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Abbreviations

2-AG  2-Arachidonoylglycerol

2-AG-LPA  2-Arachidonoylglycerol-lysophosphatidic 

acid

2-AG-LPI  2-Arachidonoyl-lysophosphatidylinositol

2-DHG  2-Docosahexaenoylglycerol

2-EET-EG  2-Epoxy-eicosatrienoic acid glycerol

2-EPG  2-Eicosapentaenoylglycerol

A-COX  Acetylated COX-2

ABHD4  α/β-Hydrolase domain containing 4

ABHD6  α/β-Hydrolase domain containing 6

ABHD12  α/β-Hydrolase domain containing 12

AdA  Adrenic acid

AEA  N-arachidonoylethanolamide (anandamide)

ARA  Arachidonic acid

AT  Aspirin-triggered

COX-2  Cyclooxygenase-2

CYP  Cytochrome P450 monooxygenase

DAGL  Diacylglycerol lipase

DGLA  Dihomo-γ-linolenic acid

DHA  Docosahexaenoic acid

DHEA  N-docosahexaenoylethanolamine 

(synaptamide)

DiHDoHE  Dihydroxy-docosahexaenoic acid

DiHDPE  Dihydroxy-docosapentaenoic acid

DiHEPE  Dihydroxy-eicosapentaenoic acid

DiHETE  Dihydroxy-eicosatetraenoic acid

DiHETrE  Dihydroxy-eicosatrienoic acid

DPA  Docosapentaenoic acid

eCB  Endocannabinoid

EDP  Epoxy-docosapentaenoic acid

Abstract The brain is enriched in arachidonic acid (ARA) 

and docosahexaenoic acid (DHA), long-chain polyun-

saturated fatty acids (LCPUFAs) of the n-6 and n-3 series, 

respectively. Both are essential for optimal brain develop-

ment and function. Dietary enrichment with DHA and other 

long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA), 

has shown beneficial effects on learning and memory, neu-

roinflammatory processes, and synaptic plasticity and neu-

rogenesis. ARA, DHA and EPA are precursors to a diverse 

repertoire of bioactive lipid mediators, including endocan-

nabinoids. The endocannabinoid system comprises can-

nabinoid receptors, their endogenous ligands, the endocan-

nabinoids, and their biosynthetic and degradation enzymes. 

Anandamide (AEA) and 2-arachidonoylglycerol (2-AG) 

are the most widely studied endocannabinoids and are both 

derived from phospholipid-bound ARA. The endocannabi-

noid system also has well-established roles in neuroinflam-

mation, synaptic plasticity and neurogenesis, suggesting an 

overlap in the neuroprotective effects observed with these 

different classes of lipids. Indeed, growing evidence suggests 

a complex interplay between n-3 and n-6 LCPUFA and the 

endocannabinoid system. For example, long-term DHA and 

EPA supplementation reduces AEA and 2-AG levels, with 

reciprocal increases in levels of the analogous endocannab-

inoid-like DHA and EPA-derived molecules. This review 

summarises current evidence of this interplay and discusses 

the therapeutic potential for brain protection and repair.
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EET  Epoxy-eicosatrienoic acid

EET-EA  Epoxy-eicosatrienoic acid ethanolamide

EETeTr  Epoxy-eicosatetraenoic acids

EFOX  Electrophilic fatty acid oxo-derivative

EPA  Eicosapentaenoic acid

EpDPE  Epoxy-docosapentaenoic acid

EPEA  N-eicosapentaenoylethanolamine

EpETE  Epoxy-eicosapentaenoic acid

EpETrE  Epoxy-eicosatrienoic acid

Epo  Epoxygenase

FAAH  Fatty acid amide hydrolase

GP-NAPE  Glycerophosphoarachidonoylethanolamide

HDoHE  Hydroxy-docosahexaenoic acid

HEDPEA  Hydroxy-epoxy-docosapentaenoylethanola-

mide

HEET-EA  Hydroxy-epoxy-eicosatrienoic acid 

ethanolamide

HEPE  Hydroxy-eicosapentaenoic acid

HETE  Hydroxy-eicosatetraenoic acid

HETE-EA  Hydroxy-eicosatetraenoic acid 

ethanolamide

HHTrE  Hydroxy-heptadecatrienoic acid

HpDoHE  Hydroperoxy-docosahexaenoic acid

HpEPE  Hydroperoxy-eicosapentaenoic acid

HpETE  Hydroperoxy-eicosatetraenoic acid

Hx  Hepoxilin

LCPUFA  Long-chain polyunsaturated fatty acid

LOX  Lipoxygenase

Lt  Leukotriene

LTD  Long-term depression

LTP  Long-term potentiation

Lx  Lipoxin

MAGL  Monoacylglycerol lipase

MaR  Maresin

(N)PD1  (Neuro)protection D1

NAPE-PLD  N-acyl phosphatidylethanolamine-selective 

phospholipase D

NArPE  N-arachidonoyl phosphatidylethanolamine

NAT  N-acyltransferase

oxo-EET  Oxo-eicosatetraenoic acid

PAEA  Phospho-anandamide

PD  Protectin

PDE  Phosphodiesterase

PE  Phosphatidylethanolamine

PGD  Prostaglandin D metabolite

PGE  Prostaglandin E metabolite

PGF  Prostaglandin F metabolite

PGI  Prostacyclin

PGS  Prostaglandin E, D or F or prostacyclin 

synthase

PI  Phosphatidylinositol

PLA1  Phospholipase  A1

PLC  Phospholipase C

PLD  Phospholipase D

PPAR  Peroxisome proliferator-activated receptor

PTPN22  Protein tyrosine phosphatase 22

RvD  Resolvin D series

RvE  Resolvin E series

Trx  Trioxilin

Tx  Thromboxane

TXS  Thromboxane synthase

SDA  Stearidonic acid

SVZ  Subventricular zone

TRPV-1  Transient receptor potential vanilloid recep-

tor type 1

ϖ-H  ϖ-hydrolase

Introduction

N-6 and n-3 long-chain polyunsaturated fatty acids  

(LCPUFA) are essential components of membrane phos-

pholipids and also precursors to a large and ever expanding 

repertoire of bioactive lipid mediators. The brain is highly 

enriched in the n-6 PUFA, arachidonic acid (ARA), and the 

n-3 PUFA, docosahexaenoic acid (DHA), with both essential 

for optimum brain development and function [1]. Elevated 

dietary intake of DHA and eicosapentaenoic acid (EPA), 

another n-3 LCPUFA, has beneficial effects on learning 

and memory, decreases neuroinflammatory processes and 

enhances synaptic plasticity and neurogenesis [2]. Simi-

larly, inverse relationships are typically observed between 

fish intake or blood DHA levels and age-related cognitive 

decline [3]. However, recent estimates indicate that world-

wide many populations are currently consuming DHA and 

EPA at levels well below the recommendations issued by 

many international authorities [4–6].

