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The interplay of inertia and deformability has a substantial impact on the transport
of soft particles suspended in a fluid. However, to date a thorough understanding
of these systems is still missing, and only a limited number of experimental and
theoretical studies are available. We combine the finite-element, immersed-boundary
and lattice-Boltzmann methods to simulate three-dimensional suspensions of soft
particles subjected to planar Poiseuille flow at finite Reynolds numbers. Our findings
confirm that the particle deformation and inclination increase when inertia is present.
We observe that the Segré–Silberberg effect is suppressed with respect to the particle
deformability. Depending on the deformability and strength of inertial effects, inward
or outward lateral migration of the particles takes place. In particular, for increasing
Reynolds numbers and strongly deformable particles, a hitherto unreported distinct
flow focusing effect emerges, which is accompanied by a non-monotonic behaviour of
the apparent suspension viscosity and thickness of the particle-free layer close to the
channel walls. This effect can be explained by the behaviour of a single particle and
the change of the particle collision mechanism when both deformability and inertia
effects are relevant.

Key words: particle/fluid flow, rheology, suspensions

1. Introduction

Fluid inertia and particle deformability – quantified by the Reynolds (Re) and
capillary (Ca) numbers, respectively – have significant impact on the individual and
collective motion of particles in suspension. For example, most deformable particles
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in a viscous flow tend to migrate laterally towards the centreline of a Poiseuille flow,
creating a depletion layer near the confining walls. However, it is also known that
deformable droplets (Leal 1980) and vesicles (Farutin & Misbah 2013) can migrate
away from the centreline under certain conditions. At intermediate Reynolds numbers,
rigid particles that are originally located near the centreline migrate towards the walls
until the inertial lift is balanced by the wall repulsion. While most studies in the
literature focus separately on the effect of either inertia or deformability, we address
their combination and as such aim to answer the following question: What is the
interplay between inertia and deformability in a flowing suspension?

A deep understanding of the flow of suspensions and their components is of
fundamental practical importance. For example, lateral migration of particles is
exploited for separating and sorting out cancer cells from healthy blood cells in
lab-on-chip devices (Hur et al. 2011; Geislinger et al. 2012; Tanaka et al. 2012;
Krüger et al. 2013). The macroscopic viscosity of a suspension, which is of relevance
for systems like waste-water, sewage and industrial production lines, depends on its
microscopic composition and particle distribution. The ultimate goal is to predict the
rheology of a suspension based on its microscopic properties, such as local particle
concentration and particle deformation.

Approximately 50 years ago, Segré & Silberberg (1962a,b) discovered that rigid
particles in inertial tube flow (with tube radius r) have equilibrium positions at a radial
distance of approximately 0.6r. This equilibrium lateral position results from balancing
the confinement-induced repulsive wall force and shear-rate gradients. Matas, Morris
& Guazzelli (2004) later extended the experiments to larger Reynolds numbers and
observed the formation of an additional inner annulus. Particles initially located in
off-equilibrium positions tend to show cross-streamline migration until they reach an
equilibrium position (Humphry et al. 2010). Understanding the lateral migration of
rigid particles in the presence of inertia is a difficult problem. The existing asymptotic
theory (Schonberg & Hinch 1989; Asmolov 1999) explaining this behaviour is only
valid for weak confinement and small particle Reynolds numbers, although the channel
Reynolds number can be large.

Numerical lattice-Boltzmann (LB) simulations of a single particle and dilute
suspensions in the regime 100 6 Re 6 1000 showed that multi-body interactions play
a crucial role in the formation of inner equilibrium positions (Chun & Ladd 2006).
In strongly confined rectangular flows, rigid particles experience inertial focusing
and are aligned in one or multiple lines, depending on the particle volume fraction
and the channel aspect ratio (Humphry et al. 2010). These findings demonstrate that
there are different mechanisms behind the structuring of particles in the flow, which
are not always well understood. The problem even increases in its complexity when
considering soft particles. Flows in microfluidic devices are commonly believed to be
in the fully viscous regime (Stokes limit). However, inertia can play a role if channel
diameters are larger than ≈100 µm (Di Carlo 2009). Inertia effects may then be used
to enhance mixing and to separate or focus particles in straight or curved geometries
(Munn & Dupin 2008; Hur et al. 2011; Martel & Toner 2012; Tanaka et al. 2012).

