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hierarchical networks has been studied (Arenas et al., 2006, 2008). 
In particular, it has been shown that the hierarchical levels of nodes 
in the network prescribe a cascade-like sequence toward a fully 
synchronized state (Arenas et al., 2006).

In general, the shaping of dynamic processes by network topol-
ogy can also be characterized as a correlation between network 
properties and properties of the dynamics (Müller-Linow et al., 
2008). Qualitatively speaking, a dynamic process typically groups 
statistically identical nodes into different functional categories. 
Understanding the impact of the network topology on the func-
tioning of a dynamic process therefore starts by explaining the 
topological systematics of these node categories induced by the 
dynamical process.

Within the simple model of excitable dynamics on graphs, which 
we also use here (see Materials and Methods), two types of correla-
tion between network topology and dynamics have been analyzed 
by numerical simulation: waves propagating from central nodes 
and module-based synchronization (Müller-Linow et al., 2008). 
These two dynamic regimes represent a graph-equivalent to clas-
sical spatiotemporal pattern formation.

In order to quantify such modes of pattern formation, one can 
analyze properties of the matrix of simultaneous excitations, which 
for example can be studied using a clustering analysis. When ana-
lyzing these dynamics on a modular graph, the clusters obtained 
from the matrix of simultaneous excitations coincide well with the 
topological modules of the graph. Similarly, when analyzing the 
dynamics on a scalefree graph, the clusters essentially match groups 
of nodes with the same distance to the main hub of the graph.

Surprisingly, certain networks, e.g. hierarchical modular net-
works, contain enough topological cues for allowing both types of 
patterns to emerge: The dynamic behavior of such networks can 
switch from one of these modes to the other as the level of sponta-
neous node activation increases (Müller-Linow et al., 2008).

INTRODUCTION

The question, how network architecture systematically shapes 
dynamic processes on the network, has become one of the key 
topics of research in a range of disciplines – from systems biol-
ogy (Barabási and Oltvai, 2004; Alon, 2007; Brandman and Meyer, 
2008) and ecology (Uchida et al., 2007) to logistics (Armbruster 
et al., 2005; Guimera et al., 2005) and sociology (Kearns et al., 
2006). In neuroscience this question is of particular importance, 
as functional properties of the brain can be expected to emerge 
from the organization of (essentially excitable) dynamics on the 
network of neurons.

Network research employs the formal view of graph theory to 
understand the design principles of complex systems. For many 
biological and technical networks, a large-scale system-wide per-
spective of the network architecture (the ‘topology’ of such graphs) 
has yielded some unexpected universal features, e.g., the ubiqui-
tousness of heavy-tail degree distributions (Barabási and Albert, 
1999; Barabási and Oltvai, 2004), the presence and possible func-
tions of modularity in enhancing the robustness of a network and in 
organizing network tasks (Ravasz et al., 2002; Guimera and Amaral, 
2005) and a similarity in motif content of functionally similar net-
works (Milo et al., 2004; Alon, 2007), where motifs are groups of 
few nodes with a specifi c link pattern.

Discrete dynamics, and in particular binary and three-state 
dynamics, have proven helpful in the past for studying, how dynam-
ical processes depend on graph topology (Bornholdt, 2005; Marr 
and Hütt, 2005; Müller-Linow et al., 2006; Drossel, 2008).

Here we follow this line of thought and study the interplay of 
topology and dynamics for an important class of dynamical proc-
esses, namely excitable dynamics currently used as a minimal model 
of neuron fi ring, and for an important graph class, namely hierar-
chical networks. A hierarchical organization is an important feature 
of many complex networks in biology. Recently,  synchronization on 
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Here we attempt to understand this switching behavior 
 analytically using a combination of mean-fi eld techniques with 
the notion of an effective network accessible to excitation.

