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Abstract 

Parkinson’s Disease (PD) is a neurodegenerative disease which involves both motor and non-
motor symptoms. Non-motor mental symptoms are very common among patients with PD 
since the earliest stage. In this context, gait analysis allows to detect quantitative gait variables 
to distinguish patients affected by non-motor mental symptoms from patients without these 
symptoms. A cohort of 68 PD subjects (divided in two groups) was acquired through gait 
analysis (single and double task) and spatial temporal parameters were analysed; first with a 
statistical analysis and then with a machine learning (ML) approach. Single-task variables 
showed that 9 out of 16 spatial temporal features were statistically significant for the univariate 
statistical analysis (p-value< 0.05). Indeed, a statistically significant difference was found in 
stance phase (p-value=0.032), swing phase (p-value=0.042) and cycle length (p-value=0.03) of 
the dual task. The ML results confirmed the statistical analysis, in particular, the Decision Tree 
classifier showed the highest accuracy (80.9%) and also the highest scores in terms of 
specificity and precision. Our findings indicate that patients with non-motor mental symptoms 
display a worse gait pattern, mainly dominated by increased slowness and dynamic instability. 
Key Words: Gait Analysis; Machine Learning; Parkinson’s disease; Rehabilitation 
engineering. 
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 Parkinson’s Disease (PD) is a progressive, disabling 
disorder and the second most common 
neurodegenerative disease after Alzheimer disease. PD 
clinical picture is characterized by a combination of 
motor (bradykinesia, resting tremor, rigidity, and 
stability impairment) and non-motor symptoms 
(cognitive decline, psychosis, autonomic symptoms, 
etc.) that worsen as the disease progresses. Among non-
motor symptoms, neuropsychiatric symptoms, including 
cognitive impairment, depression, psychosis, apathy, are 
associated with worse quality of life, can significantly 
contribute to patient disability and even increase 
mortality.1-3 Neuropsychiatric non-motor symptoms and 
gait in PD appear being closely related in a complex 

pattern. Gait is no longer considered as an automatic 
task, but an activity requiring multiple cognitive skills,4 
as a consequence, gait has been considered a reliable 
surrogate biomarker of cognitive decline in PD.5 In 
addition, affective symptoms, like depression and 
anxiety and psychotic symptoms,6-7 have been 
associated with gait dysfunction and instability in PD. 
Indeed, the relationship between neuropsychiatric 
symptoms and gait is quite complex, thus reflecting, at 
least to some extent, the progression of the 
neurodegenerative process involving non-dopaminergic 
networks and posterior cortical areas.8-9 Gait analysis 
has been used for years to measure, describe and assess 
the human movement in a three-dimensional, 
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computerized and non-invasive way. It has been used in 
literature to study neurodegenerative disease such as: 
Parkinsonism, Multiple Sclerosis, a progressive and 
demyelinating disease of the central nervous system, 
Progressive Supranuclear Palsy.10-11 Similarly, machine 
learning (ML) has been employed for similar purposes; 
there are many combined uses of ML and gait analysis: 
some researchers tried to make an automatic diagnosis 
of PD, others focused on the classification of different 
Parkinsonism or the stages of PD through gait analysis 
features.12-13 Others have explored the possibility to 
predict the presence of non-motor symptoms: Ricciardi 
et al. employed spatial and temporal features obtained 
through gait analysis to differentiate PD patients with 
and without mild cognitive impairment, implementing 
ML algorithms.14 
The aim of this study is to employ spatial and temporal 
features obtained through gait analysis to find 
differences in patients with and without non-motor 
mental symptoms through a univariate statistical 
analysis and then implementing ML algorithms and help 
the clinicians into investigating the interplay between 
gait and neuropsychiatric symptoms in PD (Figure 1).  