The non-inertial lateral motion of single deformable particles (such as vesicles,
capsules or red blood cells) in Poiseuille flow has been thoroughly studied over
the past years (Coupier et al. 2008; Doddi & Bagchi 2008b; Kaoui et al. 2008;
Danker, Vlahovska & Misbah 2009; Kaoui et al. 2009; Shi, Pan & Glowinski 2012).
Only recently, the effect of inertia on the dynamics of deformable objects has been
investigated systematically (Doddi & Bagchi 2008a; Kilimnik, Mao & Alexeev 2011;
Nourbakhsh, Mortazavi & Afshar 2011; Shin & Sung 2011; Kim & Lai 2012;
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Laadhari, Saramito & Misbah 2012; Salac & Miksis 2012; Shin & Sung 2012; Luo
et al. 2013; Chen 2014). Almost all these authors report an increase of particle
deformation and inclination with Re. Additionally, Doddi & Bagchi (2008a) observed
a change of the nature of hydrodynamic interactions of capsules upon an increase
of the Reynolds number; the self-diffusive collision for small Re is replaced by
spiralling motion. Furthermore, Kim & Lai (2012) and Laadhari et al. (2012) found
that increasing fluid inertia shifts the tank-treading to tumbling transition of vesicles
to larger values of the viscosity contrast. Shin & Sung (2011, 2012) demonstrated
that the lateral equilibrium position of single capsules in two-dimensional inertial
channel flow has a maximum at ∼Re = 50.

In the present study, we investigate – via combined finite-element, immersed-
boundary and LB simulations – the behaviour of a semi-dilute suspension (≈10 %
volume fraction) of deformable capsules in a confined channel. In contrast to previous
studies, we consider a large range of channel Reynolds numbers Re between 3
and 417, and capillary numbers Ca between 0.003 (nearly rigid) and 0.3 (strongly
deformed). We investigate in detail the macroscopic and microscopic behaviour of the
suspension as functions of Re and Ca, such as global and local viscosity, concentration
profiles, depletion-layer thickness, particle deformation and inclination. We observe
a strong inertial focusing at large Re and Ca; particles tend to cluster in a narrow
region about the centreplane, reducing the overall viscosity of the suspension. This
effect is rationalised in terms of the behaviour of a single particle (dilute suspension
limit) and hydrodynamic interactions between particles at finite volume fraction.

The article is structured as follows. Section 2 briefly describes the numerical model
and introduces the simulation parameters. The numerical results are presented and
discussed in § 3. Finally, the findings are summarised and conclusions are provided
in § 4.

2. Computational method and simulation parameters

2.1. Computational model

We use the Bhatnagar–Gross–Krook (BGK) LB method with the D3Q19 velocity set
(Succi 2001; Aidun & Clausen 2010; Krüger, Varnik & Raabe 2011) to compute the
fluid flow in the entire domain. The fluids inside and outside the capsules are modelled
with the same density and viscosity. The kinematic viscosity ν is related to the BGK
relaxation parameter τ according to

ν = c2
s (τ − 1

2)1t, (2.1)

where 1t is the time step and cs is the speed of sound. The lattice constant is denoted
1x. The no-slip boundaries at the channel walls are realised through the half-way
bounce-back boundary condition (Ladd 1994). To include a body force we follow the
Shan–Chen forcing approach (Shan & Doolen 1995).

Each capsule is described as a closed massless membrane discretised into a
triangular mesh with 980 facets (Krüger et al. 2011). In the absence of external
stresses, the particles assume a spherical equilibrium shape with radius r. The in-plane
energy of a particle membrane is given by the elastic law of Skalak et al. (1973):

Es =
∮

dA
[ κs

12
(I2

1 + 2I1 − 2I2) + κα

12
I2

2

]

, (2.2)

where κs is the shear elasticity and κα is the area dilation modulus, and the integral
runs over the entire capsule surface. The parameters I1 and I2 are the in-plane strain
invariants, which can be derived from the local membrane deformation tensor as
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2H

2r

W

FIGURE 1. (Colour online) Geometrical set-up. The distance between the confining walls
is 2H, and the length and width of the channel is W. The undeformed particle radius is
r. The snapshot shows a random initial state.

detailed by Krüger et al. (2011). To avoid buckling (Kilimnik et al. 2011), the
capsules also have a finite bending resistance with discretised bending energy

Eb =
√

3 κb

2

∑

〈i,j〉
(θij − θ

eq
ij )2. (2.3)

This is a simplified version of the classical Helfrich form (Helfrich 1973). The
bending modulus is denoted by κb, and the sum runs over all pairs of neighbouring
facets (i.e. facets with one common edge). Each facet pair has an equilibrium
normal-to-normal angle θ

eq
ij defined by the initially spherical capsule shape. The

elastic forces are computed via the principle of virtual work (Charrier, Shrivastava &
Wu 1989; Krüger et al. 2011).