The mode of action of the LCPUFA is still poorly under-

stood and is further complicated by the diverse repertoire of 

bioactive lipid mediators that can be generated. For exam-

ple, ARA is the precursor to a wide range of mediators, 

including the two major endocannabinoids in the brain [7]. 

The endocannabinoid system has similarly been shown to 

have important roles in neuroprotective and pro-neurogenic 

processes, such as attenuating chronic neuroinflammation, 

regulating pro-inflammatory cytokine release and enhanc-

ing synaptic plasticity and adult neurogenesis [8, 9], and 

importantly has shown therapeutic potential in brain ageing 

and neurodegenerative conditions [10].

Thus, there is considerable overlap in effects of n-3 PUFA 

and the endocannabinoid system; however, these different 

classes of lipid mediators have traditionally been viewed and 

researched separately. This view is now being challenged as 

there are a growing number of independent lines of evidence 

suggesting a complex interplay between them. For exam-

ple, analogous series of ethanolamide endocannabinoid-like 
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molecules derived from DHA and EPA have been identified, 

although their biological roles have yet to be established [11, 

12]. Furthermore, in recent elegant work long-term dietary 

n-3 PUFA deficiency in mice abolished endocannabinoid-

mediated neuronal functions across a range of different brain 

regions, showing for the first time how the endocannabi-

noid system can be regulated by manipulation of the dietary 

n-6:n-3 PUFA ratio [13–15]. This is a cause for concern 

as the Western diet typically has an n-6:n-3 PUFA ratio of 

around 15:1, whereas the ideal ratio is thought to be closer 

to 4:1 [16]. This unbalanced intake is reflected in low to 

very low tissue levels of DHA and EPA [17], and may also 

be involved in the aetiology of many diseases, such as car-

diovascular disease, cancer, inflammatory and autoimmune 

diseases [16].

The aim of this review is to summarise current evidence 

of the interplay between n-3 and n-6 LCPUFA and the 

endocannabinoid system and discusses the potential role 

of modifying their levels through dietary manipulation of 

n-6 and n-3 PUFA intake with the aim of ameliorating neu-

roinflammation and enhancing brain protection and repair, 

particularly in ageing.

Metabolism of PUFA and Endocannabinoids

ARA and DHA are the two main PUFA in the brain [2]. 

These LCPUFA can be supplied either preformed from the 

diet or synthesised in the liver from their shorter chain pre-

cursors, linoleic acid (LA, 18:2n-6) and α-linolenic acid 

(ALA, 18:3n-3), respectively [18, 19]. However, the effi-

ciency of conversion in humans is extremely limited [20], 

and due to the shared nature of the biosynthetic pathways, 

imbalances in the dietary intake of LA and ALA will result 

in reciprocal inhibition of the opposing pathway and further 

limit conversion [21]. Therefore, the most efficient way to 

increase tissue levels of LCPUFA is by intake of the pre-

formed LCPUFA. The n-6 and n-3 PUFA biosynthetic path-

ways are shown in detail in Fig. 1. 

Endogenous synthesis of LCPUFA is low within the brain 

compared with uptake from the unesterified plasma fatty 

acid pool [22, 23], suggesting brain levels are maintained via 

uptake from dietary and/or liver sources in blood. Although 

LCPUFAs appear to cross the blood-brain barrier via simple 

diffusion [24], active transporters have been identified that 

may play a role in regulating the specificity of LCPUFA 

concentrations [20]. Further multiple mechanisms including 

β-oxidation, decreased incorporation, elongation and lower 

phospholipid recycling have also been identified, which 

maintain the high ARA and DHA concentration in relation 

to other LCPUFAs [25, 26]. However, brain LCPUFA com-

position is responsive to dietary intake, such that a diet high 

in LA, with an LA:an ALA ratio of 10:1 typical of a Western 

diet decreases brain DHA accretion and increases adrenic 

acid (AdA, docosatetraenoic acid, 22:4n-6) and docosapen-

taenoic acid (DPAn-6, 22:5n-6) levels [27], whereas a diet 

with an LA:ALA ratio of 1:1, more similar to that encoun-

tered during our evolution [16], leads to higher brain DHA 

levels. Imbalances in intake not only compromise brain 

LCPUFA content, but may also impact on the production 

of a wide range of mediators derived from these LCPUFA, 

thereby potentially negatively influencing brain activity and 

function.

The fatty acid composition of neuronal membranes influ-

ences cellular function through direct effects on membrane 

biophysical properties, but also by providing a precursor 

pool for signalling molecules and lipid-derived media-

tors [1]. N-6 and n-3 LCPUFA are the precursors to a vast 

array of bioactive mediators involved in many cellular pro-

cesses, particularly related to the inflammatory response 

[2]. Three main pathways are involved in the production 

of these oxylipin mediators: (1) cyclooxygenase (COX, 

also known as prostaglandin endoperoxide H synthase or 

PGHS) and subsequent synthases, (2) lipoxygenase (LOX) 

and (3) cytochrome P450 mixed function oxidase enzymes 

(CYP) [28]. These canonical pathways produce the classic 

mediators, with those produced from C20 PUFA, such as 

ARA and EPA, called eicosanoids, whereas those from C22 

PUFA, such as DHA, are called docosanoids. Analogous 

series of oxylipins generated from LA, dihomo-γ-linolenic 

acid (DGLA), AdA and ALA and the n-3 docosapentaenoic 

acid (DPAn-3) have also been identified, but their roles are 

not well characterised in the literature and are therefore not 

the focus of this review. However, the interested reader is 

referred to an excellent review by Gabbs and colleagues 

[29].

COX catalyses the initial oxygenation of non-esterified 

fatty acids to produce prostaglandin H (PGH), a short-lived 

intermediate, which is further metabolised into prostanoids, 

such as other prostaglandin series (PGD, PGE, PGF), pros-

tacyclins (PGI), thromboxanes (Tx), and lipoxins (Lx), 

hydroxy and hydroperoxy fatty acids [30]. Vertebrates have 

two principal isoforms of COX: COX-1 and COX-2 [31]. 

COX-1 is constitutively expressed, whereas although COX-2 

is an inducible enzyme in most tissues, in the cortex, hip-

pocampus and amygdala constitutive expression is observed 

[32, 33]. COX-2 is not only a key enzyme in the inflamma-

tory and neuroinflammatory processes, but has important 

roles in the regulation of neural activity, such as learning 

and memory [34]. COX-2 oxygenates a wide range of fatty 

acids and fatty esters [35].