In Section ‘Materials and Methods’ we briefl y describe the hier-
archical network model we use and the model of excitable dynam-
ics, together with a short summary of previous results obtained 
within the same model. In Section ‘Results’ we fi rst reproduce the 
fi ndings from Müller-Linow et al. (2008) in a simpler context, 
then we discuss the failure of the straightforward mean-fi eld as 
well as pair-correlation descriptions to account for the organi-
zation of the dynamics on graphs (see Materials and Methods). 
A suitable incorporation of graph topology into a mean-fi eld 
framework is proposed with the notion of effective networks, 
which at each moment in time are accessible to the dynamics 
due to an interplay of spontaneous activity and recovery rate. 
Excitation patterns can then be viewed as avalanches comprising 
the accessible effective network. This avalanche model is described 
in Section ‘Results’.

MATERIALS AND METHODS

NETWORK ARCHITECTURE

A hierarchical system is intuitively defi ned by a multi-layered 
organization, where few top-level elements are related to several 
elements on intermediate levels, which are in turn related to a large 
number of bottom-level elements. Several parameterizations and 
generative rules of hierarchical graphs coexist in the literature. 
Typical variants rely on a modules-within-modules view (Ravasz 
et al., 2002; Kaiser et al., 2007), others focus on the coexistence 
of modules and central nodes (hubs) (Han et al., 2004; Guimera 
and Amaral, 2005) or relate the concept of hierarchies to fractality 
(Sporns, 2006).

Even though our formalism is applicable to any network, here 
we analyze a specifi c model of hierarchical graphs, namely the one 
introduced by Ravasz et al. (2002) and Ravasz and Barabási (2003). 
In each iteration step four copies of the current network are set 
up and interlinked in a specifi c pattern: the central node is linked 
to all outside nodes; then the local hubs are interlinked among 
themselves (see Figures 1 and 2). The fi rst iteration step leads to 
four fully connected nodes. At the fourth iteration, the network has 

N = 256 nodes linked by 780 edges, parted in 4 shells according to 
their distance from the hub, containing respectively S

0
 = k

hub
 = 120, 

S
1
 = 54, S

2
 = 72 and S

3
 = 9 nodes.

DYNAMICS

For discussing the link between topology and dynamics we use 
a simple three-state model of an excitable medium. The model 
consists of three discrete states for each node (susceptible s, excited 
e, refractory r), which are updated synchronously in discrete time 
steps according to the following rules: (1) A susceptible node 
becomes an excited node, if there is at least one excited node in 
its direct neighborhood. If not, spontaneous fi ring occurs with the 
probability f , which is the rate of spontaneous excitation; (2) an 
excited node enters the refractory state; (3) a node regenerates 
with the recovery probability p (the inverse of which is the aver-
age refractory time of a node). This minimal model of an excit-
able system has a rich history in biological modeling. It has been 
fi rst introduced in a simpler variant under the name ‘forest fi re 
model’ (Bak et al., 1990) and subsequently expanded by Drossel 
and Schwabl (1992) who also introduced the rate of spontane-
ous excitation (the ‘ lightning probability’ in their terminology). 
In this form it was originally applied on regular architectures in 
studies of self-organized criticality. Other variants of three-state 
excitable dynamics have been used to describe epidemic spreading 
(see, e.g., Bailey, 1975; Anderson and May, 1991; Hethcote, 2000; 
Moreno et al., 2002) or to investigate the impact of topology on 
the dynamics (Carvunis et al., 2006). Note that in Carvunis et al. 
(2006) the recovery is deterministic (p = 1) and there is no spon-
taneous excitation (f = 0). In contrast, there is no refractory state 
in the SIS model of epidemic spreading, and no recovery (p = 0) 
in the SIR model (Pastor-Satorras and Vespignani, 2004). As dis-
cussed previously (Graham and Matthai, 2003; Müller-Linow 
et al., 2006), this general model can readily be implemented on 
arbitrary network architectures. In Graham and Matthai (2003) it 
has been shown that short-cuts inserted into a regular (e.g., ring-
like) architecture can mimic the dynamic effect of spontaneous 
excitation. Using a similar model setup we have shown (Müller-
Linow et al., 2006) that the distribution pattern of excitations is 
regulated by the connectivity as well as by the rate of spontaneous 
excitations. An increase of either of the two quantities leads to a 
sudden increase in the excitation density accompanied by a drastic 
change in the distribution pattern from a collective, synchronous 
fi ring of a large number of nodes in the graph (spikes) to more 
local, long-lasting and propagating excitation patterns (bursts). 
Further studies on the activity of integrate-and-fi re neurons in 
the classical small-world model from Watts and Strogatz (1998) 
also revealed a distinct dependency of the dynamic behavior on 
the connectivity of the system (Roxin et al., 2004).

