
Interplay between elastic interactions and kinetic processes 

in stepped Si (001) homoepitaxy 

Wei Hong1, Zhenyu Zhang2, 3, 1 and Zhigang Suo1

1Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 

2Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 

37831 

3Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN 37996 

 

A vicinal Si (001) surface may form stripes of terraces, separated by monatomic-layer-

high steps of two kinds,  and .  As adatoms diffuse on the terraces and attach to or detach 

from the steps, the steps move.  In equilibrium, the steps are equally spaced due to elastic 

interaction.  During deposition, however,  is less mobile than .  We model the interplay 

between the elastic and kinetic effects that drives step motion, and show that during homoepitaxy 

all the steps may move in a steady state, such that alternating terraces have time-independent, but 

unequal, widths.  The ratio between the widths of neighboring terraces is tunable by the 

deposition flux and substrate temperature.  We study the stability of the steady state mode of 

growth using both linear perturbation analysis and numerical simulations.  We elucidate the 

delicate roles played by the standard Ehrlich-Schwoebel (ES) barriers and inverse ES barriers in 

influencing growth stability in the complex system containing (S

AS BS

AS BS

A+SB) step pairs. B
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I Introduction 

Because crystalline silicon is the foundation of many modern technologies, fundamental 

understanding of the energetics and atomic rate processes involved in Si homoexpitaxy 

constitutes an important area of basic research [1-22].  One primary objective of such studies is 

to gain precise control of the growth modes under various physically realistic conditions. 

Knowledge learned from this prototype model, in turn, may find applicability in other growth 

systems. 

In this paper, we present a theoretical study of the interplay between elastic and kinetic 

effects on a surface vicinal to (001), tilted towards the [110] direction by a miscut angle (Fig. 1).  

We consider the case where the vicinal angle is sufficiently small, such that the surface consists 

of alternating terraces of two variants, TA and TB, and alternating monatomic-layer-high steps of 

two kinds, SA and SB [1, 9, 10]. The two variants of the terraces have identical atomic structures, 

except for a 90° rotation, with the dotted lines on each terrace in Fig. 1 representing dimer rows.  

The two kinds of steps, however, have dissimilar atomic structures [1].  During homoepitaxy, 

atoms from the gas phase deposit on the surface and diffuse on the terraces.  As atoms attach to 

or detach from the steps, the steps move. 

Several existing experimental observations motivated our model.  During homoepitaxy, 

the  steps can catch up with the  steps to form bilayer steps [5].  Upon annealing, the 

bilayer steps split and relax to equally spaced monolayer steps [3, 9].  To account for the 

observation that  steps are less mobile than  steps, we require that adatoms on terraces 

overcome high energy barriers to attach to S

BS AS

AS BS

A steps, but low energy barriers to attach to SB steps 

(Fig. 1).  This requirement is also consistent with the experimental observation that, during a 
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certain period of annealing after rapid deposition, clusters near an  step disappear, but those 

near an  step remain [11].  These observations have led to a kinetic model [7, 13], in which 

different rates of attachment are assigned to the two kinds of steps, giving rise to the faster 

growth of the  steps.  Formation of unequal width of the two variants of terraces can also be 

induced by electromigration, coupled with anisotropy in diffusivity [14], but in the present paper 

we exclude the consideration of the electromigration effect in our system.   

BS

AS

BS

The kinetic effect alone, however, cannot explain the equalization of the terrace widths 

during annealing.  To account for the observations at annealing, following [2, 6], we invoke the 

anisotropic surface stress tensor.  The anisotropy causes a discontinuity in the surface stress at 

each step (Fig. 1), an elastic field in the crystal, and repulsion between the neighboring steps.  

The elastic energy in the crystal minimizes when the monolayer steps are equally spaced. 

We will include the above considerations in a model, and then use the model to study the 

motion of the steps.  We will show that, at a finite deposition flux, the combined kinetic and 

elastic effects allow the steps to move in a steady state, such that alternating terraces have time-

independent, but unequal, widths.  The kinetic effect depends on the deposition flux and 

substrate temperature, while the elastic effect does not.  By adjusting the deposition flux or 

temperature, one may obtain a vicinal surface with a desirable ratio between the widths of the 

alternating terraces.  Such substrates possess different physical properties, for example tunable 

optical anisotropy [23], and may serve as useful templates for fabrication of functional materials 

on silicon. 
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II The elastic interactions between steps 

As illustrated in Fig. 1, the steps are taken to be straight, with their positions at time t 

noted as  and .  The coverage of adatoms on the terraces is a function of position and 

time, .  The positions of the steps and the coverage of adatoms coevolve.  In the absence of 

elastic interaction between the steps, the equilibrium coverage of adatoms on terraces is given by 

( )tx A
n ( )txB

n

( txc , )

( kTEc 00 exp −= ) , where E0 is the formation energy of an adatom on terraces, k the Boltzmann 

constant and T the temperature in Kelvin. 

