuations in the

gut microbiome profiles [170]. Lactobacillus supplemen-

tation can effectively eradicate H. pylori [171, 172] and

reduce the chance of GC development [102]. Some

Lactobacillus strains mitigated H. pylori by inhibiting

its adhesion to epithelial cells, production of organic

acids or bacteriocins, and suppression of mucosal in-

flammation [173, 174]. Lactobacillus acidophilus and

Lactobacillus bulgaricus can decrement the H. pylori

adhesion to gastric mucosal cells [175], L. bulgaricus

showed inhibitory impacts on IL-8 production of mu-

cosal cells by modulation of the TLR4/IkBa/NF-kB

pathways [175]. A probiotic mixture containing Lacto-

bacillus and Bifidobacterium showed helpful influ-

ences against H. pylori, at low side effects [176]. A

combination of Bacillus cereus, Enterococcus faecalis,

L. acidophilus, and Bifidobacterium infantis increased

the host immunity and declined inflammation among

GC cases undergoing gastrectomy [177].

Despite the traditional carcinogenic role of bacteria,

new studies have revealed their anticancer features. The

anticancer properties of bacteria can be assigned to vari-

ous mechanisms such as colonization in tumors, releas-

ing active agents, a carrier for anticancer drugs delivery,

suppression of vital nutrients for tumor metabolism and

Fig. 3 Gut microbiota produce various metabolites that are involved in the development and progression of cancer. Polyamines play important
roles in translation, gene regulation, stress resistance, antitumor immunity suppression, cell proliferation, invasion, and metastasis. Short chain fatty
acids (SCFAs) generated by intestinal microbiota, such as butyrate, acetate, and propionate can maintain microbiota homeostasis and the
intestinal barrier integrity. Butyrate produced by gut microbiota can suppress inflammation and carcinogenesis by blocking the signaling pathway
of NFKB activation. Butyrate can induce the differentiation of regulatory T cells and IL10-producing T cells. Butyrate also acts as a histone
deacetylase and leads to the inhibition of cell proliferation, stimulation of apoptosis, and suppression of tumor development
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proliferation, reinforcement of host immunity, and bio-

film formation [102, 178, 179]. The KLA peptide is a

pro-apoptosis peptide KLAKLAKKLAKLAK with anti-

cancer activities through apoptosis induction by dis-

rupting mitochondrial membrane; it however showed

poor membrane permeability [180]. HPRP-A1 (H. pyl-

ori ribosomal protein) and its enantiomer HPRP-A2

(15-mer cationic peptides) can be derived from the

N-terminus of H. pylori ribosomal protein L1 [181].

HPRP-A1 and HPRP-A2 have exhibited powerful anti-

microbial and anticancer features. HPRP-A1—a

membrane-active peptide—is capable of disrupting the

tumor cell membrane. It is largely employed in drug

delivery to cancer cells [182]. HPRP-A1 can facilitate

the entry of KLA peptides to cancer cells, hence, pro-

moting tumor cell death [183]. Apoptosis induction of

HPRP-A2 in the GC cells is achieved via elevation of

ROS production; activation of caspases (3, 8, and 9);

reduction of mitochondrial membrane potential, and

cell cycle arrest within the G1 phase [184].

Conclusions

Mechanistic studies evaluating how gut microbes regu-

late health and promote gastrointestinal cancers are still

at the early stage. Nevertheless, researchers have deter-

mined that gut microbiota are in close relation with

humans and markedly influence GC and human health.

Researchers have taken some steps to regulate gut mi-

crobes. The objectives are multifaceted, including the

regulation of human metabolism, immune, and inflam-

matory reaction, as well as inhibiting carcinogenesis and

cancer progression. Significant advances have been made

in understanding the interaction between H. pylori and

intestinal microbiota in the development of gastritis and

cancer. However, there have been controversies in the

findings of different studies which seem to be due to en-

vironmental differences (e.g., diet, etc.) or genetic differ-

ences of the host. Detailed studies in well-defined

human populations are still required to compare the

composition differences of the gut microbiome in differ-

ent anatomical regions of the stomach of individuals de-

veloping H. pylori infection with and without neoplastic

lesions. Future investigations are recommended to assess

the effect of the gut microbiome composition in various

anatomical stomach regions on the risk of cancer. These

could be carried out by the site-specific topographical

mapping of the microbiota in the absence or presence of

H. pylori and by assessing variations with respect to the

states of the disease along the gastric carcinogenesis cas-

cade [185]. Deeper and better understanding of the rela-

tionship between H. pylori-related precancerous gastric

lesions and gut microbiota, and the complicated inter-

action between them can have a significant impact on

the design of new strategies for the prevention, diagnosis

and treatment of GC.
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