Materials and Methods 
The dataset 
The population of the present study was composed by 
68 subjects, affected by PD according to the diagnostic 
criteria for PD established by the United Kingdom 
Parkinson’s Disease Society Brain Bank.15 Patients were 
consecutively enrolled among those referring to the 

Center for Neurodegenerative Diseases of the 
University of Salerno.  
The study was performed in accordance with the 1964 
Declaration of Helsinki and was approved by Campania 
Sud reference ethics committee of the Center for 
Neurodegenerative Diseases of the University of 
Salerno (04/12/2020, protocol number: 177). Written 
informed consent was obtained from all participants. 
Inclusion and exclusion criteria are reported 
elsewhere.16  
Motor and non-motor symptoms of PD were evaluated 
by means of Unified Parkinson Disease Rating Scale 
(UPDRS) and Hoehn and Yahr Scale (H&Y). The 
UPDRS is the most common clinical rating scale to 
define the severity of PD, which consists in the 
following parts: clinical assessment of mentation, 
behaviour and mood (UPDRS-Part I), auto-assessment 
of activities of daily living (UPDRS-Part II), motor 
examination (UPDRS-Part III) and the complications of 
therapy (UPDRS-Part IV).  
Non-motor mental symptoms were recognized by the 
use of UPDRS-Part I. This is composed of two parts:  
Part IA focuses on complex behaviours and includes six 
items, namely cognitive impairment, hallucinations and 
psychosis, depression, anxiety, apathy and impulse 
control disorders while Part IB is a component of the 
self-administered patient questionnaire that covers 
questions on non-motor experiences of daily living. In 
this study, the dataset was created by summing the 
scores concerning the first six items of the UPDRS part 
IA. Each item of the UPDRS Part IA may range from 0 
(the symptom is absent) to 4 (the symptom is severe). 

 
 
Fig 1. Workflow of the research study 
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Thus, based on the clinical opinion of the relevance of 
non-motor mental symptoms, the patients were 
classified as follow, according to an arbitrary cut-off: 
• Sum of the first six elements of UPDRS part IA ≥ 3 

implied presence of clinically significant non-motor 
mental symptoms. 

• Sum of the first six elements of UPDRS part IA < 3 
implied absence of clinically significant non-motor 
mental symptoms. 

Gait Analysis 
Gait analysis was acquired for each patient through a 
BTS SMART DX System; it included six infrared 
cameras, two video cameras, two force plates, a set of 
passive markers and a data acquisition software (Smart 
Clinic). The Davis protocol was applied for all the 
acquisitions;17 it consists of four phases:  
1. Anthropometric measures, such as height and weight 

of the patient as well as the length of the leg, the 
diameters of the ankle and the knee and many 
others.  

2. Positioning of 22 reflective markers on specific 
points along the body of the patients.  

3. Standing phase.  
4. Walking phase on a path of 10 meters at least 4 

times for each patient for a total of 40 meters. 
 
Patients' gait was assessed during 3 experimental 
conditions, in order to investigate the effect of the dual-
tasks, as explained elsewhere:3,18 
a. single task, GAIT (normal walking) 
b. motor dual-task, MOT (walking while carrying a 

tray with 2 glasses filled with water) 
c. cognitive dual-task, COG (walking while serially 

subtracting the number 7 starting from 100)  
 
The variables acquired were 16 for each one of 3 tasks 
(GAIT, MOT, COG); these variables are extracted from 
both right side and left side, the mean of two sides is 
computed in order to obtain only 16 parameters for each 
trial. The final dataset is composed of 48 features (16 
features x 3 tasks). 

Tools, Techniques and Evaluation Metrics  
First, the personal and clinical features of PD patients 
with and without non-motor mental symptoms were 
compared through a traditional statistical analysis: the 
U-test of Mann-Whitney was used to compare 
numerical variables, while the differences in the 
distribution of categorical variables were assessed by 

Table 1. Statistical analysis performed on the spatial and temporal features.  
Variables Group with Non-motor 

mental symptoms 
(N=26) 

Group without 
Non-motor mental symptoms 

(N=42) 