We next describe how the elastic interactions between the steps modify the equilibrium 

coverage of adatoms.  The surface stresses along and perpendicular to the direction of the dimer 

rows are different, noted as σA and σB, respectively (Fig. 1).  Their difference, BA σσσ −=0 , 

causes a discontinuity in the surface stress at every step, and an elastic field inside the crystal.  

Consequently, the elastic energy stored in the crystal changes when the steps move.  The 

reduction in the elastic energy in the crystal associated with a step advance per unit area defines 

a thermodynamic driving force on the step, as given by [2, 24] 
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with μ the shear modulus and ν Poisson’s ratio.  The sign of the discontinuity in the surface 

stress alternates from one step to another, so that the neighboring steps repel each other.  By 

focusing on the forces of monopole nature shown in Eq. 1, we have neglected higher order 

effects (forces due to dipole and multipole coupling [10]), because we are interested in surfaces 

of small vicinal angles. 

The above driving forces vanish when all the steps are equally spaced.  When the steps 

are not equally spaced, however, the driving forces do not vanish, and the system is not in 

equilibrium.  An adatom on a terrace may lower more energy by attaching to one step than the 

other.  This effect is described as follows.  Let Λ be the area per atomic site on the surface.  

When an adatom on a terrace attaches to step , the step advances by area Λ, and the elastic 

energy of the crystal reduces by .  Consequently, the coverage of adatoms on the terrace in 

local equilibrium with the step  is 

A
nx

A
nfΛ

A
nx

 ( )kTfcc A
n

A
n /exp0 Λ−= , (3a)  

A similar expression holds for the coverage of adatoms on terraces in local equilibrium with the 

step : B
nx

 ( )kTfcc B
n

B
n /exp0 Λ−= . (3b)  

When the steps are not equally spaced, the driving forces  and  are nonzero.  

Consequently, the coverage of adatoms on terraces in local equilibrium with each step has a 

distinct value.  This difference between the steps drives adatoms to preferentially attach to 

certain steps, leading to the changes in the widths of terraces. 

A
nf

B
nf
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III The growth kinetics 

Assume that the system is in the step-flow regime.  That is, the deposition flux F (i.e.,  

fraction of a monolayer per unit time) is not high enough for islands to nucleate on the terraces.  

During homoepitaxy, atoms from the gas phase attach to the terraces as adatoms, which then 

diffuse to the steps.  Once the adatoms attach to the steps, the steps move.  The diffusivity of 

adatoms parallel to the dimer rows, DB, is different from that perpendicular to the dimer rows, 

DA (Fig. 1).  The diffusion equation on a TB terrace is written as 

 F
x

cD
t
c

B +
∂

∂
=

∂
∂

2

2
. (4) 

At a low deposition flux, the motion of the steps is slow, so that we can assume the quasi-steady-

state distribution of adatoms, i.e. 0=∂∂ tc . The resulting coverage profile on a TB terrace is 

 ( ) ( ) ( ) ( )B
n

A
n

BA
n

BA
n

B

xxxxxxx
D
Fxc <<+−+−−= ,

2 01
2

ββ  (5)  

with the constants  and  set by the boundary conditions at the steps.  Similarly, the 

coverage profile on a T

B
1β

B
0β

A terrace is  

 ( ) ( ) ( ) ( )A
n

B
n

AB
n

AB
n
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xxxxxxx
D
Fxc <<+−+−−= −−− 1011

2
1 ,

2
ββ , (6) 

As illustrated in Fig. 1, potential energy barriers exist for adatoms on terraces to attach to 

steps.  These barriers are known as the Erlich-Schwoebel barriers [25] (ES, for adatoms from an 

upper terrace) and the inverse-ES barriers [20, 26] (iES, for adatoms from a lower terrace).  Due 

to the iES barrier at the step , the coverage of adatoms on the TA
nx A terrace near the SA step, 