COX-2 was traditionally thought to be responsible for 

causing inflammation and neuroinflammation by convert-

ing ARA to PG and Tx; however, this simplified model has 

been reconsidered with a greater understanding of the deli-

cate balance between positive and negative feedback loops 
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[36]. For example,  PGE2 and  PGD2 are pro-inflammatory 

mediators responsible for the induction of inflammation, 

but at a later stage in the process are also responsible for 

class switching of eicosanoid production from PG and leu-

kotrienes (Lt) to Lx [36]. It has consistently been shown 

that increasing dietary n-3 PUFA changes the lipid profile 

of membranes and alters the balance of n-6 and n-3 PUFA 

competing as substrates for COX, consequently altering the 

series of prostaglandins synthesised, which ultimately alters 

cellular responses to mitogenic and inflammatory stimuli 

[37–41]. This has been demonstrated in many cells through-

out the body, including glial cells [42].

LOX catalyse the formation of hydroxyl fatty acids 

and their metabolites, such as Lt, Lx and the “specialised 

lipid mediators” (SPM) [29]. These included the resolvins 

(Rv), protectins (PD) and maresins (MaR) derived from 

Fig. 1  N-6 and n-3 PUFA metabolism and lipid mediators produced 

from ARA, DHA and EPA. Synthesis of n-6 and n-3 LCPUFA begins 

with desaturation of LA and ALA to γ-linolenic acid (GLA, 18:3n-

6) and stearidonic acid (18:4n-4), respectively, catalysed by Δ6 

desaturase (FADS2 gene). GLA is elongated to dihomo-γ-linolenic 

acid (DGLA, 20:3n-6) and SDA to eicosatetraenoic acid (20:4n-

3) (ELOVL1 gene). Δ5-Desaturase (FADS1 gene) converts DGLA 

to ARA (20:4n-6) and 20:4n-3 to EPA (timnodonic acid, 20:5n-3). 

Two cycles of elongation (elongase-2, ELOVL2 gene) convert ARA 

to adrenic acid (AdA, 22:4n-6) and then tetracosatetraenoic acid 

(24:4n-6), and EPA to docosapentaenoic acid (DPAn-3, clupanodonic 

acid, 22:5n-3) and then tetracosapentaenoic acid (24:5n-3). A sec-

ond desaturation by Δ6 desaturase produces tetracosapentaenoic acid 

(24:5n-6) and tetracosahexaenoic acid (nisinic acid, 24:6n-3), respec-

tively. These are translocated to the peroxisome for β-oxidation by 

acyl-coenzyme-A oxidase (ACOX1 gene) and D-bifunctional enzyme 

(HSD1784 gene) and peroxisomal thiolases to produce docosapentae-

noic acid (DPAn-6, osbond acid, 22:5n-6) and DHA (cervonic acid, 

22:6n-3), which are translocated back to the endoplasmic reticulum
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n-3 LCPUFA [43]. LOX enzymes are traditionally classi-

fied based on the position of the hydroxyl and hydroper-

oxy fatty acids they produce from ARA, e.g. 5-LOX forms 

5-hydroxy-eicosatetraenoic acid (5-HETE) and 5-hydroper-

oxy-eicosateraenoic acid (5-HpETE); however, this system 

has limitations as the position varies according to different 

chain lengths of the substrates and some LOX act at more 

than one position [29].

The SPMs are a rapidly expanding class of molecules 

involved in the active resolution of inflammation produced 

via COX and LOX catalysed pathways [43]. D-series 

resolvins (RvD), PD and MaR are from produced from 

DHA, whereas E-series resolvins (RvE) are from EPA [44]. 

A further series of RvD and MaR has recently been iden-

tified generated from DPAn-3, including  RvD1n-3 DPA and 

 MaR1n-3 DPA, which demonstrate similar anti-inflammatory 

and pro-resolving properties to those from DHA and EPA 

[45, 46]. The SPMs act via a series of cell-type specific 

receptors, for example, RvD1 binds GPR32 and lipoxin 

 A4 receptor (ALx), and RvE1 binds the ChemR23 orphan 

receptor and leukotriene  B4 receptor  (BLT1) [47]. The best 

characterised SPM in terms of nervous system protection 

is (neuro)protectin D1 (NPD1, 10R-17S-dihydroxy-doco-

sahexaenoic acid), which is biosynthesised in response to 

injury and may have therapeutic potential in a wide range of 

neurological conditions [48, 49]. In addition, acetylation of 

COX-2 by aspirin blocks PG biosynthesis, but COX-2 is still 

able to produce HETE from ARA, hydroxy-docosahexaenoic 

acid (HDoHE) from DHA and hydroxy-eicosapentaenoic 

acid (HEPE) from EPA, which can be transformed by leu-

kocytes to aspirin-triggered forms of Lx, Rv and PD [50].

A further class of metabolites generated from n-3 PUFA 

by LOX is the electrophilic fatty acid oxo-derivatives 

(EFOX), with 7-oxo-DHA 7-oxo-DPA and 5-oxo-EPA pro-

duced from DHA, DPAn-3 and EPA, respectively [51, 52]. 

EFOXs display a wide range of anti-inflammatory actions, 

including acting as agonists nuclear receptors, such as the 

peroxisome proliferator-activated receptor (PPAR) and 

inhibiting cytokine production in activated macrophages 

[52]. Furthermore, consistent with the formation of aspirin-

triggered SPM, acetylation of COX-2 by aspirin also signifi-

cantly increases the formation of EFOX [2].

The third oxidative pathway involves CYP epoxygenases 

and ϖ-hydrolases, which metabolise PUFA to lipid media-

tors with many diverse biological functions at both the sys-

temic and cellular levels [53, 54]. Regio- and stereoisomers 

of epoxy-eicosatetraenoic acids (EET) and HETE are pro-

duced from ARA, whereas those derived from EPA include 

epoxy-eicosatetraenoic acids (EETeTR) and hydroxy-eicosa-

pentaenoic acids (HEPE) and epoxy-docosapentaenoic acids 

(EDP) and HDoHE from DHA [54]. EPA is the preferred 

substrate for most isoforms of CYP, with metabolism of 

DHA and ARA occurring at similar rates [54]. Expression of 

CYP isoforms occurs in multiple cell types across the brain, 

including astrocytes, neurons and endothelial cells [53].

