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Abstract: Inflammatory Bowel Disease (IBD) is a chronic gastrointestinal disorder characterized by
periods of activity and remission. IBD includes Crohn’s disease (CD) and ulcerative colitis (UC),
and even though IBD has not been considered as a heritable disease, there are genetic variants
associated with increased risk for the disease. 5-Hydroxytriptamine (5-HT), or serotonin, exerts a
wide range of gastrointestinal effects under both normal and pathological conditions. Furthermore,
Serotonin Transporter (SERT) coded by Solute Carrier Family 6 Member 4 (SLC6A4) gene (located
in the 17q11.1-q12 chromosome), possesses genetic variants, such as Serotonin Transporter Gene
Variable Number Tandem Repeat in Intron 2 (STin2-VNTR) and Serotonin-Transporter-linked pro-
moter region (5-HTTLPR), which have an influence over the functionality of SERT in the re-uptake
and bioavailability of serotonin. The intestinal microbiota is a crucial actor in normal human gut
physiology, exerting effects on serotonin, SERT function, and inflammatory processes. As a conse-
quence of abnormal serotonin signaling and SERT function under these inflammatory processes,
the use of selective serotonin re-uptake inhibitors (SSRIs) has been seen to improve disease activity
and extraintestinal manifestations, such as depression and anxiety. The aim of this study is to inte-
grate scientific data linking the intestinal microbiota as a regulator of gut serotonin signaling and
re-uptake, as well as its role in the pathogenesis of IBD. We performed a narrative review, including a
literature search in the PubMed database of both review and original articles (no date restriction),
as well as information about the SLC6A4 gene and its genetic variants obtained from the Ensembl
website. Scientific evidence from in vitro, in vivo, and clinical trials regarding the use of selective
serotonin reuptake inhibitors as an adjuvant therapy in patients with IBD is also discussed. A total of
194 articles were used between reviews, in vivo, in vitro studies, and clinical trials.

Keywords: Crohn’s disease; ulcerative colitis; serotonin; SERT; SLC6A4; inflammation; microbiota;
dysbiosis

1. Introduction

Inflammatory Bowel Disease (IBD) is a clinical term used to refer to Crohn’s disease
(CD) and ulcerative colitis (UC), which are chronic intestinal inflammatory pathologies
characterized by periods of remission and activity [1]. CD is characterized by its capacity
to affect the total gastrointestinal (GI) tract, from the mouth to the anus, whereas UC affects
only the colonic mucosa [2]. IBD is particularly prevalent in occidental countries, having the
highest prevalence rates in North America and Europe. In Mexico, Yamamoto-Furusho et al.
reported 9953 cases of CD and 33,060 cases of UC in 2015 [1]. Numerous studies have
been conducted to establish the cause of IBD, including factors such as smoking [3,4],
sugary diets [5], drug exposure [6], and oral contraceptives [7], among others [8–11].
Despite IBD not being considered a hereditary illness, it has been suggested that certain
genetic variants may contribute to disease susceptibility, IBD manifestations, and treatment
response [12,13]. These genetic variants include p.Arg702Trp of NOD2 (Nucleotide Binding
Oligomerization Domain Containing 2) [14], rs11209026 of IL23R (IL-23 receptor) [15],
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rs2241880 of ATG16L1 (Autophagy-related 16 like 1 protein) [16], and genetic variants
found in Serotonin Transporter (SERT) [17,18]. Together with these genetic factors, one of
the main mechanisms of injury in IBD is immune-mediated, highlighting the generation of
an exaggerated immune response [19,20].

5-Hydroxytryptamine (5-HT), or serotonin, is a monoamine synthesized up to 90% in
the GI tract by the enterochromaffin cells (EC) of the GI tract [21], which has been found
to be highly related to physiological conditions (Figure 1) and pathogenic GI processes
through interactions between serotonin, serotonin receptors, and SERT.
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such as the gut and brain [22]. SERT presents genetic variants which alter its functionality 
in serotonin re-uptake and bioavailability [23]. The intestinal microbiota plays an im-
portant role as a regulator of serotonin bioavailability and immune cell activation [24]. 
The microbiota is the bacterial, fungal, and viral composition in the GI tract under non-
pathological conditions, which plays a critical role in the regulation of neurotransmission. 
These non-pathogenic micro-organisms maintain the gut epithelial integrity, maturation 

Figure 1. Serotonin biological properties. Serotonin is a well-known monoamine with a wide range of
biological properties; it has been seen to be involved in vascular tone and responsible for cardiovascu-
lar functions. In the Central Nervous System, it is related to both neurological and cognitive functions
such as mood, motor control and others. Interestingly, serotonin is involved in most gastrointestinal
functions, from motor to immune properties. Trp, Tryptophan; Tph1, Tryptophan hydroxylase; 5-HTP,
5-hidroxytryptophan; EC, Enterochromaffin cells.

SERT exerts an important role over the synthesis and clearance of serotonin in organs
such as the gut and brain [22]. SERT presents genetic variants which alter its function-
ality in serotonin re-uptake and bioavailability [23]. The intestinal microbiota plays an
important role as a regulator of serotonin bioavailability and immune cell activation [24].
The microbiota is the bacterial, fungal, and viral composition in the GI tract under non-
pathological conditions, which plays a critical role in the regulation of neurotransmission.
These non-pathogenic micro-organisms maintain the gut epithelial integrity, maturation
and modulation of the immune system, and degradation of metabolites such as carbon,
polysaccharides, and short-chain fatty acids (SCFAs) [25]. Under normal gut conditions,
micro-organisms such as Bifidobacterium, Faecalibacterium prausnitzii, Lactobacillus, Bacteroides,
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Ruminococcus faecis, and others have been found; meanwhile, species including Escherichia
coli, Shigella flexneri, Bilophila wadsorthia, Helicobacter pylori, Fusobacterium bucleatum, and
Akkermansia muciniphila have been found under pathological intestine conditions. This
pathological bacterial overgrowth is better known as intestinal dysbiosis [26]. For this
review, we aimed to search for scientific evidence linking the intestinal microbiota as a
regulator of gut serotonin signaling and re-uptake, as well as its role in immune system
over-activation (innate and adaptative) as risk factors for the pathogenesis of IBD. The
genetic variants in the SERT gene that may increase the risk of developing IBD and its
influence over the functionality of SERT in the re-uptake and bioavailability of serotonin
were also integrated in the following sections.