In order to study the pattern of joint excitations on a hierarchical 
graph, we consider for all nodes the individual time series describ-
ing their successive states and for each pair of nodes (i, j) compute 
the number C

ij
 of simultaneous fi ring events. When applied to the 

whole network the resulting matrix C (which in the following will 
be called the similarity matrix, as it captures the similarity of time 
series of two nodes) essentially represents the distribution pattern 
of excitations. This pattern can now be compared with a corre-
sponding distribution pattern of some topological property.

FIGURE 1 | Iteration step in the recursive construction of the hierarchical 

graphs from Ravasz et al. (2002) and Ravasz and Barabási (2003).
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Previous numerical studies (Müller-Linow et al., 2008) have 
shown that different topological features of complex networks, 
such as node centrality and modularity, organize the synchronized 
network function at different levels of spontaneous activity. These 
fi ndings serve as a starting point of our investigation.

RESULTS

CORRELATIONS OF THE SIMILARITY MATRIX WITH GRAPH TOPOLOGY

In Müller-Linow et al. (2008) clustering trees derived from the 
matrix of simultaneous excitations (the similarity matrix C) have 
been compared with groups of nodes derived from topological 
properties. These properties are modularity and node centrality 
and they have been represented by a topological-modularity-based 
reference and a central-node-based reference, respectively. Here we 
analyze the correlations more directly by comparing the similarity 
matrix C with matrices designed to capture the topological feature 
of interest, because the quantities introduced by Müller-Linow et al. 
(2008), while suitable for experimental studies of dynamics on 
graphs, have no direct analytical counterpart.

Two topological features are discussed here: (i) modularity, rep-
resented by the topological overlap matrix (Ravasz et al., 2002) 
T

ij
 = (N

ij
 + A

ij
)/min (k

i
,k

j
), where N

ij
 is the number of common 

neighbors of nodes i and j, A is the graph’s adjacency matrix and 
k

i
 is the degree of node i; (ii) the distance d

i
 of node i from the 

graph’s central hub; for comparison with the similarity matrix C 

this distance is cast into a matrix D, where D
ij
 = 1, if nodes i and j 

have the same distance to the hub and D
ij
 = 0 otherwise.

As a measure of correlation of two matrices (where one typically 
is the similarity matrix and the other one of the matrices derived 
from topology) we use the mutual information M (m(1),m(2)) of the 
two binary matrices m(1) and m(2):

M m m p
p

p pa b

ab
ab

a b

( ) ( )

( ) ( )
log1 2

0 1
1 2

, =
⎛

⎝
⎜

⎞
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, = ,
∑

 

(1)

where p
ab

 denotes the relative frequency of encountering the 
element a in matrix m(1) and b at the same position in matrix 
m(2)(with a,b = 1,0) and pa

k( ) is the relative frequency of a in matrix 
m(k). An alternative quantifi cation is the correlation coeffi cient 
Corr (m(1),m(2)) of the two matrices:

Corr m m
m av m m av m

ij

ij ij
( , )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

1 2

1 1 2 2

=
−⎡⎣ ⎤⎦ −⎡⎣ ⎤⎦∑ σ(( ) ( )( ) ( )m m1 2σ

,
 

(2)

where av (m(k)) and σ (m(k)) denote the average and standard devia-
tion over all values in matrix m(k), respectively. However, neither 
for the topological case nor for a typical similarity matrix at inter-
mediate f the distribution of matrix elements follows a Gaussian 
distribution, so that mutual information better captures the cor-
relation than the correlation coeffi cient Corr. It should be noted 

FIGURE 2 | Hierarchical graph with N = 1024 nodes obtained from the iterative scheme described in Ravasz et al. (2002) and sketched on Figure 1.
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that the quantitative comparison of graphs (and matrices derived 
from graphs) is, in itself, a broad area of research. Distances between 
graphs can differ in the topological feature they emphasize or the 
length scale(s) considered. One alternative to the correlation coef-
fi cient and the mutual information used here could be the spec-
tral distance method from Ipsen and Mikhailov (2002). Here we 
preferred the other two methods, because the dynamics are not 
directly coupled to spectral features (although this in itself may 
be an interesting investigation).