( )+A
nxc , differs from the equilibrium coverage of adatoms, .  Their difference, A

nc ( ) A
n

A
n cxc −+ , 

drives the attachment of adatoms to step .  Following Schwoebel [25], we adopt a linear A
nx
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kinetic law, i.e. the number of atoms per length per unit time attaching to the step is given by 

( )[ ]A
n

A
n

A cxck −+
+ , where  is the rate constant for adatoms to attach to the SAk+ A step from the lower 

terrace, reflecting the existence of the iES barrier.  Near the step , the diffusion flux on the TA
nx B 

terrace equals the rate at which adatoms attach to the step, namely, 
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Similarly, the diffusion flux on the TA terrace equals the rate at which adatoms attach to the step 

, namely, A
nx
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where  is the rate constant for the adatoms to attach to the SAk− A step from the upper terrace, 

reflecting the existence of the ES barrier at the SA step. 

 Both ab initio calculations [27, 28] and experimental observations [11] show that there is 

a low or even negative barrier on both sides of SB steps.  We therefore assume that, on both sides 

of an SB step, the coverage of adatoms on the terraces is in local equilibrium, ( ) B
n

B
n cxc = .  

 With these boundary conditions, the constants in (5) can be determined: 

 
( ) ( ) ( )

B

B
n

A

B

B
n

AA

B
n

B

B
nA

n
B

B

B
n

A

B

B
nA

n
B
n

B

B

D
l

k

D
lF

kk
c

D
lc

D
l

k

D
lFcc

D
+

++

=

+

+−
=

+

++

+

1

2
1

,
1

21

2

0

2

1 ββ , (9) 

where  is the width of the TA
n

B
n

B
n xxl −= B terrace. Similarly, the constants in (6) are 

 
( )

B
n

A

A

A
n

A

A

A
n

A
A
n

B
n

A
n

A

A c

D
l

k

D
l

k
Flcc

D 10

1

1 ,
1

2
1

1
−

−

−
−

=

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++−

= ββ . (10) 

2006-9-11 7 



where  is the width of the TB
n

A
n

A
n xxl 1−−= A terrace. 

 The step  moves as adatoms on the terrace on either side attach to the step, namely A
nx

 ( ) ( )+− −= A
n

A
n

A
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dx . (11) 

A similar equation holds for the step .  A combination of (5) – (11) leads to a set of ordinary 

differential equations that govern the motion of the steps: 
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Given a set of initial conditions, ( ) ( ) ( ) ( ) ( ) ( ){ }LL ,0,0,0,0,0,0, 1111
B
n

A
n

B
n

A
n

B
n

A
n xxxxxx ++−− , we can evolve 

the positions of the steps by integrating (12). 

IV Numerical simulations 

 We take representative parameters of the Si surface: the distance between two 

neighboring atoms along the [110] direction, a = 3.84 × 10–10 m; the area occupied by each atom 

on the (001) surface, Λ = 1.47 × 10–19 m2; and the formation energy of an adatom, E0 ≈ 1eV [27, 

28].  Taking a calculated value of the surface-stress anisotropy σ0 ≈ 1eV/a2 ≈ 1 N/m [6], and 

using the shear modulus μ = 80 GPa and Poisson’s ratio ν = 0.28, we obtain that α ≈ 10–12N.  We 

represent diffusivities by ( )TkEaD B
A
DA −= exp0

2ν  and ( )TkEaD B
B
DB −= exp0

2ν ,  where the 

diffusion barriers are taken to be  and , with a jumping frequency νeV1=A
DE eV7.0=B

DE 0 = 
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1013Hz [4, 19, 29-32].  Different values of diffusion barriers have also been tried in the 

simulations, but such tests do not affect the qualitative behavior of the simulation results. 

 The magnitudes of the ES and iES barriers are less well established, and are left as fitting 

parameters in the present study.  We prescribe the rate constants of attachment by 

( )kTEk A
a

DA A
−− −= exp  and ( )kTEk A

a
DA B

++ −= exp , where  is the ES barrier and  is the iES 

barrier.  They are additional barriers relative to the diffusion barriers  and , respectively.  

For the time being we assume symmetric additional barriers, i.e. .  To “fit” the barrier 

height, we use the experimental observation that S

AE−
AE+

A
DE B

DE

AA EE +− =

A does not move appreciably within 0.5 ML 

deposition [5].  In the simulations, we have tried three values: , 0.4 and 0.5eV.  