In addition, n-6 and n-3 PUFAs are also precursors to 

endogenous ligands of the endocannabinoid receptors 

(endocannabinoids). The endocannabinoid system is made 

up of the cannabinoid receptors (CB1 and CB2 receptors), 

endocannabinoids and the enzymes required for endocan-

nabinoid synthesis and degradation [55]. Two families of 

endocannabinoids have been identified, 2-acylglycerols and 

ethanolamides; however, not all congeners are ligands of 

the cannabinoid receptors [56]. The most abundant and best 

characterised endocannabinoids in the brain are the 2-acyl-

glycerol, 2-arachidonoylglycerol (2-AG) and the ethanola-

mide, N-arachidonoylethanolamine (AEA, anandamide), 

which are both derived from ARA [7]. Further n-6 PUFA-

derived endocannabinoids include dihomo-γ-linolenoyl 

ethanolamide, docosatetraenoyl ethanolamide, 2-arachido-

nyl glycerol ether (noladin ether), O-arachidonoylethanola-

mine (virodhamine) and N-arachidonoyldopamine; however, 

although these endocannabinoids can bind to cannabinoid 

receptors, their function is still unclear and will not therefore 

be discussed further in this review [57]. Analogous series 

of endocannabinoids have been identified from n-3 PUFA. 

Alpha-linolenoylethanolamide (ALEA) is produced from 

ALA and has been identified in human plasma, where levels 

were shown to be responsive to dietary ALA supplementa-

tion [58]. However, the best characterised n-3 PUFA-derived 

endocannabinoids are produced from DHA and EPA, with 

the 2-acylglycerols, 2-docosahexaenoylglycerol (2-DHG) 

and 2-eicosapentaenoylglycerol (EPG), and the ethan-

olamides, N-docosahexaenoylethanolamine (DHEA) and 

N-eicosapentaenoylethanolamine (EPEA), generated from 

DHA and EPA, respectively [12, 59]. This review will focus 

on the endocannabinoids derived from ARA, DHA and EPA.

AEA and 2-AG are produced from membrane-bound 

phospholipid ARA, with synthesis occurring at the post-syn-

aptic terminal via increased levels of intracellular calcium 

with both made in response to demand and rapidly degraded 

to ARA or oxygenated to further bioactive mediators [60]. 

The major pathways for the biosynthesis and degradation 

of AEA and 2-AG are described below and summarised in 

Fig. 3. However, the exact nature of these pathways is still 

to be resolved because of the complexity of the endocan-

nabinoid system and presence of multiple often redundant 

pathways [61].

AEA production occurs via a series of steps from the 

membrane phospholipid precursor, sn-1 ARA phosphatidyl-

choline [62]. A calcium-dependent N-acyltransferase (NAT) 

transfers ARA to the nitrogen atom of phosphatidylethan-

olamine (PE) to generate N-arachidonoyl phosphatidyletha-

nolamine (NArPE), which is followed by hydrolysis by an 

N-acyl phosphatidylethanolamine-selective phospholipase 

D (NAPE-PLD) to produce AEA [63]. Further parallel 
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pathways have been identified, whereby NAPE is deacylated 

by α/β-hydrolase domain containing 4 (ABHD4) and either 

the glycerophosphoarachidonoylethanolamide produced 

(GP-NAPE) cleaved by a metal-dependent phosphodies-

terase (PDE) to produce AEA or lyso-NAPE is hydrolysed 

by lyso-NAPE-phospholipase D (PLD) directly to AEA. 

NAPE can also be hydrolysed by phospholipase C (NAPE-

PLC) to generate phospho-anandamide (PAEA), which is 

dephosphorylated by phosphatases such as protein tyrosine 

phosphatase 22 (PTPN22) to AEA [63]. Studies with NAPE-

PLD knock-out mice indicate that NAPE-PLD is the major 

pathway for NAPE hydrolysis; however, the formation of 

AEA in the brain readily occurs via NAPE-PLD-independ-

ent pathways [64, 65].

The major pathway for the synthesis of 2-AG in the 

brain occurs from phosphatidylinositol (PI)-bound ARA 

via phospholipase C-β (PLCβ), which produces sn-1-acyl-

2-arachidonoylglycerol, an ARA-diacylglycerol (DAG) 

[66]. DAG is then hydrolysed into 2-AG by the action of 

diacylglycerol lipases-α or -β (DAGL-α or DAGL-β), with 

the removal of the acyl group [66]. DAGLα appears to be 

the main isoform for 2-AG formation in the brain, as basal 

and stimulus-induced 2-AG content of the brain is greatly 

reduced in DAGLα, but not DAGLβ knock-out mice. [67]. 

Further pathways for the synthesis of 2-AG include dephos-

phorylation of 2-AG-lysophosphatidic acid (2-AG-LPA) by 

an LPA phosphatase (2-LPA-P) or via the sequential action 

of  PLA1 converting PI to 2-arachidonoyl-lyso PI (2-AG-LPI) 

and then to 2-AG by lyso phospholipase C (lyso-PLC) [66].

DHEA and EPEA appear to be produced by the same 

biosynthetic pathways as AEA [68], whereas the synthesis 

of 2-DHG and 2-EPG is not well characterised in the litera-

ture. However, it is likely they are produced via the same 

pathways as 2-AG, as chronic DHA and EPA supplementa-

tion reduces 2-AG and AEA levels across a range of tissues 

including the brain, with reciprocal increases in levels of 

DHEA and 2-DHG, and 2-EPG [12, 69–72]. These altera-

tions suggest competition for shared biosynthetic pathways 

as DHA and EPA displace ARA from membrane phospho-

lipids. Interestingly, recent work in our laboratory found that 

acute administration of DHA or EPA significantly increased 

2-AG, although not AEA levels in neural stem cells [73]. 

This increase may be driven by competition for the inacti-

vating enzymes, such as COX-2, although further work is 

needed to fully elucidate the underlying mechanisms.

AEA and 2-AG predominantly act at the guanine-nucle-

otide-binding protein (G protein)-coupled receptor (GPCR) 

cannabinoid receptors, CB1 and CB2 [74]. The CB1 recep-

tor is widely expressed in the brain, where it is the most 

abundant GPCR, highly expressed in the cortex, hippocam-

pus, cerebellum and basal ganglia [74]. CB2 receptors were 

initially identified in cells of the immune system [75], but 

more recently have additionally been described in glia and 

subsets of neurons in the brain [76]. In addition, AEA and 

2-AG have also been shown to act at the orphan receptor, 

GPR55 [77], and peroxisome proliferator-activated recep-

tors (PPAR) [78]. PPARs are nuclear acting transcription 

factors with three subtypes, α, β (δ) and γ, and are involved 

in many cellular processes; for example, PPARγ regulates 

genes involved in neuroinflammatory processes [79]. AEA 

is also a ligand for the transient receptor potential vanilloid 

receptor type 1 (TRPV-1), which is expressed in peripheral 

sensory neurons and in the central nervous (CNS) system, 

where they have a role in regulating synaptic function [80].