Figure 3 shows the correlation of the similarity matrix with 
the two matrices derived from topology, namely T (measuring 
modularity; full curves) and D (measuring similarity in their 
distance to the hub; dashed curves) as a function of the rate of 
spontaneous excitations f. These curves reproduce the fi nding from 
Müller-Linow et al. (2008): at low f the distribution of excitations is 
predominantly explained by ring structures around the hub (CN, 
central node reference), while at higher f the distribution becomes 
dominated by the modular structure of the graph (TM, topological 
module reference).

It should be noted that these results differ from Müller-Linow 
et al. (2008, Figure 8A), because in Müller-Linow et al. (2008) a 
sparser graph has been used in order to keep the average number of 

excitations at a comparable level for all the graphs discussed there 
(see Methods section in Müller-Linow et al., 2008 for a detailed 
description of this procedure). Here we wanted to use the original 
graph from Ravasz et al. (2002) instead. Figure 4 shows the same 
mutual information curves as in Figure 3B, but with the 1024-node 
network depicted in Figure 2. With increasing network size the 
two patterns seem to become more pronounced. In both cases, 
Figures 3 and 4, the two domains in f are clearly visible, each of 
which is dominated by a specifi c type of correlation between topol-
ogy and dynamics.

MEAN-FIELD MODEL

Following the lines of Graham and Matthai (2003) and Müller-
Linow et al. (2006) we formulate a mean-fi eld description of the 
three-state excitable dynamics introduced in Section ‘Materials and 
Methods’. As we are interested in the rate of simultaneous excita-
tions of two nodes, we include pair correlations in this model.

Denoting pα(t) the density of nodes in state α = e,r,s and 
qα,β(t) the probability that a pair of nodes is in state (α,β) at 
time t [ obviously ∑ =α αp t( ) 1 and ∑ =α α β αq t p t, ( ) ( )], mean-fi eld 
 evolution equations write:

p t p t p p tr e r( ) ( ) ( ) ( )+ = + −1 1
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We can fi rst make use of the mean-fi eld description by  discussing 
the average excitation density, which has been in the focus in 
Müller-Linow et al. (2006), as a function of the connectivity c (i.e., 
the number of links divided by the number N(N − 1)/2 of possible 
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FIGURE 3 | Correlation between the similarity matrix C(f ) and the 

topological matrices T (full curve) and D (dashed curve) as a function of f 

for the hierarchical graph with N = 256 nodes. The correlation is measured 

(A) by the correlation coeffi cient of the two matrices, Eq. 2, and (B) by the 

mutual information, Eq. 1.
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links). Figure 5 shows the excitation density p
e
 obtained in the 

mean-fi eld description, Eqs 3–7, as a function of the connectivity c. 
It is seen that this refi ned mean-fi eld model (i.e., including pair 
correlations) nicely reproduces the increase of average excitation 
with connectivity.

The joint excitation matrix (i.e., our prediction for the similarity 
matrix C) is then computed as the conditional correlation func-
tion Q(f, p) that two nodes are simultaneously excited knowing 
that they belong to the same topological class – shells around a 
central node, or modules. We performed the computation in two 
limiting regimes, fi rst assuming that the dominant contribution 
comes from excitation of the central node (CN case) or from exci-
tation from the middle node of even shortest paths (of length 2) 
within modules (TM case). In this computation, we can ignore 
the  contribution of independent sources of excitation of the two 
nodes, and consider only the joint excitation initially caused by a 
unique remote fi ring event.