p-value 

Age 62.40 ± 8,36 64.39 ± 8,45 0.331 

BMI 28.75 ± 4.02 27.19 ± 2.99 0.099 

Gender (M/F) 13/13 33/9 0,014 

Disease Duration 4.76 ± 2.78 4.95 ± 2.47 0.736 

 LEDD 600.44 ± 467.23 511.49 ± 349.06 0.649 

Hoehn &Yahr 1.94 ± 0.36 1.77 ± 0.37 0.045 

UPDRS –Part I 13.04 ± 5.86 4.40 ± 2.55 0.000 

UPDRS-Part IA 5.70 ± 3.32 0.67 ± 0.754 0.000 

UPDRS-Part IB 7.35 ± 3.49 3.74 ± 2.39 0.000 

UPDRS –Part II 10.5 ± 6.87 5.76 ± 3.82 0.003 

UPDRS –Part III 25.00 ± 10.08 21.31 ± 7.02 0.213 

UPDRS –Part IV 1.96 ± 3.44 1.52 ± 2.59 0.787 

In bold the significant statistical values with p < 0.05. 
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the chi-square test. The statistical significance was set at 
p-value < 0.05. The computation was supported by the 
Statistical Package for the Social Sciences (IBM SPSS 
v. 26). Then, a ML evaluation was performed through 
MATLAB (R2020b).19-21 ML evaluation was carried out 
through the application of supervised learning 
algorithms on our dataset: Decision Tree (DT), K-
Nearest Neighbour (KNN), Naïve-Bayes (NB), Support 
Vector Machine (SVM), Discriminant Analysis (DA), 
Random Forest (RF) and Boosted Tree (BT). For each 
algorithm, the performances have been evaluated 

through the “Leave-One-Out” cross-validation. It is a 
special cross-validation where the number of folds is 
equal to the number of records in the dataset. Therefore, 
all the data were used to train the dataset excluding one 
that is left out for the test; the procedure is repeated as 
many times as the number of patients. The Wrapper 
features selection method was applied on the whole 
dataset; this method allows to reduce the dimensionality 
of the dataset, composed by 48 features, in order to 
identify the main features for maximizing the accuracy 
of the classification. The evaluation metrics employed 

Table 2. Statistical analysis on clinical and personal data 
Features [u.m.] Mean values* 

p-value 

GAIT MOT COG 

Cycle Duration 
[s] 

1.10 ± 0.09 / 1.10 ± 0.11 
0.724 

1.09 ±0.07 /1.08 ±0.12 
0.905 

1.19±0.15/1.15±0.14 
0.367 

Stance Duration 
[s] 

0.68 ± 0.07 /0.66 ± 0.07 
0.283 

0.66 ± 0.06 /0.66 ± 0.08 
0.423 

0.74±0.10/0.71±0.09 
0.154 

Swing duration 
[s] 

0.43 ± 0.03 / 0.44 ± 0.04 
0.053 

0.46 ± 0.21 / 0.43 ± 0.05 
0.709 

0.29±0.10/0.27±0.10 
0.545 

Swing Duration 
Variability [s] 

0.05 ± 0.07 / 0.03 ± 0.02 
0.677 

0.04 ± 0.02 /0.03 ± 0.02 
0.256 

0.12±0.06/0.11±0.04 
0.316 

Stance Phase [%] 60.81±2.79/60.20 ± 1.36 
0.016 

61.13 ±2.06/60.46± 1.85 
0.143 

62.652.28±/61.57±1.94 
0.032 

Swing Phase [%] 38.55±1.87/39.82 ± 1.36 
0.003 

38.87±2.06/39.61 ± 1.75 
0.106 

37.57±2.27/39.19±4.47 
0.042 

Single Support 
Phase [%] 

38.29±2.86/39.84 ± 1.36 
0.003 

38.88 ±2.05/39.65± 1.85 
0.124 

37.69±2.40/38.17±2.62 
0.169 

Double Support 
Phase [%] 

11.07±1.94/10.55 ± 2.90 
0.016 

12.15±2.79/11.41 ± 3.11 
0.100 

14.09±4.11/12.01±2.21 
0.006 

Mean velocity 
[m/s] 

0.95 ± 0.16 / 1.07 ± 0.14 
0.007 

0.95 ± 0.19 /1.05 ± 0.16 
0.065 

0.83±0.19/0.91±0.17 
0.152 

Mean velocity 
[%height/s] 

58.58±11.51/63.05±7.64 
0.042 

58.98±10.83/61.61±8.81 
0.600 

52.01±12.68/53.98±9.70 
0.405 

Cadence 
[steps/min] 

107.31±11.09/110.46±11.46 
0.408 

111.15±7.48/112.14±12.62 
0.910 

103.40±12.78/106.06±13.12 
0.412 

Cycle Length [m] 1.05 ± 0.14 / 1.16 ± 0.13 
0.001 

1.03± 0.17/1.12±0.14 
0.030 

0.97±0.16/1.04±0.18 
0.071 

Cycle Length 
[%height] 

