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ABSTRACT
We study network centrality based on dynamic influence
propagation models in social networks. To illustrate our in-
tegrated mathematical-algorithmic approach for understand-
ing the fundamental interplay between dynamic influence
processes and static network structures, we focus on two
basic centrality measures: (a) Single Node Influence (SNI)
centrality, which measures each node’s significance by its
influence spread;1 and (b) Shapley Centrality, which uses
the Shapley value of the influence spread function — formu-
lated based on a fundamental cooperative-game-theoretical
concept — to measure the significance of nodes. We present
a comprehensive comparative study of these two centrality
measures. Mathematically, we present axiomatic character-
izations, which precisely capture the essence of these two
centrality measures and their fundamental differences. Al-
gorithmically, we provide scalable algorithms for approxi-
mating them for a large family of social-influence instances.
Empirically, we demonstrate their similarity and differences
in a number of real-world social networks, as well as the effi-
ciency of our scalable algorithms. Our results shed light on
their applicability: SNI centrality is suitable for assessing
individual influence in isolation while Shapley centrality as-
sesses individuals’ performance in group influence settings.
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1. INTRODUCTION
Network science is a fast growing discipline that uses

mathematical graph structures to represent real-world net-
works — such as the Web, Internet, social networks, bio-

1The influence spread of a group is the expected number of
nodes this group can activate as the initial active set.
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logical networks, and power grids — in order to study fun-
damental network properties. However, network phenom-
ena are far more complex than what can be captured only
by nodes and edges, making it essential to formulate net-
work concepts by incorporating network facets beyond graph
structures [34]. For example, network centrality is a key
concept in network analysis. The centrality of nodes, usu-
ally measured by a real-valued function, reflects their signif-
icance, importance, or crucialness within the given network.
Numerous centrality measures have been proposed, based on
degree, closeness, betweenness and eigenvector (i.e., PageR-
ank) (cf. [22]). However, most of these centrality measures
focus only on the static topological structures of the net-
works, while real-world network data include much richer
interaction dynamics beyond static topology.

Influence propagation is a wonderful example of interac-
tion dynamics in social networks. As envisioned by Domin-
gos and Richardson [26, 14], and beautifully formulated by
Kempe, Kleinberg, and Tardos [18], social influence propa-
gation can be viewed as a stochastic dynamic process over
an underlying static graph: After a group of nodes becomes
active, these seed nodes propagate their influence through
the graph structure. Even when the static graph structure
of a social network is fixed, dynamic phenomena such as
the spread of ideas, epidemics, and technological innova-
tions can follow different processes. Thus, network central-
ity, which aims to measure nodes’ importance in social in-
fluence, should be based not only on static graph structure,
but also on the dynamic influence propagation process.

In this paper, we address the basic question of how to
formulate network centrality measures that reflect dynamic
influence propagation. We will focus on the study of the
interplay between social influence and network centrality.

A social influence instance specifies a directed graph G =
(V,E) and an influence model PI (see Section 2). For each
S ⊆ V , PI defines a stochastic influence process on G with S
as the initial active set, which activates a random set I(S) ⊇
S with probability PI(S, I(S)). Then, σ(S) = E[|I(S)|]
is the influence spread of S. The question above can be
restated as: Given a social-influence instance (V,E, PI), how
should we define the centrality of nodes in V ?

A natural centrality measure for each node v ∈ V is its
influence spread σ({v}). However, this measure — referred
to as the single node influence (SNI) centrality — completely
ignores the influence profile of groups of nodes and a node’s
role in such group influence. Thus, other more sensible cen-
trality measures accounting for group influence may better



capture nodes’ roles in social influence. As a concrete formu-
lation of group-influence analyses, we apply Shapley value
[29] — a fundamental concept from cooperative game theory
— to define a new centrality measure for social influence.

Cooperative game theory is a mathematical theory study-
ing people’s performance and behavior in coalitions (cf.
[20]). Mathematically, an n-person coalitional game is de-
fined by a characteristic function τ : 2V → R, where V = [n],
and τ(S) is the utility of the coalition S [29]. In this
game, the Shapley value φShapley

v (τ) of v ∈ V is v’s expected
marginal contribution in a random order. More precisely:

φShapley
v (τ) = Eπ[τ(Sπ,v ∪ {v})− τ(Sπ,v)], (1)

where Sπ,v denotes the set of players preceding v in a ran-
dom permutation π of V : The Shapley value enjoys an ax-
iomatic characterization (see Section 2), and is widely con-
sidered to be the fairest measure of a player’s power in a
cooperative game.

Utilizing the above framework, we view influence spread
σ(·) as a characteristic function, and define the Shapley cen-
trality of an influence instance as the Shapley value of σ.

In this paper, we present a comprehensive comparative
study of SNI and Shapley centralities. In the age of Big
Data, networks are massive. Thus, an effective solution
concept in network science should be both mathematically
meaningful and algorithmically efficient. In our study, we
will address both the conceptual and algorithmic questions.

Conceptually, influence-based centrality can be viewed as
a dimensional reduction from the high dimensional influence
model PI to a low dimensional centrality measure. Dimen-
sional reduction of data is a challenging task, because in-
evitably some information is lost. Thus, it is fundamental
to characterize what each centrality measure captures.

So, “what do Shapley and SNI centralities capture? what
are their basic differences?” Axiomatization is an instru-
mental approach for such characterization. In Section 3, we
present our axiomatic characterizations. We present five ax-
ioms for Shapley centrality, and prove that it is the unique
centrality measure satisfying these axioms. We do the same
for the SNI centrality with three axioms. Using our ax-
iomatic characterizations, we then provide a detailed com-
parison of Shapley and SNI centralities. Our characteriza-
tions show that (a) SNI centrality focuses on individual in-
fluence and would not be appropriate for models concerning
group influence, such as threshold-based models. (b) Shap-
ley centrality focuses on individuals’ “irreplaceable power”
in group influence settings, but may not be interpreted well
if one prefer to focus on individual influence in isolation.

The computation of influence-based centralities is also a
challenging problem: Exact computation of influence spread
in the basic independent cascade and linear-threshold mod-
els has been shown to be #P-complete [35, 13]. Shapley
centrality computation seems to be more challenging since
its definition as in Eq. (1) involves various influence spreads
derived from n! permutations. Facing these challenges, in
Section 4, we present provably-good scalable algorithms for
approximating both Shapley and SNI centralities of a large
family of social influence instances. Surprisingly, both algo-
rithms share the same algorithm structure, which extends
techniques from the recent algorithmic breakthroughs in in-
fluence maximization [10, 32, 31]. We further conduct em-
pirical evaluation of Shapley and SNI centralities in a num-
ber of real-world networks. Our experiments — see Section

5 — show that our algorithms can scale up to networks with
tens of millions of nodes and edges, and these two central-
ities are similar in several cases but also have noticeable
differences.