In the fi rst case, the probability of excitation of the central node 
cannot be computed within the above mean-fi eld approach due to 
the specifi c hub status of this node. Excitation of the hub comes 
from either the spontaneous fi ring of this node or the propagation 
of an excitation occurring at some node, with stationary probability 
p

e
, leading to:

p
f k p f

f k p f
e

e
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 is the degree of the hub; it has to be multiplied by (1 − f) 
to ensure that the hub has not fi red at the previous step and the 
excitation does not encounter a refractory hub. We compute the 
contribution Q fn
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where S
n
 is the number of nodes in shell n.

In the second case, all the shortest even paths between two 
nodes in the same module play the same role; the 2-step paths 
presumably give the dominant contribution. The network topol-
ogy is involved through the average number ν of such paths, with 
roughly, ν = C(〈k〉 − 1) where C is the clustering coeffi cient. The 
analog quantity q

ee
 obtained for two nodes chosen at random has 

then to be subtracted. It then comes

Q f
p q q

q
e ss ee

ee

( )( )TM =
−ν

 

(11)

Figure 6 shows Q(CN) and Q(TM) as a function of f. Comparing 
these curves with Figures 3 and 4, it is obvious that we fail to account 
for any of the important features of the numerical results. In particu-
lar, Q(CN) does not decrease rapidly enough with f and Q(TM) does not 
show a peak at higher values of f. The switching of the two modes 
of organizing excitations on graphs is absent in this Figure.

These two expressions Q(CN) and Q(TM) could be refi ned by 
introducing the precise number of loopless paths computed from 
reduced iterates of the adjacency matrix, but this does not change 
signifi cantly the results.

Qualitatively, we can already say that the presence of large cor-
related events (dynamic heterogeneities in space and time) contra-
dicts a mean-fi eld view on the problem. We expect the approach 
to be fully valid only at large f, when the system reaches a station-
ary state (the behavior is then trivial, consisting in uncorrelated 
dynamics, with characteristic time scale 1 + 1/f + 1/p ≈ 2 + 1/p and 
no impact of the network topology).

The above equations account for pair correlations in the dynamic 
state (e.g. q pee e≠ 2). This improves the plain mean-fi eld approach 
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the dashed curve is the mutual information for C(f) and D.
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and leads to a proper prediction of the average excitation density. 
But this model dramatically fails to reproduce the actual excitable 
dynamics and excitation patterns because it ignores large correlated 
spatio-temporal fl uctuations, mainly transient and synchronized 
waves of excitation (‘avalanches’) spanning the effective network 
of susceptible nodes and shaped by network topology. Note that 
our approach does not account for pair correlations in the degree: 
Introducing the conditional degree distribution p(k′|k) and consid-
ering degree-dependent densities (averages over subsets of nodes 
with a given degree) in order to account for degree heterogeneity 
and correlation between neighbors (see e.g. Pastor-Satorras and 
Vespignani, 2004), instead of the approximation using 〈k〉, would 
yield more complicated (analytically untractable) equations but still 
miss the essential dynamic correlation between neighboring nodes. 
It would not cure the failure of the mean-fi eld approach to reproduce 
the correlation between excitation pattern and network topology. 
We rather turn to another formalism, explicitly describing the ava-
lanches of excitation and how they refl ect network topology.

AVALANCHE MODEL

The challenge is to combine a mean-fi eld description of the 
dynamics with a suitable representation of topology in order to 
identify the typical effective network accessible to the dynamics 
as a function of the parameters f and p and the architecture of 
the network itself. This is the key idea proposed here for under-
standing the distribution of excitations as pattern on the graph. 
For random graphs (Erdös–Renyi graphs) the fl uctuations in p

e
 

are distributed randomly across the graph. As soon as we provide 
a topological feature the fl uctuations can exploit, these fl uctua-
tions lock onto the topological features. This is clearly seen when 
looking at the correlation between the above topological matrices 
T and D and the matrix C of simultaneous node excitations 
(Figure 3).