2. Structure and Physiology of Gastrointestinal Tract

The intestinal epithelium consists of a wide variety of cells, such as intestinal ep-
ithelial cells (IECs), enterochromaffin cells (EC), goblet cells, dendritic cells (DCs), and
macrophages, among others [27].

Enterocytes comprise one of the main cellular populations. Their main function is
the absorption of molecules (e.g., ions, water, vitamins, and biliary acids) in the intestinal
lumen, and are also involved in oral tolerance [28,29]. Enterocytes have the capacity to
express pattern recognition receptors (PRRs) and pathogen-associated molecular patterns
(PAMPs), thus exerting fundamental activities in the immune response [28,30]. Linked to
the maintenance of intestinal epithelium integrity, the goblet cells, which are specialized
epithelial cells, are essential for the formation of the mucus barrier [31]. These cells are in
charge of producing different compounds of the mucus layer, such as mucin (Muc2), with
the ability of regulate bacterial adhesion to surface epithelium and intestinal permeabil-
ity [32].

Paneth cells are located at the bottom of Lieberkühn crypts. These cells contain dense
granules which store AMP, proteins, cytokines, and proteases [33], and are known for
being the main source of AMP, which protects against external stressors and maintains the
integrity of the intestinal microbiota [34].

As part of the composition of the neuroendocrine system in the GI tract, the EC (a
sub-type of enteroendocrine GI cells) are able to produce close to 95% of serotonin in the
organism under mechanical stimuli [35,36].

IECs act as a bridge between the microbiota and immune cells through the interaction
of cellular unions such as tight junctions (TJs) and antimicrobial peptides (AMPs) [37].
These AMPs have been found to be involved in the immune response and antigen presen-
tation, thanks to the release of cytokines and chemokines [38].

DCs are antigen-presenting cells (APC), which are key players in the immune response,
acting as a bridge between the innate and adaptative immune response [39]. Gut lamina
propria DCs identify antigens and activate a tolerogenic immune response; once they have
migrated to mesenteric lymph nodes (MLNs), they present these antigens to T lympho-
cytes [40]. In the presence of harmful bacteria, intestinal DCs release pro-inflammatory
cytokines, such as transforming growth factor β (TGF-β), interleukin 10 (IL-10), and inter-
leukin 6 (IL-6), which are involved in the differentiation of T-naïve lymphocytes to Th2
lymphocytes, while, on the other hand, suppressing Th1 differentiation [41].

The wide variety of functions of the GI tract also are controlled in part by the gut–brain
axis (GBA) and, in particular, by neurotransmitters such as serotonin [42,43].

3. Interplay between Microbiota and Gastrointestinal Tract

The host intestinal microbiota species cohabitate and maintain the intestinal microen-
vironment. Specially, the microbiota interacts with IECs and immune cells, maintains
intestinal barrier integrity, inhibits pathogens on the gut luminal surface, and promotes
immune system functioning and the degradation of metabolites such as carbon, polysac-
charides, SCFAs, and neurotransmitters to maintain an equilibrium [25]. The microbiota
has a wide range of biological properties, one of them being the ability to interact with
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cell sub-populations such as immune cells, with T lymphocytes and DCs being of special
interest [44].

SCFAs produced by the microbiota are the primary products of fermentation of carbo-
hydrates, which can act as energy sources for cell growth and for mucin production [45,46].
SCFAs follow a passive diffusion process to pass across cell membranes, being absorbed
by monocarboxylate transporters [47]. Butyrate is the main source of energy used by
IECs as a first-line defense by the host in the response to pathogen bacterial invasion (see
Figure 2) [48].
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Figure 2. Butyrate synthesis and biological effects. Carbohydrates contained in our daily intake
pass through a fermentation process, ending in butyrate production. Butyrate is able to exert
various biological effects over a wide range of organs in the organism. Specifically, in the gut,
butyrate is able to control the immune response and maintain a tolerogenic profile. IL-10, interleukin
10; IL-6, interleukin 6; NO, nitric oxide; IL-12, interleukin 12; NF-κβ, Nuclear Factor κβ; HDAC,
histone deacetylase.

Butyrate kinase is one of the main enzymes involved in butyrate production [49].
Butyrate has a dual physiologic activity in the colon, where it is able to induce the pro-
liferation of healthy colonocytes and induce apoptosis in damaged cells [46]; further-
more, the role of SCFAs in the regulation of tight junctions (TJs) has been previously
described [50]. In the colon, most of the butyrate-producing bacteria are anaerobic, such
as Bifidobacterium—producers of acetate, fructose, and lactate; bacteria involved in the
inhibition of histone deacetylase (HDACs) and activation of G protein-coupled receptors
(GPCRs) have been found to be involved in inflammatory processes [47]. The microbiota
can exert an influence over the innate and adaptative immune response, with impacts
on macrophages and T lymphocytes. Intestinal macrophages enter into the gut to turn
into mature macrophages in the gut lamina propria. These mature macrophages have a
great phagocytic capacity, executing mechanisms such as NADPH oxidase, ROS, AMPs
and proteins [51]. SCFAs also have an influence on macrophage polarization, especially
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butyrate, which induces M2 macrophage polarization, in turn causing an anti-inflammatory
cascade and lower production of ROS [52]. Besides macrophages, the microbiota influ-
ences T lymphocytes as the main components of adaptative immunity. SCFAs, such as
propionate, have shown a capacity to induce the differentiation of T lymphocytes to Th1
lymphocytes, causing a low inflammatory profile [53]. Additionally, the microbiota may
have an influence on neurotransmitter secretion and regulation of the gut–brain axis.