For the sake of simplicity and reduction of the parameter space dimensionality, the
particle elasticities are fixed in such a way that the reduced area dilation modulus and
reduced bending modulus,

κ̃α = κα

κs

= 2 and κ̃b = κb

κsr2
= 2.87 × 10−3, (2.4a,b)

are constant. The typical maximum area extensions following from our choice of κ̃α

are <1 % for Ca = 0.003, <8 % for Ca = 0.03 and <20 % for Ca = 0.3. The above
value for the bending resistance κb has been chosen for convenience. On the one
hand, it is sufficiently small so that the elastic behaviour is dominated by the shear
resistance. On the other hand, it is large enough to avoid buckling.

The immersed-boundary method (Peskin 2002) with a trilinear interpolation stencil
as presented by Krüger et al. (2011) is used to couple the fluid flow and capsule
dynamics. The system is assumed to be athermal, and thermal fluctuations are
neglected. Therefore, all observed effects are flow-induced. We have implemented a
soft repulsion force for particles near contact. This force becomes active when two
mesh vertices of different particles come closer than one lattice constant. However,
we observed that this force is rarely required since the volume fraction is rather small
and the hydrodynamic interactions are usually sufficient to repel particles at small
distances.

2.2. Simulation parameters and set-up

We investigate the suspension rheology in a channel with width W between two planar
walls at z = ±H (2H is the distance between the walls) as illustrated in figure 1.
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The system is periodic along the x- and y-axes. Flow is induced by a constant body
force density f along the x-axis. This geometry has been chosen for convenience;
especially the data evaluation is facilitated by a planar rather than by a cylindrical
or even a duct-like geometry.

Relevant simulation parameters are the volume fraction φ = 4πNr3/3V (which is
computed from the number N of particles, their initial undeformed radius r, and the
total system volume V) and the confinement χ = r/H.

In order to control the Reynolds and capillary numbers independently, three
simulation parameters are available: the kinematic viscosity ν of the ambient fluid,
the external force density f , and the particle shear modulus κs.

We define the bare Reynolds number as

Re0 = û0H

ν
= f H3

2ρν2
, (2.5)

where û0 is the centreplane velocity of the unperturbed flow (i.e. without particles)
and ρ is the fluid density. The solution for the unperturbed profile (z = 0 corresponds
to the centreplane) is

u0(z) = û0

[

1 −
( z

H

)2
]

, û0 = f H2

2ρν
. (2.6)

The other important parameter is the shear capillary number, as the ratio of a typical
shear stress magnitude σ̄ to the characteristic elastic particle stress κs/r:

Ca = σ̄ r

κs

. (2.7)

We define the characteristic shear stress σ̄ as the average shear stress in the system.
For the unperturbed flow, the momentum balance requires the local condition

σ(z) = −fz. (2.8)

This leads to the average stress magnitude

σ̄ := 1

2H

∫ +H

−H

|σ(z)| = f H

2
. (2.9)

Equations (2.8) and (2.9) are also valid for flows perturbed by particles, as long as the
suspension is in a quasi-steady (i.e. on average non-accelerated) state and the stress
is averaged over a sufficiently long time.

For the current study, the parameters 2H = 601x and r = 5.91x have been chosen,
and the particle number is N = 96 for the suspension and N = 1 for the single-particle
reference simulations. The system size along the x- and y-axes is W = 4H = 1201x
each, thus χ = 0.20 is fixed and φ ≈ 0.1 for the suspension and φ ≈ 0.001 for the
single particle. Since our primary interest is not on the effect of the confinement, we
choose a moderate value, avoiding both highly and weakly confined situations.