Following the experimental setup, we take the average terrace width to be 15nm, and the 

substrate temperature to be 750K.  In the simulations, Si adatoms are deposited at a level of 1 

ML/min for 1 minute, and then the system is relaxed at the same temperature, under which the 

steps recover an equal-spaced state in 10

3.0=±
AE

3–104 minutes (Fig. 2).  A total of 128 steps are 

simulated, with all other steps relocated by periodic boundary conditions.  For the SA steps to 

keep still during the deposition of the first half monolayer (a hard experimental fact to be 

reproduced [5], see more discussions on this point in Sec. VII), the additional barrier should be at 

least 0.4eV.  The barrier height will also affect the relaxation time needed for the bilayer steps to 

split and recover to equally spaced monolayer steps.  This relaxation time provides a possible 

method to experimentally determine the barrier height.  At this writing, such experimental data 

are unavailable to us, and we will use an additional barrier of  in the remainder of 

the paper. 

eV4.0=±
AE
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 In our simulations, the algorithm does not allow the steps to overlap, and the increasing 

elastic repulsion between two steps very close to each other will maintain the small gap.  A 

detailed study of the gap width and the step-step interaction may need higher-order elastic effects.  

For the time being, we will just regard such pairs as bilayer steps, without looking into the details 

in between. 

Several simulated evolution sequences are shown in Figs. 3 and 4.  Let L be the average 

width of the terraces, so that the average velocity of the steps is FL and, in time t, the average 

displacement of a step is FLt.  The displacement of a step x relative to the average displacement 

is (x – FLt).  We plot the normalized relative displacements, ( )FtLx − , for several steps as 

functions of time t.  The initial conditions are that all the steps are equally spaced.  As expected, 

at a finite deposition flux, the TB terraces expand while the TB A terraces shrink.  Such a change 

happens shortly after the deposition begins and takes less than a half monolayer of deposition to 

complete.  Afterwards, a steady state is reached, in which both kinds of steps move at the same 

speed, and the ratio between the widths of the alternating terraces becomes constant.  The step 

flow of unequally spaced steps, however, is often unstable.  The steps bunch and form multilayer 

steps even at a relatively low deposition flux.  This phenomenon has also been observed in 

experiments and explored theoretically [20, 33].  Nonetheless, both in simulations and in 

experiments, step bunching happens much slower than the redistribution of the two variants of 

the terraces.  In simulations, step bunching takes place after a deposition of ~10 monolayers, 

while the change of the ratio between two variants of terraces completes in less than one 

monolayer of deposition. 
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A comparison between Figs. 3 and 4 shows that, at a higher substrate temperature, the 

transition from monolayer steps to bilayer steps happens at a higher deposition flux, and step 

bunching appears much later. 

V Tunable ratio between the widths of the two variants of terraces 

 Now we consider the steady state, where every TA terrace is of the same width lA, and 

every TB terrace is of another width lB.  The average terrace width is B ( BA llL += 2
1 ).  In this case, 

all the SA steps are equally spaced, so that the elastic driving force on every SA step is the same, 

and results only from the presence of all the SB steps: 

 
L
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Similarly, the elastic driving force on every SB step is 
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In a steady state, the two kinds of steps have the same velocity dxA/dt = dxB/dt.  A 

combination of (15) and (16) gives the equation that governs the steady state: 

B
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Fig. 5 plots (17) at two temperatures.  When the deposition flux is low, the two variants of 

terraces have a similar width, lA/L = 1.  When the deposition flux is high, the two variants of 

terraces have dissimilar widths, lA/L → 0.  The transition occurs in a narrow range of deposition 

flux, and at higher deposition fluxes when the temperature is higher. 

 Such a transition, however, has so far not been reported experimentally.  It is possible 

that the existing experiments were either at a too low temperature [17] or a too high deposition 

flux [5].  Under such conditions, bilayer steps and step bunching would always prevail over 

steady flow of monolayer steps.  To obtain an intermediate ratio of the two variants of terraces at 

a vicinal angle of ~1°, our simulation suggests to deposit at a high temperature (>1000K), and a 

relatively low deposition flux (<0.01 ML per second).  For surfaces of higher vicinal angles, 

however, the elastic interaction between steps is stronger, and the transition window will be at a 

higher flux or lower temperature. 

VI Linear stability analysis 

 The motion of the monolayer steps has a translational symmetry, i.e., the velocity of a 

step is only a function of the positions of all other steps relative to it.  The functional forms of the 

velocities in (16) are different for steps of the two different kinds, but are the same for all steps 
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of the same kind.  This translational symmetry allows us to study the stability of the steady state 

by using the Fourier expansion. 