We thus propose to understand the distribution of excita-
tions as avalanches on the accessible parts of the network. A 
competition between p and f regulates the size of the effective 
networks and therefore the avalanche size and, more importantly, 
the topological features available to the dynamics. Avalanches 
have been discussed on abstract graphs (Lee et al., 2004) and, in 

the context of self-organized criticality, in neural networks (see, 
e.g. Levina et al., 2007b). While we are not discussing self-organ-
ized criticality here, we nevertheless employ the formal concept 
of avalanches as groups of excitation events correlated by the 
graph’s topology. In particular when the graph has a very het-
erogeneous degree distribution (and, more specifi cally, contains 
hubs) an avalanche of excitations propagating in the graph can 
be regarded as a two-step process: (1) the transportation of the 
excitation to the seed of the real avalanche, (2) the (amplifi ed) 
spreading of the avalanche from the seed towards the accessible 
part of the graph.

Step (1), reminiscent of the coalescent view on a tree, is 
accounted for by considering the gathering of excitations at the 
seed i of an avalanche, yielding a factor equal to the degree k

i
 of 

the seed. Step (2), close to the viewpoint adopted in branching 
processes, is accounted for by considering nested shells around the 
avalanche seed. To delineate the seed nodes, we might compute for 
each node i the multiplicative factor µ

i
 = k(i)S

2
(i): the probability 

that a node is a seed is identifi ed with the weight μ μi q q/∑ . The 
density of susceptible nodes in shell n around i is computed in a 
mean-fi eld approximation as:

Θ( , , ) ( )
( ) ( )

p f q p f
p p f p

p f
s

q r

q q

= − +
− − −⎡⎣ ⎤⎦

−
1

1 1

 
(12)

and the number of nodes in shell n is S i Bn j ij

n( ) ( )= ∑  where the 
matrices B(n) are computed recursively as B(0) = Id, B(1) = A, 
B H A H An n

q

n q( ) ( ) [ ( )]= ∏ −=
−

0
1 1  where H is the Heaviside function. 

The overall excitation amplifi cation factor at node i is thus:
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The largest integer n for which [ ] ( )( )∑ ∏ , ,=j ij

n

q

nB p f q1 Θ  is appreci-
able gives the depth d

i
(p, f) of an avalanche initiated at node i. The 

correlation (as regards their joint excitation) between two nodes j 
and l is fi nally given by:

Q p f q B Bjl

i
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q q n q

n

ij
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(14)

and the average size of an avalanche can be computed as:

A B p f q
i

i

q q n j

ij

n

q

n

= , ,∑ ∑ ∑ ∑ ∏
≥ =

μ
μ 1 1

( ) ( )Θ

 

(15)

Avalanches size and duration reveal the effective connectiv-
ity, while their location and frequency depend on f and the actual 
connectivity.

The idea of an effective graph is relevant only if recovery time 
is smaller than spontaneous fi ring period, namely p >> f. Also, 
speaking of avalanches makes sense only at low and moderate f 
(typically 1/f > 3): observing distinct avalanches (well-separated in 
space and time) requires slow driving: f << 1, a threshold dynamics 
(here all-or-none spontaneous excitation with probability f), and 
a rapid relaxation (diameter D << 1/f).

The distribution of weighting factors μ
i
/Σ

q
 μ

q
 depends strongly 

on the detailed topological features of the graph. Essentially, the 
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FIGURE 6 | Q(CN) (from Eq. 10; dashed curve) and Q(TM) (from Eq. 11; full 

curve) as a function of f.
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graph, we compute the matrices Q(f) also for a scalefree graph (for 
which a dominance of a central-node type organization of excita-
tions throughout a large regime of f is known from Müller-Linow 
et al. (2008) and for a modular, non-hierarchical graph (for which 
a dominance of the module-based organization of excitations has 
been observed across a broad range in f). Figure 9 summarizes these 
results. The predicted similarity  matrices reproduce the numerical 
fi nding that on a scalefree graph (left) the central node-based pat-
tern dominates and on a modular graph (right) the module-based 
pattern dominates across essentially the whole range of f.

The systematic contribution to the correlations between topol-
ogy and dynamics we observed comes from synchronized nodes. 
The amplifi cation factor M(i) given above regulates the amount 
of simultaneously excited nodes in a particular topological class 
(a ring around the hub or a module) and therefore the strength of 
the synchronous signal.