The Reynolds number Re and capillary number Ca are varied in the intervals
[3, 417] and [0.003, 0.3], respectively (corresponding to BGK relaxation parameters
τ ∈ [0.5072, 1.4]). Particles with Ca = 0.003 are nearly rigid, and a further decrease
of Ca leads to stability problems. Capillary numbers larger than 0.3 are problematic
because the capsule deformation becomes so severe that a higher resolution would
be required to capture the local curvature. Without increasing the resolution, the
Reynolds number cannot be chosen much smaller than 3 or much larger than 400
owing to stability and accuracy considerations.
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Since there is one degree of freedom left (three control parameters to set two target
parameters), we choose the parameters in such a way that the unperturbed lattice
centreplane velocity û0 in (2.6) is (1/30) 1x/1t. This ensures (a) small Mach numbers
and therefore negligible compressibility artefacts and (b) a sufficiently small time step
to reduce time discretisation errors.

On the one hand, for a fixed capillary number, the Reynolds number is changed by
adapting the kinematic viscosity ν in such a way that û0 in (2.6) remains constant.
This requires a change of the force density f ∝ ν, which in turn leads to a change
of κs ∝ f , so that Ca remains constant, as can be inferred from (2.7). On the other
hand, Ca can be changed for constant Re just by adapting κs. Concluding, the relevant
simulation parameters can be directly obtained from the target capillary and Reynolds
numbers:

ν = û0H

Re0
, f = 2ρû0

Re0H
, κs = ρû0r

CaRe0
, κα = 2κs, κb = 2.87 × 10−3κsr

2, (2.10a–e)

where H = 60, r = 5.9, û0 = 1/30 and ρ = 1 in simulation units (1x = 1t = 1).
We stress that, in the present work, we focus on artificial capsules for which the

selected ratio of Ca and Rep (where Rep = γ̇ r2/ν is the Reynolds number on the
particle scale) can be tuned. For example, healthy red blood cells (RBCs) in an
aqueous environment have a fixed ratio Ca/Rep = ρν2/κsr ≈ 50. Investigating inertial
effects on the scale of a single RBC would require Rep > 1 and therefore Ca > 50 or,
in physical units, γ̇ > 6 × 104 s−1. For RBCs, it is therefore impossible to achieve
high Rep and small Ca at the same time. In contrast, by changing r and κs of artificial
capsules, the ratio Ca/Rep can be controlled.

As initial condition, the undeformed spherical particles in the suspension with φ =
0.1 were randomly distributed in the fluid volume, avoiding overlap with each other
and with the walls. The single particle was released half-way between the centreplane
and one of the walls, but reference simulations with different initial positions gave the
same final state. The initial fluid density was unity everywhere, and the flow profile
was fully developed according to (2.6). Starting with a fully developed velocity profile
is necessary to avoid long transients. The time scale for acceleration of the entire fluid
from a quiescent to a fully developed state is proportional to the momentum diffusion
time tmd ∼ H2/ν. Especially, for high Reynolds numbers, when the kinematic viscosity
ν is small, tmd becomes undesirably large.

All suspension simulations ran for 6 × 105 time steps, which turned out to be
sufficient to obtain converged particle concentration profiles. During this time, a
particle at the centreplane is advected by a distance equal to approximately 3400
particle radii. We define the Stokes time as the time a particle at the centreplane
would require to travel its own radius. Here, the Stokes time corresponds to 177 time
steps. We made sure that all single-particle simulations ran until the particle reached
its lateral equilibrium position. As a rule of thumb, the required number of time steps
decreased with Re, and the characteristic time scale for lateral migration was found
to be between 50 and 1100 Stokes times.

3. Results and discussion

We restrict ourselves to the quasi-steady-state properties of the suspensions. Hur,
Tse & Di Carlo (2010) provided an estimate for the channel length required for
inertial particle focusing:

Lf

r
= π

fLχ 3Re0
∼ O(104)

Re0
, (3.1)
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where fL is a geometry-dependent parameter of the order of 0.03 and the confinement
χ = r/H ≈ 0.2 has been used. We therefore expect a slower convergence to a steady
state for smaller Re0. In particular, for Re0 = 6 we predict Lf /r ∼ O(2000). Indeed,
our simulation results for the suspensions show that a quasi-steady state is reached
after approximately 1000–1500 Stokes times (≈1.8 × 105 to 2.7 × 105 time steps),
depending on the values of Re0 and Ca. Therefore, we drop the initial 1700 Stokes
times (3 × 105 time steps) in all data sets and report only results obtained afterwards.
Observables are instantaneously averaged over the periodic x- and y-directions and
shown as functions of the transverse coordinate z only. Any reported errors correspond
to the variance due to collision-induced fluctuations about the time average. We note
that the effect of the volume fraction on the convergence time is itself an interesting
problem, which, however, is not within the scope of the present work.