These combined mathematical/algorithmic/empirical
analyses together present (a) a systematic case study of
the interplay between influence dynamics and network
centrality based on Shapley and SNI centralities; (b)
axiomatic characterizations for two basic centralities that
precisely capture their similarities and differences; and (c)
new scalable algorithms for influence models. We believe
that the dual axiomatic-and-algorithmic characterization
provides a comparative framework for evaluating other
influence-based network concepts in the future. Due to
space constraint, proofs and additional results are in [12].

1.1 Related Work
Network centrality has been extensively studied (see [22]

and the references therein for a comprehensive introduction).
Most classical centralities, based on degree, closeness, be-
tweenness, eigenvector, are defined on static graphs. But
some also have dynamic interpretations based on random-
walks or network flows [8]. Eigenvector centrality [6] and
its closely related Katz-[17] and Alpha-centrality [7] can
be viewed as some forms of influence measures, since their
dynamic processes are non-conservative [15], meaning that
items could be replicated and propagated, similar to dif-
fusion of ideas, opinions, etc. PageRank [11] and other
random-walk related centralities correspond to conservative
processes, and thus may not be suitable for propagation dy-
namics. Percolation centrality [25] also addresses diffusion
process, but its definition only involves static percolation.
None of above maps specific propagation models to network
centrality. Ghosh et al. [16] maps a linear dynamic process
characterized by parameterized Laplacian to centrality but
the social influence models we consider in this paper are be-
yond such linear dynamic framework. Michalak et al. use
Shapley value as network centrality [19], but they only con-
sider five basic network games based on local sphere of influ-
ence, and their algorithms run in (least) quadratic time. To
the best of our knowledge, our study is the first to explicitly
map general social network influence propagation models to
network centrality.

Influence propagation has been extensively studied, but
most focusing on influence maximization tasks [18, 35, 13],
which aims to efficiently select a set of nodes with the largest
influence spread. The solution is not a centrality measure
and the seeds in the solution may not be the high centrality
nodes. Borgatti [9] provides clear conceptual discussions on
the difference between centralities and such key player set
identification problems. Algorithmically, our construction
extends the idea of reverse reachable sets, recently intro-
duced in [10, 32, 31] for scalable influence maximization.

In terms of axiomatic characterizations of network central-
ity, Sabidussi is the first who provides a set of axioms that
a centrality measure should satisfy [27]. A number of other
studies since then either provide other axioms that a central-
ity measure should satisfy (e.g. [23, 5, 28]) or a set of axioms
that uniquely define a centrality measure (e.g. [2] on PageR-
ank without the damping factor). All of these axiomatic
characterizations focus on static graph structures, while our
axiomatization focuses on the interplay between dynamic in-
fluence processes and static graph structures, and thus our



study fundamentally differs from all the above characteri-
zations. While we are heavily influenced by the axiomatic
characterization of the Shapley value [29], we are also in-
spired by social choice theory [3], and particularly by [24]
on measures of intellectual influence and [2] on PageRank.

2. INFLUENCE AND CENTRALITY
2.1 Social Influence Models

A network-influence instance is usually specified by a
triple I = (V,E, PI), where a directed graph G = (V,E)
represents the structure of a social network, and PI defines
the influence model [18]. As an example, consider the classi-
cal discrete-time independent cascade (IC) model, in which
each directed edge (u, v) ∈ E has an influence probability
pu,v ∈ [0, 1]. At time 0, nodes in a given seed set S are
activated while other nodes are inactive. At time t ≥ 1,
for any node u activated at time t − 1, it has one chance
to activate each of its inactive out-neighbor v with an inde-
pendent probability pu,v. When there is no more activation,
the stochastic process ends with a random set I(S) of nodes
activated during the process. The influence spread of S is
σ(S) = E[|I(S)|], the expected number of nodes influenced
by S. Throughout the paper, we use boldface symbols to
represent random variables.

Algorithmically, we will focus on the (random) triggering
model [18], which has IC model as a special case. In this
model, each v ∈ V has a random triggering set T (v), drawn
from a distribution defined by the influence model over the
power set of all in-neighbors of v. At time t = 0, triggering
sets {T (v)}v∈V are drawn independently, and the seed set
S is activated. At t ≥ 1, if v is not active, it becomes
activated if some u ∈ T (v) is activated at time t− 1. The
triggering model can be equivalently viewed under the live-
edge graph model: (1) Draw independent random triggering
sets {T (v)}v∈V ; (2) form a live-edge graph L = (V, {(u, v) :
u ∈ T (v)}), where (u, v), u ∈ T (v) is referred as a live edge.
For any subgraph L of G and S ⊆ V , let Γ(L, S) be the set
of nodes in L reachable from set S. Then set of active nodes
with seed set S is Γ(L, S), and influence spread σ(S) =
EL[|Γ(L, S)|] =

∑
L Pr(L = L) · |Γ(L, S)|. We say a set

function f(·) is monotone if f(S) ≤ f(T ) whenever S ⊆ T ,
and submodular if f(S ∪ {v}) − f(S) ≥ f(T ∪ {v}) − f(T )
whenever S ⊆ T and v 6∈ T . As shown in [18], in any
triggering model, σ(·) is monotone and submodular.

More generally, we define an influence instance as a triple
I = (V,E, PI), where G = (V,E) represents the underlying
network, and PI : 2V × 2V → R defines the probability
that in the influence process, any seed set S ⊆ V activates
exactly nodes in any target set T ⊆ V and no other nodes:
If II(S) denotes the random set activated by seed set S,
then Pr(II(S) = T ) = PI(S, T ). This probability profile
is commonly defined by a succinct influence model, such as
the triggering model, which interacts with network G. We
also require that: (a) PI(∅, ∅) = 1, PI(∅, T ) = 0, ∀T 6= ∅,
and (b) if S 6⊆ T then PI(S, T ) = 0, i.e., S always activates
itself (S ⊆ II(S)). Such model is also referred to as the
progressive influence model. The influence spread of S is:

σI(S) = E[|II(S)|] =
∑

T⊆V,S⊆T

PI(S, T ) · |T |.