4. Gut–Brain Axis

The CNS and GI tract communicate through a bidirectional system, better known as the
gut–brain axis (GBA), and involving serotonin as a key neurotransmitter. GBA is a complex
network of biochemical signaling that involves the CNS and enteric nervous system (ENS;
see Figure 3), offering the capacity to execute and regulate normal gut functioning, as well
as cognitive and neurodegenerative disorders [54], due to the capacity of the microbiota
to generate neurotransmitters and neuromodulators such as tryptophan and glutamine.
Under intestinal dysbiosis conditions, there is a possibility that abnormalities can develop
in these neuromodulators. A study carried out in germ-free mice indicated decreased levels
of tryptophan, tyrosine, and glutamine in their brains [55,56]. In particular, serotonin is one
of the main regulators of this axis, affecting various health- and sickness-related processes.
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Figure 3. Gut–brain axis. Bidirectional communication between the brain and gut involves a microbial
balance (a), a phenomenon responsible for producing nutrients such as tryptophan, SCFAs, and
dopamine. The biological roles of this nutrient delivery include the activation of enteric neurons
in the gut, which control gut homeostasis through functions such as motility and gastrointestinal
secretion. In conjunction with gastrointestinal homeostasis, activation of the innate and adaptative
immune system (b) occurs through signaling of the nutrient delivery from the host bacteria and
consequent activation of specific serotonin receptors (e.g., 5-HT1, 5-HT2, 5-HT3, 5-HT4, 5-HT7).
Under pathological conditions (c), an increased production of pro-inflammatory cytokines such as IL-
6 can be observed, with a high potential of activating the HPA axis and decreasing the bioavailability



Int. J. Mol. Sci. 2022, 23, 15632 6 of 24

of glucocorticoid receptors, leading to a blockade and negative feedback. As a consequence, there is
increased intestinal permeability, accompanied by uncontrolled entrance of microbial products and
over-activation of the immune system due to an increased level of cortisol, resulting in increased
production of pro-inflammatory cytokines. SCFAs, short-chain fatty acids; HPA, hypothalamic–
pituitary–adrenal axis; CRH, corticotropin-releasing hormone; ACTH, adrenocorticotropic hormone;
IL-6, interleukin 6; TNF-α, tumor necrosis alpha; IFN-γ, interferon gamma.

Serotonin is a neurotransmitter which participates in a wide variety of human biolog-
ical functions, both in the CNS and in peripheral tissues. Serotonin is synthesized from
tryptophan and, therefore, the synthesis of this neurotransmitter depends on the bioavail-
ability of this amino acid, whose catabolism depends on certain specific compounds, such
as tryptophan hydroxylase (Tph) and aromatic L-amino acid decarboxylase (AADC) [57].
Tryptophan is an essential amino acid, which means it cannot be produced by the organism.
This amino acid is metabolized to serotonin in the brain by the raphe nucleus [58]. Close
to 90–95% of serotonin biosynthesis occurs in EC cells [58]. Once synthesized, the release
of serotonin from the EC cells occurs due to mechanical stimuli, mainly induced by the
alimentary bolus against the intestinal wall; these stimuli result in the activation of mucosal
EC cells and submucosal mechanosensitive neurons with motor properties [59]. The release
of neurotransmitters such as dopamine, serotonin, and acetylcholine in the gut stimulates
afferent primary intrinsic neurons, as well as neurons of the vagal, pelvic, and spinal affer-
ent nerves. This process is controlled by the bacterial production of neurotransmitters such
as gamma aminobutyric acid (GABA), serotonin, dopamine, and norepinephrine, produced
by bacteria such as Bifidobacterium, Lactobacillus acidophilus, Enterococcus, Escherichia Coli,
and Streptococcus [55,60].

Abnormal proliferation of pathogenic bacteria such as E. Coli can cause a disruption of
the signaling pathways of the GBA, leading to an increase in pro-inflammatory cytokine
levels and serotonin release, and consequently a higher sensitivity of visceral afferent nerves,
abnormalities in intestinal permeability, and in GI motility, leading to future GI-affective
clinical manifestations [61].

The GBA can exert an influence over the hypothalamic–pituitary–adrenal axis (HPA),
leading to activation of the HPA (Figure 3). Certain external stressors, such as stress, pro-
inflammatory cytokines (e.g., IL-6), enteropathogenic bacteria, and so on, can induce the
release of corticotropin-releasing hormone (CRH), leading to an alteration of the HPA with
digestive and neurological manifestations [62]. The GBA, together with the HPA, have
been related to autoimmune, chronic, and inflammatory pathologies, as well as neurode-
generative and cognition processes such as Alzheimer’s disease [63], fibromyalgia [64],
depression [65], anxiety [66], IBD [67], irritable bowel syndrome (IBS) [68], and others.
As a result, under pathological conditions and abnormal GBA and HPA signaling, pa-
tients may present increased levels of serotonin, thus favoring different illnesses, especially
inflammatory gut processes such as IBD [69].

4.1. Serotonin Receptors and Serotonin Transporter (SERT)

The great amount of 5-HT in the GI system plays a central role in the regulation
of processes such as GI secretion, peristalsis, and vasoconstriction, among others [70].
Serotonin exerts powerful and diverse effects on neuronal and other cells through a large
family of receptors, consisting of seven distinct classes (i.e., 5-HT1 to 5-HT7). These various
serotonin receptors facilitate mechanical and sensitive signaling in the gut.

4.1.1. 5-HT1 Receptors

The 5-HT1 receptor and its sub-types (5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, 5-HT1F,
and 5-HT1P; Figure 2) are located in enteric neurons, smooth muscle, Cajal cells, and
enterocytes, and exert an effect on the relaxation of the gastric fundus due to prokinetic
intestinal stimuli and contraction of the longitudinal and circular muscle layer, as well as
secretory and peristaltic reflexes in a serotonin-bioavailability-dependent manner [71,72].
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4.1.2. 5-HT2 Receptors

The 5-HT2 receptor and its sub-types (5-HT2A, 5-HT2B, and 5-HT2C) are located in
enteric neurons, smooth muscle, enterocytes, Cajal interstitial cells, and connective tissue.
These receptors have the capacity to induce contraction of the gastric fundus, as well as re-
laxation of the longitudinal muscle layer in the gut [72]. The importance of 5-HT2 receptors
(specifically 5-HT2B) in the development of ENS has been previously described [73]. As a
part of colonic motility, there exists a colonic motor migratory complex (CMMC), which
operates to generate rhythmic propulsive contraction through the colon [74].