65.02 ± 11.17/68.66±6.78 
0.030 

63.79± 11.46/66.10±7.90 
0.226 

60.34±12.65/61.33±9.94 
0.357 

Step Length [m] 0.49 ± 0.10 /0.54 ± 0.13 
0.012 

0.48±0.11/0.54±0.10 
0.025 

0.38±0.13/0.33±0.12 
0.061 

Step Length 
Variability [m] 

0.22 ± 0.47 / 0.24 ± 0.47 
0.553 

0.22±0.59/0.11±0.21 
0.119 

0.30±0.30/0.17±0.12 
0.226 

Step Width [m] 0.39 ± 1.55 / 0.31 ± 1.37 
0.589 

0.40±1.55/0.10±0.04 
0.819 

0.14±0.15/0.10±0.05 
0.603 

u.m. = unit of measure 

*Mean ± std.dev. of the group with and without non-motor mental symptoms, respectively  

In bold the significant statistical values with p < 0.05. 
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in this study were: accuracy, that is the most general one 
to indicate how many correct classifications are 
achieved; specificity and sensitivity, that are specific of 
the medical field; precision, that is a measure of the 
positive patterns correctly predicted from the total 
predicted patterns in a positive class; Area Under the 
Receiver Operating Characteristic (AUCROC), that is a 
qualitative indicator for binary classification ranging 
from 0 to 1 where 1 is the best result. 

Results and Discussion 
Among the 68 PD patients, 26 were classified as 
subjects with clinically significant non-motor mental 
symptoms and 42 as subjects without clinically 
significant non-motor mental symptoms, according to 
the above-mentioned criteria. The two groups were 
compared on personal data (Body Mass Index (BMI), 
age and disease duration), clinical data (Levodopa 
Equivalent Daily Dose (LEDD), H&Y scale, UPDRS 
scale) and spatial and temporal gait parameters for each 
task. Table 1 shows personal and clinical features of the  
two groups. The two groups did not differ in age (p-
value=0,331), BMI (p-value=0,099), disease duration 
(p-value=0,736), antiparkinsonian treatment (p-
value=0,649), UPDRS III and IV scores (p-value=0,213 
and p-value =0,787,respectively). As expected, the 
UPDRS I and II scores (p-value=0,000 and p-value 
=0,003,respectively), which contains several items 
related to mental status and disability, were significantly 
increased in the non-motor mental symptoms group that 
also displayed more advanced stage as indicated by 
higher H&Y scale (p-value=0,045) in line with the 
findings that neuropsychiatric symptoms are associated 
with worse disase progression. Comparing gender 
distribution, the two groups significantly differed, with 
female gender being less frequent in the group without 
non-motor mental symptoms. This finding is consistent 

with the observation that female sex is associated with 
worse outcomes for hallucinations and depression.22  
Accordingly, we speculate that such differences are not 
confounding factors but features associated with the 
categorization. Our findings indicate that patients with 
non-motor mental symptoms display a worse gait 
pattern, mainly dominated by increased slowness and 
dynamic instability. It is worth noting that the two 
groups mostly differed on gait parameters during the 
single task, maybe suggesting a general disease-related 
effect of the dual task overcoming the possible 
difference between the two groups. Interestingly, when 
analysing the effect of the secondary tasks, our findings 
suggest that the two dual-tasks seem exert quite 
different effects on gait. In particular, the MOT task 
mostly affected the pace domain, whereas the COG task 
primarily impaired dynamic stability. One potential 
explanation of these results could be related to the 
different resources required to perform the secondary 
task.18 
The results of the analysis regarding the spatial and 
temporal features are shown in Table 2. During GAIT 
task the group with non-motor mental symptoms as 
compared with the group without showed increased 
stance phase with consequent reduced swing phase, 
augmented double support phase counterbalanced by 
reduced single support phase, reduced velocity and 
reduced pace-related spatial variables and step length. In 
the MOT task, only spatial features, namely cycle and 
step length, continued to result significantly different 
between the two groups; whereas in the COG task, only 
temporal variables, i.e., stance phase, swing phase and 
double support phase, remained different between the 
two groups (Table 2). 
As regards the ML analysis, Table 3 shows the results 
obtained through the analysis performed through the 
WRAPPER features selection method. The best 