2.2 Coalitional Games and Shapley Values
An n-person coalitional game over V = [n] is specified by

a characteristic function τ : 2V → R, where for any coalition

S ⊆ V , τ(S) denotes the cooperative utility of S. In cooper-
ative game theory, a ranking function φ is a mapping from a
characteristic function τ to a vector in Rn. A fundamental
solution concept of cooperative game theory is the ranking
function given by the Shapley value [29]: Let Π be the set
of all permutations of V . For any v ∈ V and π ∈ Π, let Sπ,v
denote the set of nodes in V preceding v in permutation π.
Then, ∀v ∈ V :

φShapley
v (τ) =

1

n!

∑
π∈Π

(τ(Sπ,v ∪ {v})− τ(Sπ,v))

=
∑

S⊆V \{v}

|S|!(n− |S| − 1)!

n!
(τ(S ∪ {v})− τ(S)) .

We use π ∼ Π to denote that π is a random permutation
uniformly drawn from Π. Then:

φShapley
v (τ) = Eπ∼Π[τ(Sπ,v ∪ {v})− τ(Sπ,v)]. (2)

The Shapley value of v measures v’s marginal contribution
over the set preceding v in a random permutation.

Shapley [29] proved a remarkable representation theo-
rem: The Shapley value is the unique ranking function
that satisfies all the following four conditions: (1) Efficiency:∑
v∈V φv(τ) = τ(V ). (2) Symmetry: For any u, v ∈ V , if

τ(S∪{u}) = τ(S∪{v}), ∀S ⊆ V \{u, v}, then φu(τ) = φv(τ).
(3) Linearity: For any two characteristic functions τ and ω,
for any α, β > 0, φ(ατ + βω) = αφ(τ) + βφ(ω). (4) Null
Player: For any v ∈ V , if τ(S∪{v})−τ(S) = 0, ∀S ⊆ V \{v},
then φv(τ) = 0. Efficiency states that the total utility is fully
distributed. Symmetry states that two players’ ranking val-
ues should be the same if they have the identical marginal
utility profile. Linearity states that the ranking values of the
weighted sum of two coalitional games is the same as the
weighted sum of their ranking values. Null Player states that
a player’s ranking value should be zero if the player has zero
marginal utility to every subset.

2.3 Shapley and SNI Centrality
The influence-based centrality measure aims at assigning

a value for every node under every influence instance:

Definition 1 (Centrality Measure). An
(influence-based) centrality measure ψ is a mapping
from an influence instance I = (V,E, PI) to a real vector

(ψv(I))v∈V ∈ R|V |.
The single node influence (SNI) centrality, denoted by

ψSNI
v (I), assigns the influence spread of node v as v’s cen-

trality measure: ψSNI
v (I) = σI({v}).

The Shapley centrality, denoted by ψShapley(I), is
the Shapley value of the influence spread function σI :
ψShapley(I) = φShapley(σI). As a subtle point, note that

φShapley maps from a 2|V | dimensional τ to a |V |-dimensional
vector, while, formally, ψShapley maps from PI — whose di-
mensions is close to 22|V | — to a |V |-dimensional vector.

To help understand these definitions, Figure 1 provides a
simple example of a 3-node graph in the IC model with influ-
ence probabilities shown on the edges. The associated table
shows the result for Shapley and SNI centralities. While
SNI is straightforward in this case, the Shapley centrality
calculation already looks complex. Due to space constraint,
we left readers to verify the computation. Based on the re-
sult, we find that for interval p ∈ (1/2, 2/3), Shapley and
SNI centralities do not align in ranking: Shapley places v, w
higher than u while SNI puts u higher than v, w. This sim-



Figure 1: Example on Shapley and SNI centrality.

ple example already illustrates that (a) computing Shapley
centrality could be a nontrivial task; and (b) the relationship
between Shapley and SNI centralities could be complicated.
Addressing both the computation and characterization ques-
tions are the subject of the remaining sections.

3. AXIOMATIC CHARACTERIZATION
In this section, we present two sets of axioms uniquely

characterizing Shapley and SNI centralities, respectively,
based on which we analyze their similarities and differences.

3.1 Axioms for Shapley Centrality
Our set of axioms for characterizing the Shapley centrality

is adapted from the classical Shapley’s axioms [29].
The first axiom states that labels on the nodes should have

no effect on centrality measures. This ubiquitous axiom is
similar to the isomorphic axiom in some other centrality
characterizations, e.g. [27].

Axiom 1 (Anonymity). For any influence instance
I = (V,E, PI), and permutation π ∈ Π, ψv(I) =
ψπ(v)(π(I)), ∀v ∈ V .

In Axiom 1, π(I) = (π(V ), π(E), π(PI)) denotes the isomor-
phic instance: (1) ∀u, v ∈ V , (π(u), π(v)) ∈ π(E) iff (u, v) ∈
E, and (2) ∀S, T ⊆ V , PI(S, T ) = Pπ(I)(π(S), π(T )).

The second axiom states that the centrality measure di-
vides the total share of influence |V |. In other words, the
average centrality is normalized to 1.

Axiom 2 (Normalization). For every influence in-
stance I = (V,E, PI),

∑
v∈V ψv(I) = |V |.

The next axiom characterizes the centrality of a type
of extreme nodes in social influence. In instance I =
(V,E, PI), we say v ∈ V is a sink node if ∀S, T ⊆ V \ {v},
PI(S ∪ {v}, T ∪ {v}) = PI(S, T ) + PI(S, T ∪ {v}). In the
extreme case when S = T = ∅, PI({v}, {v}) = 1, i.e., v can
only influence itself. When v joins another S to form a seed
set, the influence to a target T ∪{v} can always be achieved
by S alone (except perhaps the influence to v itself). In
the triggering model, a sink node is (indeed) a node without
outgoing edges, matching the name “sink”.

Because a sink node v has no influence on other nodes,
we can “remove” it and obtain a projection of the influence
model on the network without v: Let I \{v} = (V \{v}, E \
{v}, PI\{v}) denote the projected instance over V \{v}, where
E \{v} = {(i, j) ∈ E : v 6∈ {i, j}} and PI\{v} is the influence
model such that for all S, T ⊆ V \ {v}:

PI\{v}(S, T ) = PI(S, T ) + PI(S, T ∪ {v}).