For a given topological class an optimal duration T* of an ava-
lanche as a function of f and p can be computed as the solution to 
T*mfR(p, f, T*) = 1 with R p f T f p

p

p f

T T( ) [( ) ( ) ], , = − − −− 1 1  (effec-
tive recovery rate, defi ned as the probability that a site excited at 
time t = 0 has recovered and not yet experienced a spontaneous 
excitation at time T + 1). This time T*(p, f) is expected to be the 
relevant ‘recovery time’, separating two avalanches. Comparing 1/f 
(i.e., the typical time scale available to an avalanche) with T* should 
give the expected peak in the correlation of the similarity matrix 
to this topological class.

Our main fi nding is that we can explain the qualitative feature of 
the switching from central node dominated to a module dominated 
organization of the dynamics, as the rate of spontaneous excitation 
f is increased.

It should be pointed out that this switching is not a dynamic 
phase transition. In particular, we do not observe the switching to 
become sharper with increasing graph size.

The main motivation for our use of avalanches is that  excitations 
spread on the effective network (consisting of the nodes in the 
 susceptible state at a given moment in time), whose topological 
properties depend on f and in turn on the previous history of the 
dynamics.

A random excitation will trigger a certain cascade of joint 
excitations of other nodes. The sizes of these contributions to the 
 similarity matrix (and the nodes involved in these  contributions) 
depend strongly on the effective network. At large f, random 
 excitations follow so rapidly one after another that only few nodes 
in the graph are susceptible, leading to only few and small-scale 
contributions to the similarity matrix. At small f, on the other hand, 
the graph has enough time to recover between consecutive random 
 excitations, allowing each random excitation to essentially trigger 
a whole  avalanche of joint excitations.

In Figure 10 the average shortest path length of the effective 
networks as a function of f. According to our avalanche concept, we 
believe that this decrease of the average path length with f, which 
is clearly discernible in Figure 10, is the main driving force of the 
switching behavior.

DISCUSSION

We are mainly interested in understanding the global interplay 
and network effect, not only the local consequences of a node 

weighting factor μ
i
/Σ

q
 μ

q
 gives the probability that a node i can 

trigger an avalanche of excitations. The actual size of the avalanche 
will then be determined by the effective (i.e. accessible) network 
of susceptible elements.

Figure 7 shows the correlation between the predicted similarity 
matrix Q and the matrices T and D derived from topology, together 
with the corresponding curves from Figure 3B. The overall fea-
tures of the numerical fi ndings (red curves) are explained by the 
predictions (black curves), in particular the dominance of the hub 
distance captured in D at low f over the modules accounted for 
in T, the decrease of the correlation with D as a function of f and 
the increase of the correlation with T at high f.

When computing the matrix elements Q
ij
 giving the probability 

of the two nodes i and j being simultaneously excited, we assume 
that even for small f the observation time is long enough for 
the potential joint excitations of the two nodes to really unfold. 
Alternatively, we could have required some spontaneous excita-
tion to have taken place (by inserting an additional factor of f). 
In the results from the numerical simulations we often observe 
a decrease of the correlation between the similarity matrix and 
topological matrices when going to small values of f. The above 
argument clearly identifi es this behavior as a consequence of the 
fi nite simulation time. To support this interpretation we per-
formed a longer simulation run for small f and found a systematic 
increase of the mutual information with simulation time, thus 
reducing the discrepancies between the numerical and  analytical 
curves.

The results from Figure 7 have been obtained for the 64-node 
hierarchical graph. Figure 8 shows the corresponding results for 
the larger graph, N = 256. The lower two plots in Figure 8 com-
pare these predictions with the relevant segments of the numerical 
curves (dashed) from Figure 4. Again, the predictions clearly repro-
duce the increase of the one and the decrease of the other curve. In 
order to further assess, whether the predicted similarity matrices 
reproduce the actual distribution features of excitations on the 
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FIGURE 7 | Mutual information as a function of f, measuring the 

correlation of the predicted similarity matrix Q with modularity (matrix T; 

black; full) and with distance to the central node (matrix D; black; 