We discuss the apparent suspension viscosity in § 3.1 before turning our attention
to the lateral particle distribution (§ 3.2). Based on these findings, we first come back
to the local suspension rheology in § 3.3 before we describe the results obtained for
a single particle in § 3.4. The particle properties, such as deformation and inclination,
are investigated in § 3.5.

3.1. Apparent suspension viscosity

The volume flux of a simple fluid along the x-axis with viscosity η0 through a channel
segment with width W reads

Q0 =
∫ W

0
dy

∫ +H

−H

dz u0(z) = 2f H3W

3η0
, (3.2)

where the velocity u0(z) is given by (2.6). For a complex fluid, like a suspension, the
viscosity is generally not uniquely determined in such a flow geometry, but one can
use (3.2) to define an effective viscosity if the flux Q is known:

η := 2f H3W

3Q
. (3.3)

The reduced apparent viscosity is the dimensionless ratio

ηa = η

η0
. (3.4)

For the sake of convenience, we denote ηa simply as the viscosity if not clearly
specified otherwise. In terms of the unperturbed (particle-free) flux Q0 and the
measured flux Q, the viscosity is ηa = Q0/Q and typically larger than unity.

For an observer who is not aware of the microstructure of the suspension, the
presence of the particles has one major effect: the volume flux is reduced by a factor
ηa, and the viscosity is accordingly increased by the same factor. This means that the
apparent Reynolds number (defined by the apparent viscosity and measured flow rate)
is decreased by a factor η2

a. It is therefore convenient to use Re = Re0/η
2
a < Re0 as

the appropriate Reynolds number for the macroscopic suspension. One should keep
in mind that Re, contrarily to Re0, is not known a priori.

Figure 2 shows the viscosity ηa of the suspension with φ = 0.1 as a function of
Re for all considered capillary numbers. One observes that, for a given value of Re,
suspensions of softer particles always appear less viscous than suspensions of more
rigid particles. This is a well-known behaviour of deformable particle suspensions
(Bagchi & Kalluri 2010). Soft particles adapt more easily to the flow field and disturb
it less. The particles in the small-Ca regime give rise to a monotonically increasing
viscosity as a function of Re. However, at Ca > 0.03, the suspension shows an
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FIGURE 2. Viscosity ηa (3.4) as a function of Reynolds number Re for different values of
the capillary number Ca for φ = 0.1. Error bars are of the order of the symbol size. While
the suspension exhibits a monotonic increase of ηa for more rigid particles (small Ca), the
viscosity decreases for strongly deformable particles (large Ca) for Re > 45 (dotted line).
Softer particle suspensions always appear less viscous for fixed Re.

interesting behaviour; after an initial viscosity increase up to Re ≈ 45, the viscosity
decreases again. We will explain this effect by taking into account the observed
lateral particle distributions and the local rheology (§§ 3.2 and 3.3). As a remark,
we expect that, in the Stokes limit (Re → 0), the viscosity reaches a Re-independent
plateau whose height depends only on Ca.

3.2. Lateral particle distribution and inertial focusing

In order to quantify the microscopic structure of the suspension, we first focus on
the lateral distribution of the particles. Let φ(z) be the volume fraction (or particle
concentration) profile between the channel walls. We define the second moment of
the particle density as a measure for the lateral distribution of the particles:

M2 := 1

2H

∫ +H

−H

φ(z)z2 dz. (3.5)

In order to take advantage of this quantity, we introduce the lateral displacement
parameter ∆ as the square root of the normalised second moment (∆ ∝

√
M2) such

that a delta-distribution φ(z) = 2Hφδ(z − zp) yields ∆ = ±|zp|/H. This way, ∆ equals
the non-dimensional lateral position of a small single particle in the channel (with
possible values in the interval [−1,+1]). For a delta-distribution located at zp we find

M2 = 1

2H

∫ H

−H

2Hφδ(z − zp)z
2 dz = φz2

p (3.6)

and therefore

∆ =
√

M2

φH2
. (3.7)
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FIGURE 3. Characterisation of the lateral particle distribution for φ = 0.1. (a) Lateral
displacement parameter ∆ (3.7). Errors are of the order of the symbol size. A perfectly
homogeneous suspension corresponds to a value of 1/