4.1.3. 5-HT3 Receptors

The 5-HT3 receptor and its sub-type (5-HT3 and 5-HT3A) are ligand-controlled ionic
channels, located in enteric neurons, Cajal interstitial cells, enterocytes, extrinsic nerves,
and EC cells. This receptor can act in hydrochloric acid secretion and 5-HT liberation by
EC cells, as well as increasing intestinal motility [72]. It can be found in mucosa cells and
submucosa neuronal bodies, thus regulating autonomous mechanisms such as motility,
peristalsis, secretion, and visceral sensibility [75]. It has been reported to be present in cells
of the immune system, including DCs, T cells, and B cells, as well as having an influence
over the peritoneal macrophages and the subsequent production of pro-inflammatory
cytokines, thus promoting the chemotaxis of monocytes to the inflammation area [76].

4.1.4. 5-HT4 Receptors

Finally, 5-HT4 receptors are expressed in central and enteric neurons and EC cells,
as well as in monocytes, M cells, and DCs. The activation of these receptors is related to
excitatory responses and neuronal post-synaptic potentials [76,77]. In the GI tract, they
can accelerate intestinal motility through increasing the release of acetylcholine from the
pre-synaptic membrane. In EC cells, they induce the liberation of serotonin [78].

The previously mentioned components are responsible for preserving gut homeostasis;
under certain external conditions (e.g., infection, inflammation, immune dysregulation,
and/or stress), there is a disbalance in these components, consequently leading to the
development of susceptibility to GI problems such as IBD [79].

Serotonin cannot cross the membrane of the post-synaptic neurons by an active trans-
port process due to its positive charge; therefore, serotonin clearance requires the activity
of SERT, which belongs to the sodium symporters family (NSS) [80].

4.1.5. Serotonin Transporter (SERT)

SERT is coded by the Solute Carrier Family 6 Member 4 (SLC6A4) gene located in the
17q11.1-q12 chromosome, with a size of 31 kb and 14 exons, coding a 630-amino-acid pro-
tein [81]. SERT is expressed in tissues throughout the body, including the heart, blood ves-
sels, platelets, liver, gall bladder, adrenal gland, kidney, immune system, lungs, serotoniner-
gic neurons [82], and in the apical and basolateral membrane of enterocytes [83]. Serotonin
can cross cell membranes through a diffusion-like process in different tissues, such as
kidney cells, heart cells, endothelial cells, neuronal synaptosomes, and neurons [84–86]. As
part of the SERT promoter, several single nucleotide genetic variants (SNVs) have influence
over serotonin signaling in processes affecting traits such as personality, cognition, and
exploratory behavior (Table 1) [87].

Table 1. Serotonin Transporter (SERT) genetic variants and their relation with human diseases.

Genetic Variant Location Disease Effect References

STin2 VNTR Intron 2 Migraine
Tobacco use disorder

Risk (OR = 1.34; 95% CI: 1.09–1.64)
Risk (OR = 3.07; 95% CI: 1.41–6.68) [88,89]

I425V Transmembrane
region 8

Obsessive–compulsive
disorder Risk (OR = 6.54; 95% CI: 1.7–24.8) [90]
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Table 1. Cont.

Genetic Variant Location Disease Effect References

5-HTTLPR Promoter

Irritable bowel syndrome
GTS

Crohn’s disease
MC and Ulcerative Colitis

Risk (Allele S; OR = 1.36)
Risk (S/S; OR = 1.5; 95% CI: 0.8–2.98)

Risk (L; OR = 0.9; 95% CI: 0.4–2.0)
Higher levels of serotonin (p < 0.01) *

[91–94]

rs3813034 3′ UTR Panic disorder Risk (OR = 1.44; 95% CI: 1.13–1.85) [95]

rs3794808 Intron Irritable bowel syndrome No significant association * [96]

rs140701 Intron Breast cancer Risk (OR = 1.56; 95% CI: 1.01–2.41) [97]

rs4583306 Intron Obsessive–compulsive
symptoms

Relation with cleanliness dimension
(p = 0.004) * [98]

rs140700 Intron Primary insomnia
Schizophrenia

Not risk factor (OR = 1.32; 95% CI:
0.49–3.55)

No association *
[99,100]

rs2020942 Intron Migraine No significant association (OR = 1.09; 95%
CI: 0.82–1.44) [101]

rs12150214 Intron Colorectal cancer
Antidepressant response

Shorter overall survival (OR = 1.57; 95%
CI: 1.14–2.16)

Poorer response to fluoxetine (OR = 4.24;
95% CI: 1.39–12.98)

[102,103]

rs2066713 Intron Autism
Schizophrenia

No significant association *
Significant association (p < 0.001)* [104,105]

* Not reported OR. STin2 VNTR: Serotonin Transporter Gene Variable Number Tandem Repeat in Intron 2;
5-HTTLPR: serotonin-transporter-linked promoter region; GTS: Gilles de la Tourette syndrome; MC: microscopic
colitis; 3′ UTR: 3′ untranslated region.