Intuitively, since sink node v is removed, the previously dis-
tributed influence from S to T and T ∪ {v} is merged into

the influence from S to T in the projected instance. For
the triggering model, influence projection is simply remov-
ing the sink node v and its incident incoming edges without
changing the triggering set distribution of any other nodes.

Axiom 3 below considers the simple case when the influ-
ence instance has two sink nodes u, v ∈ V . In such a case, u
and v have no influence to each other, and they influence no
one else. Thus, their centrality should be fully determined
by V \ {u, v}: Removing one sink node — say v — should
not affect the centrality measure of another sink node u.

Axiom 3 (Independence of Sink Nodes). For any
influence instance I = (V,E, PI), for any pair of sink nodes
u, v ∈ V in I, it should be the case: ψu(I) = ψu(I \ {v}).

The next axiom considers Bayesian social influence
through a given network: Given a graph G = (V,E), and
r influence instances on G: Iη = (V,E, PIη ) with η ∈ [r].
Let λ = (λ1, λ2, . . . , λr) be a prior distribution on [r], i.e.∑r
η=1 λη = 1, and λη ≥ 0, ∀η ∈ [r]. The Bayesian influ-

ence instance IB({Iη},λ) has the following influence process
for a seed set S ⊆ V : (1) Draw a random index η ∈ [r]
according to distribution λ (denoted as η ∼ λ). (2) Apply
the influence process of Iη with seed set S to obtain the
activated set T . Equivalently, we have for all S, T ⊆ V ,
PIB({Iη},λ)(S, T ) =

∑r
η=1 ληPIη (S, T ). In the triggering

model, we can view each live-edge graph and the determin-
istic diffusion on it via reachability as an influence instance,
and the diffusion of the triggering model is by the Bayesian
(or convex) combination of these live-edge instances. The
next axiom reflects the linearity-of-expectation principle:

Axiom 4 (Bayesian Influence). For any network
G = (V,E) and Bayesian social-influence model IB({Iη},λ):

ψv(IB({Iη},λ)) = Eη∼λ [ψv(Iη)] =

r∑
η=1

λη · ψv(Iη), ∀v ∈ V.

The above axiom essentially says that the centrality of a
Bayesian instance before realizing the actual model Iη is the
same as the expected centrality after realizing Iη.

The last axiom characterizes the centrality of a family of
simple social-influence instances. For any ∅ ⊂ R ⊆ U ⊆ V ,
a critical set instance IR,U = (V,E, PIR,U ) is such that:
(1) The network G = (V,E) contains a complete directed
bipartite sub-graph from R to U \R, together with isolated
nodes V \ U . (2) For all S ⊇ R, PIR,U (S,U ∪ S) = 1, and
(3) For all S 6⊇ R, PIR,U (S, S) = 1. In IR,U , R is called the
critical set, and U is called the target set. In other words, a
seed set containing R activates all nodes in U , but missing
any node in R the seed set only activates itself. We use IR,v
to denote the special case of U = R∪{v} and V = U . That
is, only if all nodes in R work together they can activate v.

Axiom 5 (Bargaining with Critical Sets). In any

critical set instance IR,v, the centrality of v is |R|
|R|+1

, i.e.

ψv(IR,v) = |R|
|R|+1

.

Qualitatively, Axiom 5 together with Normalization and
Anonymity axioms implies that the relative importance of v
comparing to a node in the critial set R increases when |R|
increases, which is reasonable because when the critical set
R grows, individuals in R becomes weaker and v becomes
relatively stronger. The actual quantity can be explained by
Nash’s solution to the bargaining game [21] (see [12]).

Our first axiomatic representation theorem can now be
stated as the following:



Theorem 1. (Axiomatic Characterization of
Shapley Centrality) The Shapley centrality ψShapley is
the unique centrality measure that satisfies Axioms 1-5.
Moreover, every axiom in this set is independent of others.

The soundness of this representation theorem — that the
Shapley centrality satisfies all axioms — is relatively sim-
ple. However, because of the intrinsic complexity in influ-
ence models, the uniqueness proof is in fact complex. We
give a high-level proof sketch here and the full proof is in
[12]. We follow Myerson’s proof strategy [20] of Shapley’s
theorem. The probabilistic profile PI of influence instance
I = (V,E, PI) is viewed as a vector in a large space RM ,
where M is the number of independent dimensions in PI .
Bayesian Influence Axiom enforces that any conforming cen-
trality measure is an affine mapping from RM to Rn. We
then prove that the critical set instances IR,U form a full-
rank basis of the linear space RM . Finally, we prove that
any axiom-conforming centrality measure over critical set
instances (and the additional null instance in which every
node is a sink node) must be unique. The uniqueness of
the critical set instances and the null instance, the linear
independence of critical set instances in RM , plus the affine
mapping from RM to Rn, together imply that the centrality
measure of every influence instance is uniquely determined.
Our overall proof is more complex and — to a certain degree
— more subtle than Myerson’s proof, because our axiomatic
framework is based on the influence model in a much larger
dimensional space compared to the subset utility functions.
Finally, for independence, we need to show that for each ax-
iom, we can construct an alternative centrality measure if
the axiom is removed. Except for Axiom 5, the construc-
tions and the proofs for other axioms are nontrivial, and
they shed lights on how related centrality measures could
be formed when some conditions are relaxed.

3.2 Axioms for SNI Centrality
We first examine which of Axioms 1-5 are satisfied by SNI

centrality. It is easy to verify that Anonymity and Bayesian
Influence Axioms hold for SNI centrality. For the Indepen-
dence of Sink Node Axiom (Axiom 3), since every sink node
can only influence itself, its SNI centrality is 1. Thus, Ax-
iom 3 is satisfied by SNI because of a stronger reason.

For the Normalization Axiom (Axiom 2), the sum of sin-
gle node influence is typically more than the total number of
nodes (e.g., when the influence spread is submodular), and
thus Axiom 2 does not hold for SNI centrality. The Bar-
gaining with Critical Sets Axiom (Axiom 5) does not hold
either, since node v in IR,v is a sink node and thus its SNI
centrality is 1.

We now present our axiomatic characterization of SNI
centrality, which will retain Bayesian Influence Axiom 4,
strengthen Independence of Sink Node Axiom 3, and rechar-
acterize the centrality of a node in a critical set:

Axiom 6 (Uniform Sink Nodes). Every sink node
has centrality 1.

Axiom 7 (Critical Nodes). In any critical set in-
stance IR,U , the centrality of a node w ∈ R is 1 if |R| > 1,
and is |U | if |R| = 1.