Endocannabinoids other than 2-AG and AEA either do 

not bind orthosterically with CB1 or CB2 receptors or bind 

with much lower affinity; however, they still exhibit can-

nabimimetic activities and potentiate the activity of 2-AG 

and AEA, in a phenomenon called the ‘entourage effect’ 

[56, 81]. However, evidence suggests that the relationship 

between 2-AG and AEA and their congeners is much more 

nuanced than this, and other endocannabinoids have been 

reported to either serve as functional antagonists [81] or act 

via non-endocannabinoid pathways. For example, DHEA 

activates protein kinase A (PKA)/cAMP response element 

binding protein (CREB) pathways [82].

Little is known about the process of endocannabinoid 

transport across cell membranes, although a putative endo-

cannabinoid cell membrane transporter has been implicated 

in the control of AEA and 2-AG transport and metabolism 

[83]. The hydrolysis of AEA releases ARA and ethanola-

mine and is principally achieved by the fatty acid amide 

hydrolase (FAAH) enzyme [84], although further yet to be 

identified proteins are likely involved in the process [61]. 

DHEA is also a substrate for FAAH hydrolysis to release 

DHA and ethanolamine [68], whereas the process of EPEA 

hydrolysis has yet to be identified. Unlike the ethanolamides, 

a variety of enzymes are responsible for the degradation of 

2-AG to ARA and glycerol, with three serine hydrolases 

accounting for approximately 99% of hydrolysis in the 

brain [85]. Approximately 85% of 2-AG hydrolysis occurs 

via monoacylglycerol lipase (MAGL), which is co-local-

ised with CB1 receptors in axon terminals [85]. ABHD6 

and ABHD12 account for approximately 4 and 9% of brain 

2-AG hydrolase activity, respectively, with ABHD6 located 

in post-synaptic neurons and ABHD12 is highly expressed 

in microglia [85]. 2-AG hydrolysis may also be catalysed by 

FAAH [86]. The pathways(s) of 2-DPG and 2-EPG hydroly-

sis are currently unknown.

In addition to the direct signalling roles of 2-AG and 

AEA, both are important intermediates in lipid metabolism. 

They act as precursor pools for ARA for the subsequent pro-

duction of eicosanoids [87] and are also converted to fur-

ther classes of bioactive mediators. 2-AG and AEA are sub-

strates for COX-2, producing prostamides and prostaglandin 

glycerol esters, LOX producing hydroperoxy derivatives 
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(HPETE) and CYP enzymes, producing hydroxy-eicosa-

tetraenoic ethanolamide molecules (HETE-EA) or epoxy-

eicosatrienoic acids (EET) [30, 88, 89]. 2-AG can also 

be phosphorylated by acyl glycerol kinase(s) to produce 

lysophosphatidic acid (LPA) [66], another important bioac-

tive lipid [90]. Interestingly, COX-2 metabolites of 2-AG and 

AEA have been shown to have opposing effects to those of 

2-AG and AEA themselves, suggesting a fine balance in the 

control of synaptic transmission between these lipid media-

tors and their oxygenated products [91].

The oxidative metabolism of DHA and EPA-derived 

endocannabinoids is beginning to be elucidated, but there 

is much that is currently unknown. Lipidomic screening 

has identified oxygenated products of DHEA generated 

from LOX and includes 10,17-dihydroxy-docosahexaenoyl 

ethanolamide (10,17-diHDoHE) and hydroxy-16(17)-epoxy-

docosapentaenoyl ethanolamide (HEDPEA) [68]. These 

molecules exhibit anti-inflammatory and organ-protective 

effects in a mouse reperfusion second organ injury [68].

The multiple lipid mediators derived from ARA, DHA 

and EPA are summarised in Fig. 2, where is can be seen 

that the lipidome of ARA is the best characterised; however, 

analogous repertoires of mediators are likely produced from 

DHA and EPA and potentially other PUFAs. Recent devel-

opments in lipidomic analyses have greatly increased interest 

in the discovery, identification and elucidation of the mul-

tiple mediators derived from PUFA and endocannabinoids, 

but much more work is needed to fully develop understand-

ing of their biological activities and the effects of changing 

dietary intake and subsequent phospholipid PUFA composi-

tion on their formation. The remainder of this review will 

summarise current evidence of the interplay between n-3 and 

n-6 LCPUFA and endocannabinoids in neuroinflammation, 

neurogenesis and brain ageing.

Neuroinflammation

Neuroinflammation is the CNS process to restore damaged 

neurons and glia, with microglia and astrocytes the pre-

dominant effectors [92]. Activation of microglia initiates a 

rapid response involving migration, proliferation, and the 

release of cytokines and chemokines [93]. This is initially 

a protective response, but excess neuroinflammation may 

inhibit neuronal regeneration and if it becomes chronic play 

an important role in the pathogenesis of neurodegenerative 

diseases, such as Alzheimer’s disease (AD) and Parkinson’s 

disease (PD), by secreting cytotoxic proteins and reactive 

oxygen species [94].

In the healthy brain microglia display a “resting” phe-

notype responsible for continuous immune monitoring and 

surveillance and also play a key role in regulating neuronal 

plasticity via processes including synaptic pruning and 

neurogenesis [95]. Pathological conditions such as dam-

age to neural cells causes the local “resting” microglia to 

respond by “activation” and rapidly change their phenotype 

and redirect their activity [96]. Depending on the type and 

extent of stimulation the expression of specific genes is 

induced tailoring the microglial phenotype towards either 

the classically activated (M1) pro-inflammatory phenotype 

or the alternatively activated (M2) anti-inflammatory phe-

notype [96], although the further M2a and M2c phenotypes 

have been identified based on the stimulus of induction [97].

Work by our laboratory and others has shown the ele-

vated levels of n-3 PUFA reduces microglial activation and 

subsequent production of pro-inflammatory cytokines in a 

wide variety of models of neuroinflammation, such as amyo-

trophic lateral sclerosis [98], spinal cord injury [99, 100], 

ischaemia [101] and brain ageing [102]. Recent work has 

begun to explore the mechanisms behind these effects. DHA 

down-regulates the cell-surface expression of cluster of dif-

ferentiation 14 (CD14) and Toll-like receptor 4 (TLR4) in 

lipopolysaccharide (LPS)-stimulated microglial cells [103]. 

CD14 is a glycosylphosphatidylinositol-linked protein and 

transduces the signal by associating with other partners, 

especially TLR4 [104].

N-3 PUFA supplementation also inhibits microglial acti-

vation by inhibiting nuclear translocation and secretion of 

high-mobility group box 1 (HMGB1) and HMGB1-mediated 

activation of TLR4/NF-κβ signalling pathways in a model 

of traumatic brain injury [105]. HMGB1 is a central compo-

nent of the late inflammatory response and the translocation 

and secretion of HMGB1 are important steps in HMGB1-

induced inflammation [106]. After release, HMGB1 binds 

to transmembrane TLR4 and activates the TLR4/NF-κB sig-

nalling pathway, ultimately leading to neuroinflammation 

[107]. In this study n-3 PUFA supplementation inhibited the 

translocation of NF-κB p65 from the cytosol to the nucleus, 

reduced NF-κB p65 expression and inhibited the expression 

of the TLR4/NF-κB signalling pathway-associated proteins.