The serotonin-transporter-linked promoter region (5-HTTLPR) has been closely related
with gut pathologies such as IBD and irritable bowel syndrome (IBS). 5-HTTLPR is a region
in which an insertion/deletion of 44 bp has been described, comprising a short allele (S)
and a long allele (L). The S allele has been related with decreased SERT activity, while the L
allele increases SERT expression and serotonin re-uptake [22,106] (Figure 4). In patients
with stablished UC diagnosis, higher serotonin concentrations have been observed in
those with the L/S genotype [94]; furthermore, a higher prevalence of L/L (39.6%) and
L/S (46.9%) genotypes has been observed in patients with CD [92]. Dana Goldner et al.
have shown that the S/S genotype led to the highest serotonin levels, and also that those
patients with UC in remission had lower frequency of S/S genotype versus controls [107].
Furthermore, extra-long (XL, 17–24 repeats) and extra-short (XS, 11–13 repeats) genotypes
have been described specifically in Asian and African populations [108].
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5. Epidemiology and Pathogenesis of Inflammatory Bowel Disease

UC and CD have been recognized as occidentalized diseases, due to their higher rates
of incidence and prevalence in occidental countries [109]. CD mostly presents between 20
and 30 years, whereas UC mostly presents between 30 and 40 years, as well as from 60 to
70 years [19].

5.1. Risk Factors and Clinical Manifestations

UC and CD have been considered as multi-factorial pathologies, including factors such
as antibiotic use, viral and bacterial infections, processed and sugary foods, and alteration
in the intestinal microbiota (intestinal dysbiosis) which have been related to an increased
risk of IBD [8,110–112]. Notably, smoking has been described as having a controversial
effect on IBD, as it acts as a risk factor in CD due to the production of free radicals, thus
perpetuating inflammation; meanwhile, in UC, smoking has been identified as playing
a protective role [3,8]. IBD is associated with factors such as abdominal delivery (CD,
OR = 1.38, 95% CI: 1.12–1.70; UC, OR = 1.08, 95% CI: 0.87–1.33), antibiotics exposure (CD,
OR = 1.74, 95% CI: 1.35–2.23; UC, OR = 1.08, 95% CI: 0.91–1.27), and sucrose ingestion
(CD, RR = 1.09, 95% CI: 1.02–1.16; UC, RR = 1.10, 95% CI: 1.02–1.18), among others [8].
The dietary composition has been also considered as a risk factor, as it has the capacity to
disrupt the normal gut microbiota, especially when foods such as sodas, chocolate, and
artificial sweeteners are included [5]. Intestinal permeability has been found to be increased
in mice fed a high-sugar diet [113]. Besides the influence of diet, increased serum LPS levels
and decreased microbiota diversity can lead to reduced production of SCFAs [114].

CD is characterized by transmural damage. Patients may present with perianal pain,
bleeding, incontinence, fistulization, abscesses, and hemorrhoidal illness [115]. CD can also
be characterized by the presence of extraintestinal manifestations, the most common being
enthesitis and axial or peripheric arthritis [116,117]. On the other hand, UC can produce
chronic inflammation of the colonic mucosa, leading to manifestations such as proctitis,
bloody stools, abdominal pain, fatigue, fecal incontinence, arthralgias, and erythema
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nodosum [118]. In both UC and CD, there is also involvement of the CNS, specifically
leading to psychological or psychiatric manifestations [119]. It has been observed that
between 15% and 25% of patients with IBD developed depression, while 30% presented with
anxiety [120]. Furthermore, it may be accompanied by sleep difficulties and fatigue [121].
As part of the neurological involvement in patients with IBD, deficits in attention and
executive function in adults have been observed [122].

Genetic Susceptibility and Inflammatory Bowel Disease

IBD, similarly to other inflammatory diseases such as autoimmune diseases, has been
related to different genes; although IBD has not been recognized as a hereditary disease,
several articles provide information about increased susceptibility, disease activity and
treatment response related with these genes and their genetic variants (Table 2). As an
example, in a trans-ancestry association study, in European, East Asian, Indian and Iranian
populations, several risk loci for IBD were found. These loci included NOD2, ATG16L1, and
IL-23R [123]. NOD2 gene variants such as p.Arg702Trp were able to provide an increased risk
of IBD [14,124]. The rs2241880 gene variant of ATG16L1 has also been closely related with
the maintenance of human intestinal cell homeostasis and autophagy processes in patients
with IBD [16,125]. In an interesting review by Nour Younis et al., a wide range of genes
related to IBD, together with their reported genetic variants, were considered [13]. Based
on wide-genome studies, gene variants in genes such as ATG16L1 (rs2241880: OR = 0.74;
95% CI: 0.65–0.84; p < 0.001), PTPN2 (Protein tyrosine phosphatase non-receptor type 2)
and of IL-23R (rs11209026 allele A; OR = 0.32; 95% CI: 0.17–0.60; p < 0.001) were related to
increased susceptibility to IBD, and even to disease course and treatment outcomes [13].

Table 2. Genes related to Inflammatory Bowel Disease.

Gene Locus Effect Reference

NOD2 16q12.1 IBD increased risk [13,14,123,126]

ATG16L1 2q37.1 Impaired intracellular bacteria clearance
in IBD, intestinal autophagy [13,16,127,128]

PTPN2 18p11.21 IBD increased risk [13,129,130]

IL-23R 1p31.3 IBD susceptibility, Crohn’s disease risk [13,15,131]

IL-10 1q32.1 IBD steroid dependency, early onset IBD [13,132,133]

HNF4α 20q13.12 IBD susceptibility [13,18,134]
NOD2: Nucleotide-binding oligomerization domain-containing protein 2; ATG16L1: Autophagy-related 16-like
1 protein; PTPN2: Protein tyrosine phosphatase non-receptor type 2; IL-23R: Interleukin 23 receptor; IL-10:
Interleukin 10; HNF4α: Hepatocyte Nuclear Factor 4 alpha.