√
3≈0.57 (top edge). Smaller values

indicate a concentration of particles closer to the centreplane. On average, softer particles
(larger Ca) are always closer to the centreplane for a given Re. Note the presence of
a maximum for each curve at Re ≈ 45 (dotted line). Beyond this value, particles tend
to move closer to the centreplane again. (b) Reduced depletion-layer thickness d. For
d = 0, particles would touch the walls; d = 1 corresponds to the centreplane. The legend
is valid for both plots. The effect of inertia is almost negligible for Re < 10. More rigid
particles (smaller Ca) tend to form the thinnest depletion layer. Deformable particles show
a strongly Re-dependent behaviour; for Re > 45 (dotted line), the depletion layer grows
significantly.

The parameter ∆ can be considered as the average dimensionless lateral position of
the particles. A perfectly homogeneous suspension yields ∆ =

√
1/3. Additionally to

∆, we define the reduced instantaneous depletion-layer thickness d as the minimum
distance of any particle’s surface element to any confining wall, normalised by H.

The lateral displacement parameter ∆ as a function of Re is shown for different
Ca in figure 3(a). Softer particles are always more strongly concentrated near the
centreplane for fixed Re. For all values of Ca, ∆ has a maximum in the vicinity of
Re = 45. Except for their magnitude, the shapes of the ∆ curves are rather similar
for different capillary numbers. Interestingly, Shin & Sung (2011) also noticed a
maximum lateral displacement of a single two-dimensional elastic capsule in inertial
flow for Re = 30 in a channel with a confinement of 0.1.

Figure 3(b) contains the data for the depletion-layer thickness d. The more rigid
particles tend to be closer to the confining walls for increasing Re. For the stiffest
particles (Ca = 0.003), the depletion-layer thickness at small Re is approximately
10 % of the channel half-width, and it decreases to approximately 5 % for the largest
simulated Reynolds number. Already for Ca = 0.03, but especially for even larger Ca,
the function d(Re) has a minimum. For Ca = 0.3, d is almost constant up to Re ≈ 40.
Beyond, the depletion layer significantly increases and reaches values of nearly
50 % for Re = 417. The particles are strongly focused towards the centreplane upon
increasing Re; we therefore call this effect inertial focusing. It should be noted that
this term has been used by other authors to describe different effects (Di Carlo 2009;
Humphry et al. 2010; Martel & Toner 2012). By comparing figure 2 and figure 3(b),
we also observe that the thickness of the depletion layer and the suspension viscosity
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are tightly connected. The viscosity increases when the depletion-layer thickness
decreases and vice versa. A large depletion-layer thickness d reduces the viscous
dissipation in the vicinity of the wall. This is related to the Fahraeus–Lindqvist effect
(Fahraeus & Lindqvist 1931) observed in blood flow; however, in the present case,
the depletion-layer thickness is controlled by the Reynolds number and not by the
degree of confinement of RBCs in a vessel.

Interestingly, the peak in ∆(Re) and the increase of the depletion layer d(Re) for
large Ca (figure 3) are observed at a similar Reynolds number (≈45) where also the
kink in the apparent viscosity ηa(Re) in figure 2 is located. This suggests a strong
dependence of the viscosity on the particle distribution. We will come back to this
observation in § 3.3. Similarly to the data in figure 2, it is expected that all curves in
figure 3 reach a Ca-dependent plateau for Re → 0.

Owing to the non-homogeneous stress and particle density distributions, it is
difficult to achieve data collapse in figure 3 and to find simple globally defined
scaling laws.

Some characteristic particle configurations and density profiles φ(z) are shown
in figure 4. In the limit of small Reynolds and capillary numbers (Re0 = 6 and
Ca = 0.003), the particles are basically undeformed and unevenly distributed
throughout the channel. By increasing their deformability (Ca = 0.3), the particles
move closer towards the centreplane. At the intermediate Reynolds number Re0 = 50,
the nearly rigid particles (Ca = 0.003) show an affinity for distances half-way between
the centreplane and the walls, which is reminiscent of a behaviour like that in Segré
& Silberberg (1962a,b). This effect disappears for Ca = 0.3, where configuration and
particle distribution look very similarly to those at Re0 = 6 and Ca = 0.3. We therefore
conclude that the Segré–Silberberg effect can be suppressed by choosing sufficiently
soft particles.