Taken together these results suggest n-3 PUFAs regu-

late microglial activation at several stages; however, these 

effects could be mediated by the n-PUFA themselves or their 

respective SPM. For example, both DHA and NPD1 block 

production of cytokines by microglial cells in a variety of 

retinal and brain injury models [108, 109]. RvD1 and MaR1 

down-regulate in vitro microglia activation [110], RvD2 

inhibits LPS-induced increase of TLR4 in microglia [111], 

and RvE1 alters the inflammatory response and decreases 

microglial activation in several in vivo models [112, 113].

During neuroinflammation there is a general up-regu-

lation of the activity of the endocannabinoid system, with 

predominantly anti-inflammatory effects [114]. However, 

studies looking at the role of endocannabinoids in neuro-

inflammation tend to focus on the role of CB2 receptors, as 

CB2 receptors are more abundant than CB1 on microglia 
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[115] and CB2 receptor expression is increased in microglia 

and astrocytes during neuroinflammation [74], where they 

attenuate the release of cytokines from activated microglia 

[8]. Furthermore, microglia from CB2 receptor knock-out 

mice show a decrease in phagocytic activity and CB2 recep-

tor antagonists reduce motility of microglia in vitro [116]. 

Furthermore, microglia in brain tissue from patients with 

Alzheimer’s disease (AD), multiple sclerosis and amyo-

trophic lateral sclerosis express CB2 receptors [115]. How-

ever, recent work suggests a more complex story, with the 

endocannabinoid system responsive to the M2 phenotype 

[117]. CB1 and CB2 receptors are down-regulated in M1 

microglia, whereas the M2a and M2c microglia show phe-

notypic changes in the endocannabinoid machinery, such 

that M2a favours 2-AG synthesis and M2c favours AEA. A 

recent study also highlighted the role of endocannabinoids in 

microglia-neuron signalling [118]. Endocannabinoids were 

secreted through microglial extracellular membrane vesicles 

and these extracellular vesicles carry AEA on their surface, 

Fig. 2  Main lipid mediators produced from ARA, DHA and EPA. 

ARA, DHA and EPA are precursors to multiple metabolites, includ-

ing oxylipins produced by cyclooxygenase (COX) and acetylated 

COX-2 (A-COX), lipoxygenase (LOX) and cytochrome P450 (CYP) 

enzymes and the endocannabinoids (eCB). The major pathways in 

the synthesis of ARA, DHA and EPA-derived endocannabinoids 

are shown in Fig.  3. 2-AG 2-arachidonoylglycerol, 2-DHG 2-doco-

sahexaenoylglycerol, 2-EET-EG 2-epoxy-eicosatrienoic acid glyc-

erol, 2-EPG 2-eicosapentaenoylglycerol, ABHD6/12 α/β-Hydrolase 

domain containing 6 or 12, AEA N-arachidonoylethanolamide 

(anandamide), AT aspirin-triggered, DHEA N-docosahexanoyleth-

anolamine (synaptamide), DiHDoHE dihydroxy-docosahexaenoic 

acid, DiHDPE dihydroxy-docosapentaenoic acid, DiHEPE dihy-

droxy-eicosapentaenoic acid, DiHETE dihydroxy-eicosatetraenoic 

acid, DiHETrE dihydroxy-eicosatrienoic acid, EDP epoxy-docos-

apentaenoic acids, EET epoxy-eicosatrienoic acid, EET-EA epoxy-

eicosatrienoic acid ethanolamide, EETeTr epoxy-eicosatetraenoic 

acids, EFOX electrophilic fatty acid oxo-derivatives, EpDPE epoxy-

docosapentaenoic acid, EPEA N-eicosapentaenoylethanolamine, 

EpETE epoxy-eicosapentaenoic acid, EpETrE epoxy-eicosatrienoic 

acid, Epo epoxygenase, FAAH fatty acid amide hydrolase, HDoHE 

hydroxy-docosahexaenoic acid, HEDPEA hydroxy-epoxy-docosap-

entaenoyl ethanolamide, HEET-EA hydroxyepoxy-eicosatrienoic acid 

ethanolamide, HEPE hydroxy-eicosapentaenoic acid, HETE hydroxy-

eicosatetraenoic acid, HETE-EA hydroxy-eicosatetraenoic acid etha-

nolamide, HHTrE hydroxy-heptadecatrienoic acid, HpDoHE hydrop-

eroxy-docosahexaenoic acid, HpEPE hydroperoxy-eicosapentaenoic 

acid, HpETE hydroperoxy-eicosatetraenoic acid, Hx hepoxilin, Lt leu-

kotriene, Lx lipoxin, MAGL monoacylglycerol lipase, MaR maresin, 

(N)PD1 (neuro)protection D1, oxo-EET oxo-eicosatetraenoic acid, 

PGD prostaglandin D metabolite, PGE prostaglandin E metabolite, 

PGF prostaglandin F metabolite, PGI prostacyclin, PGS prostaglan-

din E, D or F or prostacyclin synthase, PD protectin, RvD resolvin 

D series, RvE resolvin E series, Tx thromboxane, TxS thromboxane 

synthase, Trx trioxilin, from DHA and hydroxy-eicosapentaenoic 

ϖ-hydrolase
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which stimulates CB1 receptors on neurons and inhibits 

presynaptic transmission.

In addition to microglia, astrocytes respond to CNS dam-

age and disease via the process of “reactive astrogliosis” 

[119]. In this process astrocytes respond to and also produce 

a wide range of cytokines and inflammatory mediators and 

interact with an array of cell types, thereby mediating cross-

talk between neuroinflammatory and neural systems [120]. 

Astrocytes also have regulatory roles in PUFA metabolism 

and endocannabinoid signalling and promote endocan-

nabinoid crosstalk with other lipid mediators. Astrocytes 

are able to synthesise ARA and DHA from LA and ALA, 

respectively [121], although astrocytic DHA synthesis is 

much lower than brain DHA uptake and utilisation rates, 

suggesting astrocyte synthesis does not provide a major con-

tribution [20]. Astrocytes highly express MAGL and mice 

with specific astrocytic MAGL deletion exhibit moderately 

increased 2-AG and reduced ARA levels and reduced  PGE2 

and pro-inflammatory cytokine levels upon LPS administra-

tion, indicating an important role for astrocytes in endocan-

nabinoid signalling in neuroinflammation [122]. Further-

more, using an inducible knock-out system the metabolism 

of 2-AG was shown to be co-ordinately regulated by neurons 

and astrocytes and involved transcellular shuttling of lipid 

substrates, such as ARA and eicosanoids [123]. This astro-

cyte-neuronal crosstalk may provide an integrated regulation 

of 2-AG metabolism and prevent excessive CB1 receptor 

activation.