5.2. Intestinal Barrier Disruption and Over-Activated Immune Response in Inflammatory
Bowel Disease

The intestinal epithelial barrier, together with the intestinal microbiota, are considered
an elemental functional unit in the physiology and pathophysiology of the GI. As part
of the events that contribute to the pathogenesis of IBD, an alteration in the structure
of the intestinal barrier can lead to an altered immune response and intestinal dysbiosis.
This phenomenon has been clearly established in pathogen-free mice, where an alteration
in the intestinal epithelial cells was observed, together with several abnormalities in the
microvilli and a decrease in cellular renovation of the gut (Figure 5) [135]. TJs, such as
zonula occludens 1 (ZO-1) and zonula occludens 2 (ZO-2), can be influenced and affected by
the intestinal microbiota. TJs can be regulated by bacteria, such as Lactobacillus rhamnosus,
Acidophilus plantarum, and Bifidobacterium infantis, through the activation of TLRs, causing
increases in the expression of claudin 3, ZO-1, and claudin 4 [136]. In patients with a
previous established diagnosis of IBD, an increased paracellular permeability has been
observed in almost 40% of patients with CD [137].
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Figure 5. Intestinal dysbiosis and immune response in IBD. The over-growth of harmful bacteria
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response (both innate and adaptative). In UC, Th2 differentiation prevails, while in CD, a Th1
and Th17 adaptative immune response prevails. The influx of bacterial components, adaptative
immune response, and harmful bacterial over-growth lead to increased gut permeability, resulting in
increased gut 5-HT causing an inflammatory process. DCs, dendritic cells; IFN-γ, interferon-γ; IL-17,
interleukin 17; IL-13, interleukin 13; TNF-α, tumor-necrosis factor α.

Maintenance of the intestinal epithelial integrity depends on the mucus layer; never-
theless, Akkermansia muciniphila, Ruminococcus spp., Enterococcus, Bifidobacterium spp., and
Bacteroides can degrade mucin and favor the colonization of harmful bacteria [138]. In pa-
tients with IBD, increases in Ruminococcus gnavus, Rumminococcus torques, Bacteroides fragilis,
and Bacteroides vulgatus, containing mucolytic enzymes such as α-galactosidase, sulphatase,
neuraminidase, and β-galactosidase, have been observed [139]. An alteration in the relation
between Bacteroidetes, Firmicutes, and Actinobacteria, as well as a decrease in Proteobacteria
and an increase in new bacterial groups, promotes an alteration to homeostasis in a process
called intestinal dysbiosis. The equilibrium between host micro-organisms (also called
symbiosis) can be affected by nutritive factors, fats, carbohydrates, and drug or antibiotic
abuse, among others [110]. Bacteria such as E. Coli, Klebsiella spp., Proteus, Enterobacter,
Shigella spp., Salmonella spp., and Serratia have been studied as pathogen micro-organisms
which are capable of inducing inflammation and intestinal manifestations [135,136].

A decrease has been observed in the fecal concentrations of Bacteroides fragilis and
B. vulgatus, both of which have protective potential, where their absence could lead to
perpetuated inflammation and the development of IBD [137]. Reductions in the levels of
Firmicutes and Proteobacteria were found to be the most reported and consistent changes
in patients with IBD. Meanwhile, a metagenomic analysis reported an increase in enter-
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obacteria, most commonly E. coli [136,138,140]. F. prausnitzii possesses anti-inflammatory
properties; however, it has been shown to be decreased in patients with IBD (specifically,
CD) [141,142]. Some probiotics are able to reinforce the intestinal barrier through the pro-
duction of defensins and zonula occludens 2 proteins [143]. On the other hand, in patients
with IBD, an increase in Malassezia restricta—a fungus generally found in the skin, which is
able to promote the production of pro-inflammatory cytokines by immune cells—has been
observed, specifically in those who were described as having a mutation in the CARD9
gene, which has been described in IBD [144].

IBD patients with over-expression of carcinoembryonic antigen cell adhesion molecule
6 (CEACAM 6) are more susceptible to EIEC infection, due to the ability of E. coli to
bind to CEACAM6 [136]. EIEC has the potential to promote the production of TNF-α by
macrophages and survive inside them, thanks to genes such as ATG16L1, immunity-related
GTPase family protein (IRGM), and NOD2. When these genes suffer some mutation, these
capacities disappear and the EIEC proteins (FimH) are able to bind to TLR4, generating, as
a consequence, an inflammatory response [137]. Furthermore, a relation between serotonin,
SERT, and TLR-2 has been observed: Ahmad Qasem et al. found that, after infecting
Caco-2 cells with Mycobacteria paratuberculosis (MAP), there was an increase in the levels
of pro-inflammatory cytokines and TLR2 and, consequently, due to the stimulation of this
pro-inflammatory cascade, decreased SERT and IL-10 expression [145].

Due to the linkage between intestinal dysbiosis and GBA, several in vitro and in vivo
models have demonstrated the important influence of certain pathogenic bacteria present in
patients with IBD and/or the beneficial effect of specific bacteria over SERT and serotonin
signaling, as detailed in Table 3.

Table 3. Relationships between bacteria and SERT function.

Bacteria Mechanism Model References

Enteropathogenic E. coli
Activation of protein tyrosine

phosphatase, a process that leads
to SERT inhibition

Caco-2 cells infected
with E. coli [146,147]

Listeria
monocytogenes

Reduced SERT expression related
to a transcriptional change in

TLR10 and TLR2

Caco-2/TC7 cells infected
with Listeria monocytogenes [148]

Akkermansia
muciniphila

Interaction between activated
TLR2 and SERT causes reduced

SERT expression

Caco-2 cells infected with
Akkermansia muciniphila [149]

Lactobacillus
acidophilus Up-regulation of SERT mRNA

Lactobacillus acidophilus and
B. longum interaction with

HT-29 and Caco-2 cells
[150]

Lactobacillus
rhamnosus

SERT Gene and protein
up-regulation

Wistar rats implemented
with probiotics
and prebiotics

[151]

Campylobacter jejuni EC hyperplasia and reduced
SERT expression

C57BL/6 mice infected with
T. Spiralis and C. jejuni [152]

Salmonella
typhimurium

Inhibition of SERT by
TLR4 activation

Mice and Caco-2 cells
infected with S. typhimurium [153,154]