These three axioms are sufficient to uniquely characterize
SNI centrality, as they also imply Anonymity Axiom:

Theorem 2. (Axiomatic Characterization of SNI
Centrality) The SNI centrality ψSNI is the unique cen-
trality measure that satisfies Axioms 4, 6, and 7. Moreover,
each of these axioms is independent of the others.

Theorems 1 and 2 establish the following appealing prop-
erty: Even though all our axioms are on probabilistic pro-
files PI of influence instances, the unique centrality measure
satisfying these axioms is in fact fully determined by the in-
fluence spread profile σI . We find this amazing because the
distribution profile PI has much higher dimensionality than
its influence-spread profile σI .

3.3 Shapley Centrality versus SNI Centrality
We now provide a comparative analysis between Shapley

and SNI centralities based on their definitions, axiomatic
characterizations, and various other properties they satisfy.

Comparison by definition. The definition of SNI cen-
trality is more straightforward as it uses individual node’s
influence spread as the centrality measure. Shapley cen-
trality is more sophisticatedly formulated, involving groups’
influence spreads. SNI centrality disregards the influence
profile of groups. Thus, it may limit its usage in more com-
plex situations where group influences should be considered.
Meanwhile, Shapley centrality considers group influence in
a particular way involving marginal influence of a node on
a given group randomly ordered before the node. Thus,
Shapley centrality is more suitable for assessing marginal
influence of a node in a group setting.

Comparison by axiomatic characterization. Both SNI
and Shapley centralities satisfy Anonymity, Independence of
Sink Nodes, and Bayesian Influence axioms, which seem to
be natural axioms for desirable social-influence centrality
measures. Their unique axioms characterize exactly their
differences. The first difference is on the Normalization Ax-
iom, satisfied by Shapley but not SNI centrality. This in-
dicates that Shapley centrality aims at dividing the total
share of possible influence spread |V | among all nodes, but
SNI centrality does not enforce such share division among
nodes. If we artificially normalize the SNI centrality values
of all nodes to satisfy the Normalization Axiom, the normal-
ized SNI centrality would not satisfy the Bayesian Influence
Axiom. (In fact, it is not easy to find a new characteriza-
tion for the normalized SNI centrality similar to Theorem 2.)
We will see shortly that the Normalization Axiom would also
cause a drastic difference between the two centrality mea-
sures for the symmetric IC influence model.

The second difference is on their treatment of sink nodes,
exemplified by sink nodes in the critical set instances. For
SNI centrality, sink nodes are always treated with the same
centrality of 1 (Axiom 6). But the Shapley centrality of a
sink node may be affected by other nodes that influence the
sink. In particular, for the critical set instance IR,v, v has
centrality |R|/(|R|+1), which increases with R. As discussed
earlier, larger R indicates v is getting stronger comparing to
nodes in R. In this aspect, Shapley centrality assignment is
sensible. Overall, when considering v’s centrality, SNI cen-
trality disregards other nodes’ influence to v while Shapley
centrality considers other nodes’ influence to v.

The third difference is their treatment of critical nodes in
the critical set instances. For SNI centrality, in the critical
set instance IR,v, Axiom 7 obliviously assigns the same value
1 for nodes u ∈ R whenever |R| > 1, effectively equalizing



the centrality of node u ∈ R with v. In contrast, Shapley
centrality would assign u ∈ R a value of 1 + 1

|R|(|R|+1)
, de-

creasing with R but is always larger than v’s centrality of
|R|
|R|+1

. Thus Shapley centrality assigns more sensible values

in this case, because u ∈ R as part of a coalition should have
larger centrality than v, who has no influence power at all.
We believe this shows the limitation of the SNI centrality —
it only considers individual influence and disregards group
influence. Since the critical set instances reflect the thresh-
old behavior in influence propagation — a node would be
influenced only after the number of its influenced neighbors
reach certain threshold — this suggests that SNI centrality
could be problematic in threshold-based influence models.

Comparison by additional properties. Finally, we
compare additional properties they satisfy. First, it is
straightforward to verify that both centrality measures sat-
isfy the Independence of Irrelevant Alternatives (IIA)) prop-
erty: If an instance I = (V,E, PI) is the union of two dis-
joint and independent influence instances, I1 = (V1, E1, PI1)
and I2 = (V2, E2, PI2), then for k ∈ {1, 2} and any v ∈ Vk:
ψv(I) = ψv(Ik).

The IIA property together with the Normalization Axiom
leads to a clear difference between SNI and Shapley central-
ity. Consider an example of two undirected and connected
graphs G1 with 10 nodes and G2 with 3 nodes, and the
IC model on them with edge probability 1. Both SNI and
Shapley centralities assign same values to nodes within each
graph, but due to normalization, Shapley assigns 1 to all
nodes, while SNI assigns 10 to nodes in G1 and 3 to nodes
in G2. The IIA property ensures that the centrality does
not change when we put G1 and G2 together. That is, SNI
considers nodes in G1 more important while Shapley consid-
ers them the same. While SNI centrality makes sense from
individual influence point of view, the view of Shapley cen-
trality is that a node in G1 is easily replaceable by any of
the other 9 nodes in G1 but a node in G2 is only replaceable
by two other nodes in G2. Shapley centrality uses marginal
influence in randomly ordered groups to determine that the
“replaceability factor” cancels out individual influence and
assigns same centrality to all nodes.

The above example generalizes to the symmetric IC model
where pu,v = pv,u, ∀u, v ∈ V : Every node has Shapley cen-
trality of 1 in such models. The technical reason is that
such models have an equivalent undirected live-edge graph
representation, containing a number of connected compo-
nents just like the above example. The Shapley symme-
try in the symmetric IC model may sound counter-intuitive,
since it appears to be independent of network structures or
edge probability values. But we believe what it unveils is
that symmetric IC model might be an unrealistic model in
practice — it is hard to imagine that between every pair
of individuals the influence strength is symmetric. For ex-
ample, in a star graph, when we perceive that the node in
the center has higher centrality, it is not just because of
its center position, but also because that it typically exerts
higher influence to its neighbors than the reverse direction.
This exactly reflects our original motivation that mere po-
sitions in a static network may not be an important factor
in determining the node centrality, and what important is
the effect of individual nodes participating in the dynamic
influence process.

From the above discussions, we clearly see that (a) SNI
centrality focuses on individual influence in isolation, while
(b) Shapley centrality focuses on marginal influence in group
influence settings, and measures the irreplaceability of the
nodes in some sense.