 In a steady state, all the steps move at the same speed, FL. To examine the stability of the 

steady state, we perturb the positions of both kinds of steps with the Fourier components of a 

single wavenumber K, namely, 

  (18) 
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Note that even for one wavenumber K, the system of steps has two degrees of freedom, ΔA and 

ΔB, one for each kind of steps.  Inserting (18) into (15), and retaining the terms linear in ΔA and 

ΔB, we obtain that 
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The coefficients Ωij are given by 
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The 2×2 matrix Ω has two eigenvalues.  For the steady state to be stable, both 

eigenvalues should have negative real parts.  Numerical calculations show that one of the 

eigenvalues always has a negative real part.  Fig. 6 plots the real part of the other eigenvalue, 

ReΩMAX, as a function of K, at the steady-states of various ratios of the widths of the alternating 

terraces, while the temperature is kept at 800K.  In the plot, the growth rate is normalized by the 

deposition flux F.  The almost-equally-spaced state (e.g., lA/L = 0.9) is stable against 

perturbation of all wavenumbers.  At low values of lA/L, the step flow is unstable.  However, 

even when the steps are nearly doubled (e.g., lA/L = 0.1), the normalized growth rate is less than 

0.8 (1/ML) in maximum.  At such a rate, it will take at least 2~3 monolayers of deposition for an 

initial deviation ~1/10 of the terrace width to develop into a level comparable to the terrace width.  

By contrast, the tuning of the terrace coverage ratio is accomplished within a half monolayer of 

deposition. 

VII Discussions 

 We have assumed that attachement barriers exist on both sides of the SA step.  This 

assumption is justified as follows.  On a given terrace, say TA, the rates at which adatoms attach 

to the SA and SB steps at the two ends should add up to the deposition flux.  The ratio between the 

adatom fluxes attaching to the two steps depends on the additional barriers at the corresponding 
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steps.  Because no or low additional barrier exists at the SB step, the adatoms would have an 

equal probability of going to the SA and SB step if the barrier at the SA step were also low.  

However, the experiment evidence [5] shows almost no attachment of adatoms on SA step before 

doubling.  Consequently, a relatively high additional ES barrier must exist at the SA steps.  A 

similar consideration of adatoms on a TB terrace will conclude that an iES barrier exists at the SA 

steps. 

 In a similar model proposed in [33], symmetric absolute barriers are assumed on both 

sides of the SA steps.  As the diffusion barrier on a TA terrace is already high, such an assumption 

leads to almost no additional ES barrier.  Consequently, the model fails to recover the 

experimental observations on a vicinal Si (001) surface.  For example, a simulation in [33] shows 

that, instead of forming bilayer steps, both kinds of steps travel at almost the same speed, a 

prediction disagreeing with the experimental observation [5]. 

 To determine the ES barrier at the SA step, we have carried out another set of simulations, 

in which the iES barrier at the SA step is taken to be 0.4eV while the ES barrier varies from 

0.1eV to 0.4eV, and all other parameters are the same as in section IV.  One monolayer of 

adatoms is deposited to the surface at a flux level of 1ML/min, followed by a full relaxation (of 

104 minutes or longer) under the same temperature T = 750K.  The results are shown in Fig. 7.  

In (a), when the ES barrier is taken to be 0.1eV (when the absolute barriers at SA are symmetric), 

the SB steps catch up with the next SA step after almost one monolayer of deposition, during 

which the SA steps have also moved by ¼ of the terrace width.  Only when the ES barrier 

exceeds 0.4eV, the SA step virtually keeps still before doubling.  To recover the experimental 

evidence, we only need to have high enough barriers on both sides of the SA step, but they do not 
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have to be the same.  More simulations with asymmetric additional barriers have shown similar 

results. 

 In numerical simulation and linear stability analysis, we have found that the growth mode 

of steady-sate step flow is stable only under very small deposition flux, when the steps are 

almost equally spaced.  This is in contradiction to the long recognized effect that the ES barriers 

stabilize step flow against step bunching [25, 34].  On a vicinal surface of a single kind of steps, 

a wider terrace, upon receiving more deposition, will transport more adatoms to attach to the 

upper step because of the ES barrier, so that the wider terrace will narrow down itself.  On a 

vicinal Si (001) surface, however, this stabilizing effect of the ES barriers no longer operates.  In 

a steady state, the combination of two neighboring terraces, TB and TA, can be regarded as a 

period of the structure, as illustrated in Fig. 1.  The steady-state distance between two nearest SA 

steps will be uniform along the surface.  When a bi-terrace group gets wider and having more 

adatoms deposited, the direct result would be the faster motion of the SB step in the middle, 

instead of a faster motion of the SA step on the left.  Consequently, in the presence of faster 

atomic sinks (the SB steps), the ES barriers at SA steps no longer stabilize the step flow. The only 

stabilizing mechanism is the elastic repulsion between the steps.  This elastic effect, however, is 

overcome by the kinetic effect at high enough deposition flux. 