For even larger Re0 (Re0 = 417) the more rigid particles are more homogeneously
distributed, but they show a strong inertial focusing when both Re and Ca are large.
In the latter case, the depletion layer is very pronounced and the average particle
concentration near the centreplane is greater than 20 % and therefore more than twice
as large as the overall average. In all cases, several individual density peaks are visible.
These are probably due to the relatively large confinement (χ = 0.2) (Li & Pozrikidis
2000; Zurita-Gotor, Bławzdziewicz & Wajnryb 2012).

Before we turn our attention more closely to the mechanisms responsible for the
lateral particle distribution in § 3.4, let us first discuss the local suspension rheology.

3.3. Local rheology and dependence of viscosity on suspension microstructure

In order to quantify the local rheology, we define the reduced local viscosity ηloc in a
plane at a given z-value as the ratio of the known stress at position z, (2.8), divided
by the measured average shear rate γ̇ (z) in this plane:

ηloc(z) := 1

η0

σ(z)

γ̇ (z)
. (3.8)

Figure 5 shows the dependence of ηloc on the local volume fraction for a few selected
parameter sets for Ca = 0.03 (similar results have been obtained for the other capillary
numbers). We construct these data sets from a combination of φ(z) (figure 4) and
ηloc(z) (not shown). All data in the central region (|z/r| < 1) are excluded owing to
their large fluctuations; both the stress and the shear rate are small for z → 0, and
their ratio is prone to significant noise.
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FIGURE 4. (Colour online) Typical examples of instantaneous quasi-steady-state
configurations (snapshots) of the particles and corresponding time-averaged particle
concentration profiles (plots) for different combinations of Reynolds and capillary
numbers. The dotted line corresponds to the centreplane. (a) Re0 = 6 and Ca = 0.003;
neither inertial nor deformability effects are very important. (b) Re0 = 6 and Ca = 0.3;
increasing the capillary number to 0.3 leads to a migration of the particles towards
the centreplane. (c) Re0 = 50 and Ca = 0.003; the nearly rigid particles are pushed
towards the walls and prefer lateral positions resembling the Segré–Silberberg effect.
(d) Re0 = 50 and Ca = 0.3; this behaviour is distorted when the particles are strongly
deformable (Ca = 0.3), and the concentration profile is rather similar to that for
smaller Re0 in panel (b). (e) Re0 = 417 and Ca = 0.003; for large Reynolds numbers,
the Segré–Silberberg-like behaviour of the nearly rigid particles (Ca = 0.003) is less
pronounced, and the particles are closer to the centreplane on average. (f ) Re0 = 417 and
Ca = 0.3; when both inertial effects and deformability are important, the particles are
strongly focused and concentrated in the central region.

As expected, the local viscosity is a monotonically increasing function of the local
volume fraction for all investigated data sets. The φ dependence is roughly linear up to
φ = 0.1. Furthermore, local viscosities in our simulations are generally decreasing with
Ca as the particles become softer and contribute less to dissipation (data not shown).

We also notice that ηloc is strictly increasing with Re for fixed φ. This behaviour
will be explained based on the particle properties in § 3.5. The viscosity curves ηloc(φ)

shown in figure 5 are larger than the corresponding Einstein viscosity (1 + (5/2)φ)
of a dilute suspension of hard spheres with negligible inertia. It is not clear how
ηloc(φ) behaves for Re → 0, since this parameter region is not accessible in the current
simulation set-up.

We can now turn our attention back to the apparent viscosity ηa (§ 3.1). There are
two mechanisms that lead to a variation of ηa(Re):

(a) For a fixed density distribution φ(z), the viscosity ηa is expected to grow with
Re because ηloc increases with Re (figure 5).
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FIGURE 5. The local viscosity ηloc as a function of the local volume fraction φ for Ca =
0.03 and a few Reynolds numbers. The viscosity is a monotonically increasing function
of both φ and Re. For comparison, we also show Einstein’s viscosity (1 + (5/2)φ), which
one would expect for a dilute suspension of rigid spheres in a simple viscous shear flow.
The local viscosity is roughly linear in φ as indicated by the dashed lines as guides for
the eyes.

(b) A Re-induced redistribution of particles towards the centreplane tends to reduce
ηa because fewer particles are located in high-dissipation regions. Viscous
dissipation generally scales like the product of shear rate γ̇ and fluid shear
stress σf . As a consequence, most of the dissipation in a Poiseuille-like flow
occurs in the wall region where γ̇ and σf are large. Therefore, ηa is dominated
by the contribution of ηloc in the vicinity of the wall, whereas ηloc in the central
region is less relevant.