4. SCALABLE ALGORITHMS
In this section, we first give a sampling-based algorithm

for approximating the Shapley centrality ψShapley(I) of any
influence instance in the triggering model. We then give a
slight adaptation to approximate SNI centrality. In both
cases, we characterize the performance of our algorithms
and prove that they are scalable for a large family of social-
influence instances. In next section, we empirically show
that these algorithms are efficient for real-world networks.

4.1 Algorithm for Shapley Centrality
In this subsection, we use ψ as a shorthand for ψShapley.

Let n = |V | and m = |E|. To precisely state our result,
we make the following general computational assumption,
as in [32, 31]:

Assumption 1. The time to draw a random triggering
set T (v) is proportional to the in-degree of v.

The key combinatorial structures that we use are the fol-
lowing random sets generated by the reversed diffusion pro-
cess of the triggering model. A (random) reverse reachable
(RR) set R is generated as follows: (0) Initially, R = ∅. (1)
Select a node v ∼ V uniformly at random (called the root
of R), and add v to R. (2) Repeat the following process
until every node in R has a triggering set: For every u ∈ R
not yet having a triggering set, draw its random triggering
set T (u), and add T (u) to R. Suppose v ∼ V is selected
in Step (1). The reversed diffusion process uses v as the
seed, and follows the incoming edges instead of the outgoing
edges to iteratively “influence” triggering sets. Equivalently,
an RR set R is the set of nodes in a random live-edge graph
L that can reach node v.

The following key lemma elegantly connects RR sets with
Shapley centrality. We will defer its intuitive explanation to
the end of this section. Let π be a random permutation on
V . Let I{E} be the indicator function for event E .

Lemma 1 (Shapley Centrality Identity). Let R
be a random RR set. Then, ∀u ∈ V , u’s Shapley centrality
is ψu = n · ER[I{u ∈ R}/|R|].
This lemma is instrumental to our scalable algorithm. It
guarantees that we can use random RR sets to build unbi-
ased estimators of Shapley centrality. Our algorithm ASV-
RR (standing for “Approximate Shapley Value by RR Set”)
is presented in Algorithm 1. It takes ε, `, and k as input
parameters, representing the relative error, the confidence
of the error, and the number of nodes with top Shapley val-
ues that achieve the error bound, respectively. Their exact
meaning will be made clear in Theorem 3.

ASV-RR follows the structure of the IMM algorithm of
[31] but with some key differences. In Phase 1, Algorithm 1
estimates the number of RR sets needed for the Shapley es-
timator. For a given parameter k, we first estimate a lower
bound LB of the k-th largest Shapley centrality ψ(k). Fol-
lowing a similar structure as the sampling method in IMM
[31], the search of the lower bound is carried out in at most
blog2 nc−1 iterations, each of which halves the lower bound
target x = n/2i and obtains the number of RR sets θi needed



Input: Network: G = (V,E); Parameters: random trigger-
ing set distribution {T (v)}v∈V , ε > 0, ` > 0, k ∈ [n]

Output: ψ̂v, ∀v ∈ V : estimated centrality measure
1: {Phase 1. Estimate the number of RR sets needed }
2: LB = 1; ε′ =

√
2 · ε; θ0 = 0

3: estv = 0 for every v ∈ V
4: for i = 1 to blog2 nc − 1 do
5: x = n/2i

6: θi =
⌈
n·((`+1) lnn+ln log2 n+ln 2)·(2+ 2

3
ε′)

ε′2·x

⌉
7: for j = 1 to θi − θi−1 do
8: generate a random RR set R
9: for every u ∈ R, estu = estu + 1/|R|

10: end for
11: est (k) = the k-th largest value in {estv}v∈V
12: if n · est (k)/θi ≥ (1 + ε′) · x then

13: LB = n · est (k)/(θi · (1 + ε′))
14: break
15: end if
16: end for

17: θ =
⌈
n((`+1) lnn+ln 4)(2+ 2

3
ε)

ε2·LB

⌉
18: {Phase 2. Estimate Shapley value}
19: estv = 0 for every v ∈ V
20: for j = 1 to θ do
21: generate a random RR set R
22: for every u ∈ R, estu = estu + 1/|R|
23: end for
24: for every v ∈ V , ψ̂v = n · estv/θ
25: return ψ̂v, v ∈ V

Algorithm 1: ASV-RR(G,T , ε, `, k)

in this iteration (line 6). The key difference is that we do
not need to store the RR sets and compute a max cover.
Instead, for every RR set R, we only update the estimate
estu of each node u ∈ R with an additional 1/|R| (line 9),
which is based on Lemma 1. In each iteration, we select the
k-th largest estimate (line 11) and plug it into the condition
in line 12. Once the condition holds, we calculate the lower
bound LB in line 13 and break the loop. Next we use this
LB to obtain the number of RR sets θ needed in Phase 2
(line 17). In Phase 2, we first reset the estimates (line 19),
then generate θ RR sets and again updating estu with 1/|R|
increment for each u ∈ R (line 22). Finally, these estimates
are transformed into the Shapley estimation in line 24.

Unlike IMM, we do not reuse the RR sets generated in
Phase 1, because it would make the RR sets dependent and
the resulting Shapley centrality estimates biased. Moreover,
our entire algorithm does not need to store any RR sets, and
thus ASV-RR does not have the memory bottleneck encoun-
tered by IMM when dealing with large networks. The follow-
ing theorem summarizes the performance of Algorithm 1,
where ψ and ψ(k) are Shapley centrality and k-th largest
Shapley centrality value, respectively.

Theorem 3. For any ε > 0, ` > 0, and k ∈ [n], Algo-

rithm ASV-RR returns an estimated Shapley value ψ̂v that

satisfies (a) unbiasedness: E[ψ̂v] = ψv, ∀v ∈ V ; (b) absolute

normalization:
∑
v∈V ψ̂v = n in every run; and (c) robust-

ness: under the condition that ψ(k) ≥ 1, with probability at
least 1− 1

n`
:

{
|ψ̂v − ψv| ≤ εψv ∀v ∈ V with ψv > ψ(k),

|ψ̂v − ψv| ≤ εψ(k) ∀v ∈ V with ψv ≤ ψ(k).
(3)

Under Assumption 1 and the condition ` ≥ (log2 k −
log2 log2 n)/ log2 n, the expected running time of ASV-RR is

O(`(m+n) logn ·E[σ(ṽ)]/(ψ(k)ε2)), where E[σ(ṽ)] is the ex-
pected influence spread of a random node ṽ drawn from V
with probability proportional to the in-degree of ṽ.