5.2.1. Immune Over-Activation in IBD

Innate lymphoid cells (ILCs) come from a common lymphoid progenitor [155] and
are differentiated into Natural Killer cells (NK), innate lymphoid cells 1 (ILC1s), innate
lymphoid cells 2 (ILC2s), and innate lymphoid cells 3 (ILC3s) [143]. When ILC1s receive
stimuli through IL-12, IL-15, and IL-18, there is a release of interferon gamma (IFN-γ),
which promotes the ability of macrophages and DCs to remove intracellular bacteria-
presenting antigens through the expression of major histocompatibility complex (MHC)
and adhesion molecules. In contrast to ILC1s, ILC2s have the ability to release IL-5, IL-9,
and IL-13 under certain stimuli, while ILC3s are producers of IL-22 and IL-17 [140]. An
alteration in ILC1s and ILC3s in IBD has been described, as IL-12 is able to induce the
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differentiation of ILC3s into ILC1S to produce IFN-γ; furthermore, ILC3s can pass into
a process of maturation when interacting with the microbiota. Pathogen-free mice with
decreased IL-22 level presented with alterations, which led to disruption of the intestinal
symbiosis [156]. Furthermore, the interaction of IFN-γ with ILCs promotes the migration of
neutrophils, lymphocytes, and macrophages, as well as the activation of endothelial cells,
thus causing a disruption in the intestinal barrier by affecting TJs [138].

Besides the importance of ILCs, cells such as macrophages are able to act as a bridge
between the innate and adaptative immune response. Macrophages are susceptible to a
process called polarization, which allows for the differentiation of macrophages into M1
and M2 sub-types, depending on the received stimuli. M1 macrophages are able to trigger
an inflammatory response through the production of pro-inflammatory biomarkers such as
IL6, IL-12, and TNF-α, while M2 macrophages possess anti-inflammatory properties [139].
In patients with IBD, an increase in the levels of IL-33 and hyperplasia of caliciform cells
has been observed, accompanied by macrophage M2 polarization [157]. In particular,
in macrophages of patients with IBD, the intracellular replication of bacteria including
E. coli, Micobacterium, Salmonella, Shigella, Coxiella, Brucella, Legionella, and Listeria has been
reported [158].

Together with the macrophages, neutrophils are the most abundant innate immune
cell (approximately 70%). In IBD, these cells are responsible for the increased produc-
tion of ROS, which causes damage to the intestinal epithelial barrier and can activate
an inflammatory cascade [127]. Neutrophils are capable of forming a special defense
mechanism—Neutrophil Extracellular Traps (NETs)—which are responsible for catching
the pathogen component in a microbicidal environment, guaranteeing regulation of the
immune response and a highly efficient defense mechanism [159]. Neutrophils migrate
to the area of inflammation through interaction with components such as selectins and
intracellular/vascular adhesion molecules (e.g., ICAM-1 and VCAM-1) [160]. One of the
main findings in histopathological samples of patients with IBD was neutrophil infiltration
with the presence of citrullinated histone H3 (citH3) and some other specific NETs products;
this formation of NETs in patients with IBD can be considered a result of release and
stimulation by TNF-α [161].

Together with macrophages and neutrophils, DCs play an important role in maintain-
ing immune tolerance, considering the effects of nutrients and commensal bacteria [162]. In
mucosal samples of patients with IBD, a decrease in sub-populations of CD103+ has been
observed, as well as an increase in the expression of TLRs, thus generating an increase in
immune responses and leading to a loss of immune tolerance [163]. In CD, a disbalance
has been documented in the DCs, which may contribute to an excessive T cell response; in
samples from patients with CD, a high expression of TLRs (TLR4) was also observed, as
well as an increase in CD11c+, which produces IL-12 and IL-16 [164].

Once the innate immune response is over, the adaptative immunity is activated. This
type of immunity is characterized by the generation of memory, with the capacity to confer
long-term immunity, mediated by T and B lymphocytes [165].

Th1 Response and Crohn’s Disease

An interplay between the microbiota, immune system, and IBD has been described
in terms of decreases in Bacteroides and Firmicutes, along with increases in Clostridium,
Gammaproteobacteria, Actinobacteria, enteroinvasive Escherichia coli (EIEC), and ILC1s, with
high expression of IL-17A, IL-22, and IL-23 receptor (IL-23R) [166].

CD4 T helper lymphocytes differentiate to Th1, Th2, Treg, Th17, TFH, or Th9 under
specific stimuli; notably, a Th1 and Th17 response has been observed as part of the patho-
physiology of CD [166]. As previously mentioned, T lymphocytes can differentiate under
various chemical stimuli into Th1 lymphocytes, which are producers of IFN-γ, IL-12, IL-17,
and IFN-γ [167]. The IL-17/IL-23 axis is a key actor in CD: when IL-23 binds to its receptor,
IL-23R, which is expressed in cells including DCs, macrophages, neutrophils, NK cells and
ILCs [168], the activation of a kinase (jak2) and a tirocinkinase (tyk2) causes phosphory-
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lation of the receptor and the transcription 3 activator (STAT3) [169]. Single nucleotide
variants (SNVs) reported in the IL-23R gene in chromosome 1p31 (rs10889677) lead to
increased IL-23R level, favoring chronic inflammation in CD [168]. Furthermore, there
exists a relationship between IL-23 and Th17 activation, with subsequent accumulation of
IL-17 producer cells in patients with CD [169].

Th2 Response and Ulcerative Colitis

T lymphocytes differentiate to Th2 lymphocytes after stimulation by IL-4, IL-33, and
a transcription factor (GATA3), leading to the final production of IL-4 and IL-13 [170].
Another effect that has been related to IL-13 is the damage that it can impose upon the
intestinal epithelial barrier, as IL-13 is able to increase apoptosis in epithelial cells as well as
induce disruptions in cellular unions such as claudins-2 [171]. It has been suggested that
IL-13 is capable of activating a pro-apoptotic molecule—caspase 3 [172].

5.3. Serotonin and Gut–Brain Axis Dysfunction in IBD

Due to the link between intestinal dysbiosis and GBA, it has been considered that
there is an important influence of certain pathogenic bacteria present in patients with IBD
and/or a beneficial effect of specific bacteria over SERT and serotonin signaling, as detailed
in Table 2.