Taken together, these studies show n-3 PUFA and their 

SPMs, and 2-AG and AEA play important roles in the regu-

lation of the neuroinflammatory responses of microglia and 

astrocytes. However, with a greater understanding of the 

mechanisms by which these lipid mediators interact with 

each other and with microglia, astrocytes and surrounding 

neurons it may be possible to develop effective approaches 

to regulating neuroinflammation via manipulation of dietary 

n-6 and n-3 PUFA intake.

Learning, Memory and Synaptic Plasticity

N-3 PUFA supplementation benefits many aspects of learn-

ing and memory, and although a number of putative tar-

gets have been identified, the exact mechanisms underly-

ing these effects are still unresolved [1]. A study by Pan 

and co-workers suggests that these positive effects may be 

Fig. 3  Interplay in the synthesis and actions of the 2-acylglycerols 

and ethanolamides derived from ARA, DHA and EPA. The major 

pathway for AEA production begins with N-acyltransferase (NAT) 

transferring ARA from phosphatidylcholine (ARA-PC) to phos-

phatidylethanolamine (PE) to generate N-arachidonoyl phosphatidy-

lethanolamine (NArPE), which is followed by hydrolysis by N-acyl 

phosphatidylethanolamine-selective phospholipase D (NAPE-PLD) 

to produce AEA. Further pathways include NAPE deacylation by the 

α/β-hydrolase domain containing 4 (ABHD4) and either the glycer-

ophosphoarachidonoylethanolamide produced (GP-NAPE) cleaved 

by phosphodiesterase (PDE) to produce AEA or lyso-NAPE is hydro-

lysed by lyso-NAPE-phospholipase D (PLD) directly to AEA. NAPE 

can also be hydrolysed by phospholipase C (NAPE-PLC) to gener-

ate phospho-anandamide (PAEA), which is dephosphorylated to AEA 

by phosphatases such as protein tyrosine phosphatase (PTPN22). 

DHEA and EPEA production from phospholipid bound DHA and 

EPA appears to share the same pathways. Synthesis of 2-AG occurs 

from phosphatidylinositol-bound ARA (ARA-PI) via phospholipase 

C-β (PLCβ) and production of an ARA-diacylglycerol (DAG), which 

is hydrolysed by diacylglycerol lipases-α to produce 2-AG. Further 

pathways include dephosphorylation of 2-AG-lysophosphatidic acid 

(2-AG-LPA) by LPA phosphatase (2-LPA-P) or via phospholipase 

 A1  (PLA1) converting PI to 2-arachidonoyl-lyso PI (2-AG-LPI) and 

then to 2-AG by lyso phospholipase C (lyso-PLC). The pathways 

of 2-DPG and 2-EPG production are currently unknown. 2-AG and 

AEA act at CB1 and CB2 receptors, GPR55 and PPAR, with AEA 

additionally acting at TRPV-1 (shown in grey). Dietary DHA and 

EPA enrichment decreases phospholipid ARA and increases phos-

pholipid DHA and EPA, and favours production of DHA and EPA-

derived endocannabinoids, whereas acute DHA and EPA treatment 

in vitro increases 2-AG. DHA and EPA also regulate CB1, CB2 

TRPV-1 and PPAR receptor activity and levels. For detailed explana-

tions, refer to the text
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dependent on modulation of the endocannabinoid system 

[124]. The spatial memory of rats treated with DHA sig-

nificantly improved at lower doses (150 or 300 mg/kg/day), 

whereas at a higher level of intake (600 mg/kg/day) it was 

impaired. These in vivo dose-dependent effects were highly 

correlated with similar in vitro dose-dependent up-regula-

tion of CB1 and TRPV-1 receptors in cultured hippocampal 

neurons. The authors concluded that CB1 and TRPV-1 may 

therefore be involved in positive effects of DHA supplemen-

tation on spatial memory, although further work is needed 

to confirm this.

Synaptic plasticity is a widespread CNS phenomenon 

that occurs at both excitatory and inhibitory synapses, where 

changes in synaptic efficacy and strength are induced in 

response to various stimuli, and this potentiation or depres-

sion is thought to underlie phenomena such as learning and 

memory [125]. The endocannabinoid system positively 

modulates many aspects of synaptic plasticity [126], and 

a recent elegant series of studies by Layė and co-workers 

shows the essential role of n-3 PUFA in these effects [13, 

14, 127]. In the first of these studies, long-term n-3 PUFA 

deficiency prevented endocannabinoid-mediated long-term 

synaptic depression (LTD) in the prefrontal cortex and 

nucleus accumbens [13]. Cannabinoid receptors couple to G 

protein type Gi/o and activate signalling pathways [74], and 

in this study CB1 receptors were uncoupled from their G(i/o) 

proteins. In the follow-up studies, similar effects on other 

measures of endocannabinoid-dependent plasticity were also 

found in other brain regions, including the hypothalamus 

[14] and hippocampus [127]. In the hippocampus, loss of 

N-methyl-D-aspartate (NMDA) glutamate receptor-depend-

ent LTP induced by n-3 PUFA deficiency was shown to be 

due to the ablation of endocannabinoid-mediated inhibitory 

LTD (iLTD) [127]. In the hippocampus LTP is gated by 

the process of heterosynaptic iLTD, which is dependent on 

the activation of CB1 receptors [80]. Overall, the role of 

n-PUFA regulation of the endocannabinoid system in learn-

ing, memory and synaptic plasticity appears more complex 

than simply the modulation of endocannabinoid levels, but 

also critically depends on modulating receptor function.

Neurogenesis

Neurogenesis in the adult brain from precursor neural stem 

cells has been identified consistently in two regions, the 

subgranular layer of the hippocampal dentate gyrus and 

the subventricular zone (SVZ), where it has been reported 

in all mammals studied, including humans [128]. The hip-

pocampus is essential for learning and memory formation 

and consolidation and also important in regulating aspects 

of emotion, fear, anxiety and stress [129]. However, the hip-

pocampus is particularly vulnerable to neuroinflammation, 

ageing and neurodegeneration [129]; indeed ageing is the 

greatest negative regulator of hippocampal neurogenesis 

[130]. It is therefore interesting to note that hippocampal 

neurogenesis has been shown to increase following ischae-

mia [131], stroke [132] and seizures [133], where the 

increases may be considered an attempt by the brain at self-

repair. Enhancing hippocampal neurogenesis may therefore 

offer a novel therapeutic approach in the treatment of brain 

ageing and neurodegeneration.