Eq. (3) above shows that for the top k Shapley values,
ASV-RR guarantees the multiplicative error of ε relative to
node’s own Shapley value, and for the rest Shapley value,
the error is relative to the k-th largest Shapley value ψ(k).
This is reasonable since typically we only concern nodes
with top Shapley values. For time complexity, the condition
` ≥ (log2 k− log2 log2 n)/ log2 n always hold if k ≤ log2 n or
` ≥ 1. When fixing ε as a constant, the running time de-
pends almost linearly on the graph size (m + n) multiplied

by a ratio E[σ(ṽ)]/ψ(k). This ratio is upper bounded by the
ratio between the largest single node influence and the k-th
largest Shapley value. When these two quantities are about
the same order, we have a near-linear time, i.e., scalable
[33], algorithm. Our experiments show that in most datasets

tested the ratio E[σ(ṽ)]/ψ(k) is indeed less than 1. More-
over, if we could relax the robustness requirement in Eq. (3)

to allow the error of |ψ̂v − ψv| to be relative to the largest
single node influence, then we could indeed slightly modify
the algorithm to obtain a near-linear-time algorithm without
the ratio E[σ(ṽ)]/ψ(k) in the time complexity (see [12]).

The accuracy of ASV-RR is based on Lemma 1 while
the time complexity analysis follows a similar structure as
in [31]. Due to space limit, the proofs of Lemma 1 and The-
orems 3 are presented in our full report [12]. Here, we give a
high-level explanation. In the triggering model, as for influ-
ence maximization [10, 32, 31], a random RR set R can be
equivalently obtained by first generating a random live-edge
graph L, and then constructing R as the set of nodes that
can reach a random v ∼ V in L. The fundamental equation
associated with this live-edge graph process is:

σ(S) =
∑
L

Pr
L

(L = L) Pr
v

(v ∈ Γ(L, S)) · n. (4)

Our Lemma 1 is the result of the following crucial observa-
tions: First, the Shapley centrality ψu of node u ∈ V can be
equivalently formulated as the expected Shapley centrality
of u over all live-edge graphs and random choices of root
v, from Eq. (4). The chief advantage of this formulation
is that it localizes the contribution of marginal influences:
On a fixed live-graph L and root v ∈ V , we only need to
compute the marginal influence of u in terms of activating
v to obtain the Shapley contribution of the pair. We do not
need to compute the marginal influences of u for activating
other nodes. Lemma 1 then follows from our second cru-
cial observation. When R is the fixed set that can reach v
in L, the marginal influence of u activating v in a random
order is 1 if and only if the following two conditions hold
concurrently: (a) u is in R — so u has chance to activate
v, and (b) u is ordered before any other node in R — so u
can activate v before other nodes in R do so. In addition, in
a random permutation π ∼ Π over V , the probability that
u ∈ R is ordered first in R is exactly 1/|R|. This explains
the contribution of I{u ∈ R}/|R| in Lemma 1, which is also
precisely what the updates in lines 9 and 22 of Algorithm 1
do. The above two observations together establish Lemma



Table 1: Datasets used in the experiments.
Dataset # Nodes # Edges Weight Setting

Data mining (DM) 679 1687 WC, PR, LN
Flixster (FX) 29,357 212,614 LN
LiveJournal (LJ) 4,847,571 68,993,773 WC

1, which is the basis for the unbiased estimator of u’s Shap-
ley centrality. Then, by a careful probabilistic analysis, we
can bound the number of random RR sets needed to achieve
approximation accuracy stated in Theorem 3 and establish
the scalability for Algorithm ASV-RR.

4.2 Algorithm for SNI Centrality
Algorithm 1 relies on the key fact given in Lemma 1 about

the Shapley centrality: ψShapley
u = n · ER[I{u ∈ R}/|R|]. A

similar fact holds for the SNI centrality: ψSNI
u = σ({u}) =

n ·ER[I{u ∈ R}] [10, 32, 31]. Therefore, it is not difficult to
verify that we only need to replace estu = estu + 1/|R| in
lines 9 and 22 with estu = estu + 1 to obtain an approx-
imation algorithm for SNI centrality. Let ASNI-RR denote
the algorithm adapted from ASV-RR with the above change,
and let ψv below denote SNI centrality ψSNI

v and ψ(k) denote
the k-th largest SNI value.

Theorem 4. For any ε > 0, ` > 0, and k ∈ {1, 2, . . . , n},
Algorithm ASNI-RR returns an estimated SNI centrality ψ̂v
that satisfies (a) unbiasedness: E[ψ̂v] = ψv,∀v ∈ V ; and (b)
robustness: with probability at least 1− 1

n`
:{

|ψ̂v − ψv| ≤ εψv ∀v ∈ V with ψv > ψ(k),

|ψ̂v − ψv| ≤ εψ(k) ∀v ∈ V with ψv ≤ ψ(k).
(5)

Under Assumption 1 and the condition ` ≥ (log2 k −
log2 log2 n)/ log2 n, the expected running time of ASNI-RR

is O(`(m+ n) logn · E[σ(ṽ)]/(ψ(k)ε2)), where E[σ(ṽ)] is the
same as defined in Theorem 1.

Together with Algorithm ASV-RR and Theorem 3, we see
that although Shapley and SNI centrality are quite different
conceptually, surprisingly they share the same RR-set based
scalable computation structure. Comparing Theorem 4 with
Theorem 3, we can see that computing SNI centrality should
be faster for small k since the k-th largest SNI value is usu-
ally larger than the k-th largest Shapley value.

5. EXPERIMENTS
We conduct experiments on a number of real-world social

networks to compare their Shapley and SNI centrality, and
test the efficiency of our algorithms ASV-RR and ASNI-RR.

5.1 Experiment Setup
The network datasets we used are summarized in Table 1.
The first dataset is a relatively small one used as a case

study. It is a collaboration network in the field of Data
Mining (DM), extracted from the ArnetMiner archive (ar-
netminer.org) [30]: each node is an author and two authors
are connected if they have coauthored a paper. We use two
large networks to demonstrate the effectiveness of the Shap-
ley and SNI centrality and the scalability of our algorithms.
Flixster (FX) [4] is a directed network extracted from movie
rating site flixster.com. The nodes are users and a directed
edge from u to v means that v has rated some movie(s) that
u rated earlier. We use influence probabilities on topic 1 in

their provided data as an example. Finally, LiveJournal (LJ)
is the largest network we tested with. It is a directed network
of bloggers, obtained from Stanford’s SNAP project [1], and
it was also used in [32, 31].