The GBA coordinates the release of the adrenocorticotropic hormone under stress,
which can cause increases in intestinal permeability and glucocorticoid secretion [173].
The increased intestinal permeability associated with a high level of stress favors com-
munication between the microbiota and nervous system [174,175]. Being a complex
network, it has an influence over the neuroplasticity of the ENS during inflammation,
leading to structural changes, including degradation and loss of enteric ganglion cells,
causing an alteration in the normal neurotransmission and, therefore, gastrointestinal
mechanosensitive alterations [176]. In view of the pro-inflammatory profile described
by IL-1β, IL-6, and TNF-α, among others, leading to inhibition of the vagus nerve and
activation of HPA axis (Figure 6) [177], S Haub et al. found that gut inflammation and a
lack of IL-10 and SERT lead to abnormal serotonin signaling [178]. Besides the influence
of serotonin and SERT over the maintenance of homeostasis in the GI tract, SERT acts
as a determinant of the maintenance of bone mass in patients with IBD. Interestingly,
osteoporosis is frequent in patients with IBD [179]. B. Lavoie et al. have demonstrated
that, in mice, a lack of SERT due to induced colitis led to an incredible loss of trabecular
bone mass. It has been found that the serotonin secreted by EC cells acts as a negative
regulator of bone density through the inhibition of osteoblasts, which is a cell type
responsible for producing and remodeling bone mass [180].
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6. Selective Serotonin Re-uptake Inhibitors in Inflammatory Bowel Disease:
Clinical Evidence

To date, there is evidence of the effectiveness of the previously established therapies for
UC and CD treatment, including aminosalicylates, corticosteroids, immunomodulators, and
biological therapies [181]. Psychiatric and psychological comorbidities, such as depression,
have been correlated to a worse quality of life in patients with IBD [182]. Selective serotonin
re-uptake inhibitors (SSRIs) are metabolized by the cytochrome P450 in the liver, with
higher specificity to act over SERT compared to other antidepressants; however, patients
may develop several adverse effects, including nausea, vomiting, insomnia, drowsiness,
extrapyramidal symptoms, serotonin syndrome, and QT prolongation [183]. SSRIs have the
potential to increase the synaptic 5-HT concentrations once SERT is blocked [184]. Antide-
pressants have been used in IBD due to their effects on these psychiatric and psychological
comorbidities and certain GI manifestations (Table 4) [185]. Even if there are contradicting
conclusions regarding the use and effectiveness of antidepressants such as SSRIs within
the clinical spectrum of IBD, there is increasing evidence suggesting the use of SSRIs as a
treatment for psychological and psychiatric comorbidities may improve quality of life [186].
In patients with IBD, the use of a combined therapy with SSRIs led to reductions in relapse
rates and endoscopic activity [187].



Int. J. Mol. Sci. 2022, 23, 15632 16 of 24

Table 4. Scientific evidence regarding the use of selective serotonin re-uptake inhibitors in patients
with inflammatory bowel disease.

Type of study Results Reference

Review
Antidepressants are highly used for depression
and anxiety problems in IBD, even though gut

side-effects are questionable
[182]

Retrospective Antidepressants showed a protective role over IBD [185]

Review Useful effects: anti-inflammatory properties,
immune regulation [120]

Retrospective Increased risk of corticosteroid dependency after
long-term SSRI intake [188]

In vivo
Decreased stool output, delayed transit, and
attenuated colonic sensitivity related with

paroxetine intake
[189]

Longitudinal Antidepressants predispose lower medical
therapy escalation [186]

Review The results for the outcomes are uncertain [190]

In vitro
Fluoxetine inhibited NF-κβ and up-regulated

expression of IL-8 in COLO 205 colon epithelial
cells stimulated with TNF-α

[191]

Prospective, randomized,
double-blind, and
placebo-controlled

clinical trial

Venlafaxine reduced TNF-α levels in patients
with IBD [192]

Double-blind
Duloxetine can be used as a therapy for reducing

depression, anxiety, and severity of
physical symptoms

[193]

Population-based cohort
study. Prospectively

collected data

Patients with IBD and a 180-day
antidepressant therapy showed lower relapse

rates, hospitalization, and less risk of initiating
anti-TNF therapy

[194]

7. Concluding Remarks

IBD has been considered as a multi-factorial pathology, as antibiotic use, viral and
bacterial infections, processed and sugary foods, and intestinal dysbiosis have all been
related to an increased risk of development of this disease. Host microbiota species, such as
Faecalibacterium prausnitzii, are key actors in regulating enteric serotonin neurotransmission
through the production of SCFAs, and, in conjunction with the SERT balance in enterocytes
and enterochromaffin cells, are responsible for maintaining gut homeostasis. However,
conditions such as intestinal dysbiosis and aberrant SERT pathways result in increased IBD
susceptibility. Serotonin and SERT have a close relationship with the complex interaction
network in IBD, as well as in the homeostasis of the GI tract, through regulation of serotonin
bioavailability. It has been shown that genetic variations in the SERT coding gene can cause
abnormal SERT expression in the gut endothelium; these genetic variants, such as STin2
VNTR and 5-HTTLPR, have been found to disturb SERT mRNA expression and SERT
protein quantity in both in vitro and in vivo studies, thus leading to decreased serotonin
re-uptake, increased serotonin bioavailability, and increased pro-inflammatory cytokine
production through serotonin-dependent immune activation. As serotonin is an important
monoamine which may induce aberrant inflammatory profiles, leading to gut inflammatory
processes such as IBD, we consider that particular interest should be given to serotonin,
as well as its receptors and transporters, as actionable factors in relevant therapeutic
approaches. Understanding the high impact that IBD has on GBA signaling, there are a
wide range of benefits of SSRIs, considering their properties relating to inflammatory and
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psychiatric comorbidities. Despite the information collected in this review, we consider
there is still a lack of information related to SERT genetic variants, such as 5-HTTLPR,
as a risk factor—together with environmental influences—in the susceptibility to and
development of IBD.
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