 The iES barriers at the SA steps, on the other hand, are still effective.  When an SB step 

catches up with the next SA step, the (SB+SA) pair effectively forms a bilayer step, with no ES 

barrier on the left, but a finite iES barrier on the right, inherited from the iES barrier of the SA 

step.  Just as in the case of vicinal surfaces with a single kind of steps, step flow is destabilized 

by the iES barriers [20].  On a wide terrace with more adatoms deposited, more diffusion flux 
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will be directed to the bilayer step on the right because of the presence of the iES; therefore, the 

bilayer step will move faster, making the wide terrace even wider. 

VIII Concluding remarks 

 We have developed a model of step flow on vicinal Si (001) surfaces, taking into account 

both the elastic interaction between steps, and the dissimilar attachment kinetics at the two kinds 

of steps.  Through steady-state analysis and numerical simulation, a continuous transition from 

equally spaced monolayer steps to bilayer steps has been predicted.  Intermediate terrace 

coverage ratios can be obtained by tuning the deposition flux and the temperature.  Consequently, 

it is possible to produce a vicinal Si surface with a tunable ratio of the alternating terraces. 

 The steady state of unequally spaced steps is unstable at high deposition fluxes.  Step 

bunching is observed at finite deposition thickness, but later than the rearrangement of the 

terrace widths.  The ES barrier, which stabilizes step flow against step bunching on a vicinal 

surface of single kind of steps, no longer stabilizes the step flow on vicinal Si (001) surfaces, 

because the SB steps are more effective atomic sinks.  The iES barrier, which destabilizes step 

flow and promotes step bunching, still operates effectively even on bilayer steps.  The only 

stabilizing mechanism is the elastic repulsion between neighboring steps, which is effective at 

low deposition flux and high temperature. 
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Figures 

Figure 1 (a) A schematic of the Si (001) vicinal surface, tilted towards the [110] direction 

by a small angle.  The dotted lines on the terraces are the directions of dimer rows.  (b) A 

schematic of the energy landscape for an adatom on the surface.  Attachement barriers exist on 

both sides of the SA steps, but no attachement barriers exist around the SB steps.  On terraces, 

adatoms diffuse faster along the dimer row direction than perpendicular.  (c) The discontinuity in 

the surface stress at every step. 

Figure 2 Simulation of deposition at 1ML/min for 1 minute, followed by relaxation.  The 

substrate temperature is kept at 750K.  The additional ES and iES barriers at the SA step are set to 

be (a) 0.3eV (b) 0.4eV (c) 0.5eV. 

Figure 3 The simulated motion of steps at temperature T = 800K and four levels of the 

deposition flux.  When the deposition flux is low, step flow persists stability.  When the 

deposition flux is high, the two kinds of terraces quickly adjust to unequal widths, but then step 

bunching sets in. 

Figure 4 The simulated step growth processes at temperature T = 1000K and four levels of 

deposition flux.  The trend is similar as that at T = 800K (Fig. 3), but step bunching sets in at a 

higher deposition flux at T = 1000K than at T = 800K. 

Figure 5 Transition from monolayer steps to bilayer steps.  When lA/L = 1, the steps are 

equally spaced.  When lA/L = 0, bilayer steps form.  The transition occurs at higher fluxes at a 

higher temperature. 

Figure 6 Growth rate of the faster eigenmode as a function of the wavenumber K.  The 

growth rate is normalized with the deposition flux, so that the vertical scale is in units of 

(1/monolayer).  The steady state is more unstable at higher deposition flux or lower lA/L.  
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Figure 7 Simulation of deposition at 1ML/min for 1 minute followed by relaxation.  The 

temperature is kept at a constant value of 750K.  The ES barrier at the SA steps is set to (a) 0.1eV, 

(b) 0.2eV, and (c) 0.4eV, while the iES barrier is fixed at 0.4eV. 
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