Table 3. Evaluation metrics obtained in the ML analysis per each algorithm.  
Classifier Accuracy [%] Sensitivity [%] Specificity [%] Precision [%] AUCROC 

DT 80.9 88.1 69.2 82.2 0.737 

KNN 72.1 97.6 30.8 69.5 0.586 

NB 70.6 80.9 53.8 73.9 0.674 

SVM 75.0 90.5 50.0 74.5 0.683 

DA 70.6 80.9 53.8 73.9 0.680 

RF 77.9 90.5 57.7 77.5 0.727 

BT 70.6 78.6 57.7 75.0 0.794 
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accuracy was obtained by employing the DT algorithms 
(80.9%), which also showed the highest scores in terms 
of specificity and precision. The sensitivity was 
particularly high in the KNN algorithm (97.6%), but it 
showed the lowest specificity (30.8%), AUCROC 
(0.586) and precision (69.5%) if compared with the 
other classifiers. Similarly, the SVM showed a high 
sensitivity (90.5%) and a low specificity (50.0%). The 
NB and the DA classifiers obtained the same scores in 
each metric, except for the AUCROC (0.674 and 0.680, 
respectively). The BT showed the highest AUCROC 
score (0.794). 
Moreover, the Wrapper identified for each classifier the 
best spatial temporal features, which allowed to define 
the gait pattern of patients with non-motor mental 
symptoms. In particular, 15 spatial temporal variables 
have been selected among the three different tasks, the 
common features belonged to GAIT task and are the 
following: 
• Stance Phase (%), 
• Swing Phase (%), 
• Swing Duration Variability (s), 
• Mean Velocity (s), 
• Double Support Phase (%), 
• Step Length (m). 
Overall, by comparing the previous list with the results 
of Table 2, it is worth noting that these variables 
matched the most of the significant variables (p-
value<0.05) of the statistical analysis, but ML selected 
also the “Swing Duration Variability”, which confirmed 
the potentiality of ML in pointing out the most 
important spatial temporal features. In addition, 
analysing the frequencies of the variables from all the 
algorithms, “Mean Velocity” and “Swing Duration 
Variability” were the most selected, indicating that a 
raw measure of slowness (Table 2), i.e., velocity, 
coupled with an indicator of instability, and swing 
duration variability,23 are the features better 
distinguishing PD patients with and without non-motor 
neuropsychiatric symptoms. Previously, Ricciardi et al. 
identified cognitive impairment in PD patients using 
quantitative gait variables during different tasks and 
throught three ML algorithms (DT with an accuracy of 
86,8%, RF with 82,4% and KNN with 83.8%).12 The 
present study shows that using spatial and temporal 
variables as input of ML algorithms allowed to display 
good accuracy, sensitivity and precision (greater than 
80% ) in distinguishing the patients with and without 
non-motor mental symptoms. 
In conclusion, this study aimed to employ univariate 
statistical analysis and ML algorithms using spatial -
temporal variables for the recognition of gait pattern 
associated to non-motor mental symptoms in PD. The 
statistical analysis results were mostly confirmed by the 
ML analysis (matching between significant variables 
and features chosen by ML) and indicated that PD 
patients with non-motor mental symptoms as compared 

with PD patients without display a worse gait pattern, 
mainly characterized by increased slowness and 
dynamic instability. These findings further support the 
idea that peculiar gait dysfunction and neuropsychiatric 
symptoms in PD mirror the progression of the 
neurodegenerative process toward non-dopaminergic 
networks and widespread cortical areas. A limitation of 
the present study includes in the same group different 
mental symptoms that might have distinct associations 
with gait parameters; therefore, a possible future 
development could be analysing larger samples 
stratified for symptoms, i.e., cognitive impairment, 
affective symptoms, psychotic disorders, impulse 
control disorders. Finally, the present results may 
corroborate the use of integrated therapeutic approaches 
in rehabilitation, like cognitive training interventions 
or/and utilization of pharmacological therapy enhancing 
cognitiver skills for improving walking performance. 
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