dashed), compared to similar correlation measure between the 

simulated similarity matrix C and matrices T and D (red; respectively full 

and dashed); in all cases the 64-node hierarchical graph has been used.
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or motif topological specifi city. Accordingly, we analyzed the 
relation between topology and dynamics with methods from 
spatiotemporal pattern formation. When the carrier space is no 
longer a regular lattice, it becomes relevant to investigate the 
origin of the pattern and the shaping of the patterns by net-
work topology. This can be achieved by studying correlations 
between topological properties and properties of the dynamics. 
The results refl ect the exploitation of certain topological features 
by dynamics. In particular, by computing the mutual information 
between the respective matrices, we show the f-dependence of the 
correlation between topology and dynamics and re-discover the 

dependence as discussed previously with other means (Müller-
Linow et al., 2008).

Here we have been able to understand the dominant features of 
these patterns from Müller-Linow et al. (2008) analytically using a 
combination of a mean-fi eld approach and avalanche viewpoint: on 
a hierarchical graph, the core feature is the switching from a ‘central-
node’ to a ‘topological-module’ mode of organization of simultane-
ous excitations as a function of f; on scalefree and modular graphs, it 
is the dominance of one of the modes across the whole range of f.

We have also shown that the mean-fi eld model reasonably 
well explains the increase of the average excitation density as a 
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FIGURE 8 | Upper fi gure: Mutual information as a function of f, measuring the correlation of the predicted similarity matrix Q
ij
 with modularity 

(matrix T; dashed curve) and with distance to the central node (matrix D; full curve). Compared to Figure 7 (N = 64) the graph size is now N = 256. The 

lower two fi gures compare each of these curves (left-hand side: modularity; right-hand side: central node; full curve: prediction; dashed curve: result from 

numerical simulation).
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 function of connectivity, which was reported in Müller-Linow et al. 
(2006).

Due to its very principles and associated approximations, the 
mean-fi eld model can describe average properties of the excitations, 
but not the interplay between topology and dynamics (i.e., how 
topological features regulate the distribution patterns of excita-
tions on the graph). In fact, the validity of the mean-fi eld approach 
depends on the investigated feature. For instance, when looking at 
the curve of average excitation as a function of connectivity, only 
a very small dependence on graph topology is seen (Müller-Linow 
et al., 2006), and the mean-fi eld description is here in good agree-
ment with the numerical data. But it fails to account for the two 
regimes of correlation between topology and dynamics observed 
as a function of f, whose origin is unraveled and quantitatively 
captured in our avalanche description.

Several important steps are left for future work: In order to 
develop a global picture of this interplay between topology and 
dynamics one needs to study the topological properties of the effec-
tive networks and, therefore, the size distribution of the avalanches 
as a function of topology and system parameters. As discussed at 
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FIGURE 9 | Top row: scalefree (BA) graph (left) and modular graph (right), 

each consisting of 256 nodes. Bottom row: For each of the graphs, mutual 

information as a function of f, measuring the correlation of the predicted similarity 

matrix Q
ij
 with modularity (matrix T; dashed curve) and with distance to the 

central node (matrix D; full curve). In both cases, numerical results are shown as 

well (red curves) based on a single 5000 time step simulation of the system on 

the graphs shown in the top row. In the case of the numerical result for the 

scalefree graph, two additional points should be noted: (1) as in Müller-Linow 

et al. (2008) due to the high connectivity, the dynamics are re-scaled by requiring 

a certain percentage of neighbors (20%) to be active in order to activate a node; 

(2) at such small size, the population of scalefree graphs is very heterogeneous 

and therefore the curve can only be seen as a single-graph representative.
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the end of the results section, our current formalism already leads 
to some predictions for the time scales relevant for avalanches of 
 excitations, as well as for the avalanche size and duration distribu-
tions. An extension of this formalism may help us link the obser-
vations from this simple model of excitations to the formalisms 
discussed in Levina et al. (2007a,b).

We also believe that the distribution of weighting factors µ
i
 and 

amplifi cation factors M(i) may provide interesting characteriza-
tions of a network for dynamical purposes. This certainly needs 
further exploration.
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