DHA and EPA treatment has consistently been shown to 

increase adult hippocampal neurogenesis across a range of 

animal models [134], also in neural stem cells, where DHA 

appears to promote neuronal differentiation [73]. Similarly, 

the endocannabinoid system is essential for adult neurogen-

esis in both the hippocampus [135, 136] and SVZ [137], 

although studies into the pro-neurogeneic effects of endo-

cannabinoids in the dentate gyrus have produced conflict-

ing results. For example, adult rats treated with the AEA 

analogue methanandamide have significantly decreased 

hippocampal neurogenesis, which is increased by CB1 

antagonists [136]. However, chronic treatment with a syn-

thetic endocannabinoid agonist increases adult hippocampal 

neurogenesis in rats [138], and CB1 receptor knock-out mice 

show significant reductions in neurogenesis in the dentate 

gyrus and SVZ [135]. Pharmacological blockade of DAGL 

and CB2 with specific antagonists inhibits the proliferation 

of neural stem cells and the proliferation of progenitor cells 

in young animals [137]. A similar response is seen with a 

FAAH inhibitor [139]. Overall, the effects of the endocan-

nabinoid system on neurogenesis appear to be a fine balance 

of receptor activation.

Work in our laboratory is the first to explore the role of 

the endocannabinoid system in the pro-neurogeneic effects 

of DHA and EPA [73]. In this study, addition of DHA or 

EPA to neural stem cells induces opposing effects on cell 

fate, which are directed by different signalling pathways. 

Although both DHA and EPA significantly increase 2-AG 

levels, only EPA utilises endocannabinoid signalling path-

ways to increase proliferation. EPA increases prolifera-

tion via CB1/2 receptors, which activate the p38 mitogen-

activated protein kinase (p38 MAPK) signalling pathway. 

DHA was found to decrease cell proliferation, consistent 

with induction of differentiation. It may be hypothesised 

that although 2-AG is increased by DHA, the effects may 

be mitigated and cell fate directed towards differentiation via 

alternative pathways, such as through conversion to DHEA 

[82]. Rashid and co-workers show that DHEA induces dif-

ferentiation of neural stem cells via protein kinase A (PKA)/

cAMP response element binding protein (CREB). It may 

therefore be that DHA and EPA direct cell fate via alterna-

tive pathways determined by the levels and types of media-

tors produced.
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In addition, our study also identified a previously unrec-

ognised role of the immune system in the effects of DHA 

and EPA [73]. DHA and EPA treatment of neural stem cells 

from interleukin-1β (IL-1β) knock-out mice induced effects 

quite distinct from the wild-type cells, whereby prolifera-

tion was increased by DHA and reduced by EPA. As p38 

MAPK was not activated by DHA, this suggests alterative 

non-endocannabinoid pathways were behind the increases 

in proliferation.

The Ageing Brain

Normal brain ageing is characterised by many detrimental 

changes, such as mitochondrial dysfunction and altera-

tions in energy metabolism [140], damage to DNA [141], 

increased microglial activation [142] and increased oxidative 

stress [143]. The ageing brain is also prone to development 

of neurodegenerative diseases, such as AD and PD, but with 

the protracted pre-symptomatic stages it is hard to identify 

what are normal age-related changes and what are effects of 

undetected neurodegeneration [144].

Many epidemiological studies suggest positive associa-

tions between an elevated dietary intake of n-3 PUFA and 

the maintenance of cognitive function in old age [3]. How-

ever, the results of randomised controlled trials in this area 

have been mixed, although positive study outcomes with 

higher doses of DHA in particular in asymptomatic par-

ticipants or those with very mild memory deficits suggest 

supplementation is most effective in the pre-symptomatic 

stage, prior to the onset of mild cognitive impairment or 

dementia [145–147].

Studies in both rodents and humans show that the endo-

cannabinoid system is susceptible to age-related deficits 

[74]. For example, CB1 receptor levels decrease, along 

with the activity NAPE-PLD and DAGL [74]. Furthermore, 

decreases in DAGL, coupled with elevated MAGL, leads 

to specific decreases in 2-AG levels in the hippocampus 

of ageing mice [148]. Using mouse genetic CB1 receptor 

knock-out models, it is possible to mimic the effects of these 

age-related changes [74]. CB1 receptor deletion leads to an 

age-dependent acceleration of cognitive decline with accel-

erated hippocampal neuronal loss and increases aspects of 

neuroinflammation, such as reactive astrogliosis and micro-

glial activation.

These studies suggest that the age-related decline of spe-

cific components of the endocannabinoid system accelerates 

key aspects of brain ageing; therefore, through the restora-

tion or reversal of the age-related effects it may be able to 

decrease this decline. In addition to modulating the levels 

of 2-AG and AEA, expressions of CB1 receptors, TRPV-1 

and PPARγ have all been shown to be responsive to n-3 

PUFA treatment [79, 124], suggesting that n-3 PUFA may be 

able to mitigate or reverse some of these age-related losses. 

Furthermore, these positive effects on the endocannabinoid 

system may potentially contribute to some of the protective 

effects of n-3 PUFA observed in studies in ageing. However, 

much more research is required to develop our understand-

ing of the mechanisms underlying these effects and the con-

sequences for the endocannabinoid system to maximise the 

therapeutic potential of n-3 PUFA in brain protection and 

repair.

Conclusions

Due to their fundamental nature, ARA, DHA, EPA and 

their mediators and the endocannabinoid system have wide-

ranging effects across the CNS and recent evidence strongly 

indicates a complex interplay between them. The levels of 

phospholipid-bound ARA determine the levels of 2-AG and 

AEA, which in addition to their own biological activities act 

as reservoirs of ARA for subsequent eicosanoid production. 

Importantly, brain LCPUFA levels are responsive to dietary 

intake, and the n-6:n-3 PUFA ratio of the current Western 

diet may lead to increased neuroinflammation and also over-

stimulation of the endocannabinoid system.

Neuroinflammation is a key feature of brain ageing and 

neurodegeneration and the development of new therapeutic 

approaches is necessary. Epidemiological studies consist-

ently show beneficial effects of an elevated intake of DHA 

and EPA; however, these observations have so far failed to 

lead to new treatments. Trials typically provide n-3 PUFA 

in the form of fish oils, mixed DHA and EPA preparations 

or separate DHA and EPA, with limited consideration of the 

background levels of n-6 PUFA. It is hoped that a greater 

understanding of the relationship among ARA, DHA, EPA 

and the endocannabinoid system will lead to advances in 

developing their therapeutic potential and ultimately lead to 

the development of more targeted treatment options for brain 

protection and repair.
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