We use the independent cascade (IC) model in our exper-
iments. The schemes for generating influence-probability
profiles are also shown in Table 1, where WC, PR, and
LN stand for weighted cascade, PageRank-based, and learned
from real data, respectively. WC is a scheme of [18], which
assigns pu,v = 1/dv to edge (u, v) ∈ E, where dv is the
in-degree of node v. PR uses the nodes’ PageRanks [11] in-
stead of in-degrees: We first compute the PageRank score
r(v) for every node v ∈ V in the unweighted network, us-
ing 0.15 as the restart parameter. Then, for each orig-
inal edge (u, v) ∈ E, PR assigns an edge probability of
r(u)/(r(u) + r(v)) · n/(2mU ), where mU is the number of
undirected edges in the graph. LN applies to DM and FX
datasets, where we obtain learned influence probability pro-
files from the authors of the original studies. For the DM
dataset, the influence probabilities on edges are learned by
the topic affinity algorithm TAP proposed in [30]; for FX,
the influence probabilities are learned using maximum like-
lihood from the action trace data of user rating events.

We implement all algorithms in Visual C++, compiled in
Visual Studio 2013, and run our tests on a server computer
with 2.4GHz Intel(R) Xeon(R) E5530 CPU, 2 processors (16
cores), 48G memory, and Windows Server 2008 R2 (64 bits).

An additional dataset DBLP with WC and PR settings is
also tested and results are included in [12].

5.2 Experiment Results
Case Study on DM. We set ε = 0.01, ` = 1, and k = 50
for both ASV-RR and and ASNI-RR algorithms. For the three
influence profiles: WC, PR, and LN, Table 2 lists the top 10
nodes in both Shapley and SNI ranking together with their
numerical values. The names appeared in all ranking results
are well-known data mining researchers in the field,but the
ranking details have some difference.

We compare the Shapley ranking versus SNI ranking un-
der the same probability profiles. In general, the two top-10
ranking results align quite well with each other, showing
that in these influence instances, high individual influence
usually translates into high marginal influence. Some notice-
able exception also exists. For example, Christos Faloutsos
is ranked No.3 in the DM-PR Shapley centrality, but he is
not in Top-10 based on DM-PR individual influence rank-
ing. Conceptually, this would mean that, in the DM-PR
model, Professor Faloutsos has better Shapley ranking be-
cause he has more unique and marginal impact comparing
to his individual influence.

We next compare Shapley and SNI centrality with the
structure-based degree centrality. The results show that the
Shapley and SNI rankings in DM-WC and DM-PR are sim-
ilar to the degree centrality ranking, which is reasonable be-
cause DM-WC and DM-PR are all heavily derived from node
degrees. However, DM-LN differs from degree ranking a lot,
since it is derived from topic modeling, not node degrees.
This implies that when the influence model parameters are
learned from real-world data, it may contain further infor-
mation such that its influence-based Shapley or SNI ranking
may differ from structure-based ranking significantly.

Results on Large Networks. We set ε = 0.5, ` = 1,
and k = 50 for this test, where ε = 0.5 is obtained with an



Table 2: Top 10 authors from DM dataset, ranked by Shapley, SNI, and degree centrality.

(a) Flixster-LN (b) LiveJournal-WC

Figure 2: Influence maximization test.

Table 3: Running time (in seconds).
ASV-RR ASNI-RR IMM

FX-LN 24.83 1.36 0.62
LJ-WC 8295.57 267.50 54.88

omitted tuning step [12]. Due to the lack of user profiles,
we assess the effectiveness of Shapley and SNI centralities
through lens of influence maximization (IM), by comparing
the IM performance of their top-ranked nodes with nodes se-
lected by the IMM algorithm [31]. A simple heuristic Degree
based on degree centrality is also compared as a baseline.

Figure 2 shows the influence spread results and Table 3
shows the running time. We see that both Shapley and
SNI have similar IM performance and is reasonable close to
the specialized IMM algorithm, but Shapley is noticeably
better (average 8.3% improvement) than SNI in Flixster-
LN test. This is perhaps due to that Shapley centrality
accounts for more marginal influence, which is closer to what
is needed for influence maximization. In FX-LN, both ASNI-
RR and ASV-RR performs significantly better than Degree,
again indicating that influence learned from the real-world
data may contain significantly more information than the
graph structure, in which case degree centrality is not a good
index for node importance. Both ASNI-RR and ASV-RR can
scale to the large LiveJournal group with 69M edges, and
ASNI-RR scales better as predicted by Theorems 3 and 4.

6. CONCLUSION AND FUTURE WORK
Through an integrated mathematical, algorithmic, and

empirical study of Shapley and SNI centralities in the con-
text of network influence, we have shown that (a) both en-

joy concise axiomatic characterizations, which precisely cap-
ture their similarity and differences; (b) both centrality mea-
sures can be efficiently approximated with guarantees under
the same algorithmic structure, for a large class of influ-
ence models; and (c) Shapley centrality focuses on nodes’
marginal influence and their irreplaceability in group influ-
ence settings, while SNI centrality focuses on individual in-
fluence in isolation, and is not suitable in assessing nodes’
ability in group influence setting, such as threshold-based
models.

There are several directions to extend this work and fur-
ther explore the interplay between social influence and net-
work centrality. One important direction is to formulate
centrality measures that combine the advantages of Shapley
and SNI centralities, by viewing Shapley and SNI centrali-
ties as two extremes in a centrality spectrum, one focusing
on individual influence while the other focusing on marginal
influence in groups of all sizes. Then, would there be some
intermediate centrality measure that provides a better bal-
ance? Another direction is to incorporate other classical
centralities into influence-based centralities. For example,
SNI centrality may be viewed as a generalized version of de-
gree centrality, because when we restrict the influence model
to deterministic activation of only immediate neighbors, SNI
centrality essentially becomes degree centrality. What about
the general forms of closeness, betweenness, PageRank in the
influence model? Algorithmically, efficient algorithms for
other influence models such as general threshold models [18]
is also interesting. In summary, this paper lays a foundation
for the further development of the axiomatic and algorith-
mic theory for influence-based network centralities, which
we hope will provide us with deeper insights into network
structures and influence dynamics.
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