The first effect can be seen for suspensions with Ca = 0.003 and 0.01; figure 3
reveals that the lateral particle distribution changes only slightly with Re for Re > 45.
Yet, ηa shows a strong increase (figure 2), which can be attributed to the increase
of ηloc with Re. The second effect is particularly important for Ca = 0.1 and 0.3;
the increase of ηloc with Re is overcompensated by the strong focusing of particles
(figure 3), and ηa decreases (figure 2). This can also be seen in figure 6, where a few
selected velocity profiles for Ca = 0.3 are shown. For Re > 45, particles are more
concentrated near the centreplane, and the velocity profiles approach the reference
profile without particles. This results in a larger flux Q, and ηa decreases. For Ca =
0.03, the two above-mentioned effects basically compensate each other, and ηa remains
roughly constant for Re > 45 (figure 2). In general, the velocity profiles in figure 6
show a pronounced flattening near the centreplane, which is typical for shear-thinning
fluids.

Concluding we note that, although the suspensions investigated here show a strict
increase of ηloc(Re) when observed locally, ηa can decrease since the particles are
inhomogeneously distributed throughout the channel and this microstructure changes
with Re. Such an effect would therefore not be observed in an unbounded simple shear
flow where the stress and dissipation are homogeneous on average.
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FIGURE 6. Representative profiles of average flow velocity ūx(z)/û0 plotted against lateral
position z/H for Ca = 0.3 and φ = 0.1. The reference profile (2.6) without particles is
shown as the solid line. For Re = 417, the area below the curve (i.e. the total flux) is
larger than for Re = 50 or 200.

3.4. Mechanisms responsible for lateral particle distribution

In a steady state, the lateral position of particles (either isolated or in a denser
suspension) is the consequence of the balance of forces pointing towards and away
from the centreplane. For rigid particles at intermediate Reynolds numbers, the inertial
lift is balanced by the wall repulsion, which gives rise to the Segré–Silberberg effect.
Deformable particles tend to approach the centreplane due to a combination of wall
repulsion and deformability in the presence of a curved velocity profile (Kaoui
et al. 2009). This effect may be partially compensated by an inertial lift force if the
Reynolds number is sufficiently large. In a non-dilute suspension, not all particles can
be located at the centreplane at the same time. Hydrodynamic interactions usually
lead to non-reversible particle trajectories and a diffusive motion (Eckstein, Bailey
& Shapiro 1977; Pranay, Henríquez-Rivera & Graham 2012), which result in a
wide distribution of particles across the channel. However, Doddi & Bagchi (2008a)
reported that the nature of the hydrodynamic interactions of deformable capsules
changes in the presence of inertia. The diffusive motion of two colliding capsules
in shear flow can be replaced by spiralling motion at larger Re. In a suspension of
sufficiently soft particles, this may lead to a reduced hydrodynamic repulsion and
therefore to a larger concentration near the centreplane as we observe it in figures 3
and 4.

Therefore, we have investigated two distinct ingredients responsible for the final
lateral distribution of the suspended particles:

(a) What is the lateral equilibrium position of a single particle (φ → 0)?
(b) How do particle–particle collisions in the suspension (φ = 0.1) contribute?

Figure 7 shows the lateral equilibrium position zeq of a single capsule (N = 1,
φ = 0.001) in an otherwise identical environment as the suspension with φ = 0.1.
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FIGURE 7. Lateral equilibrium position zeq/H of a single capsule (N = 1, φ = 0.001) as
a function of Reynolds number Re for different values of Ca. Note the data point zeq = 0
for Re = 6 and Ca = 0.3. The vertical dotted line marks Re = 45 (cf. figure 3).

The similarity to the lateral displacement parameter ∆ in figure 3(a) is striking. In
particular, the curves zeq(Re) for different Ca feature a peak near Re = 45 at which
the particle is closest to one of the walls. This leads to the assumption that the
overall behaviour of the lateral particle distribution in the suspension, and therefore
the inertial focusing, is strongly determined by that of a single particle. We note
that, for Re → 0, the capsule should eventually reach the centreplane for any finite
value of Ca. Therefore, inertia is responsible for the finite values of zeq. However,
for increasing Ca, the deformability effect becomes more important and the capsule
reaches a configuration closer to the centreplane. Interestingly, we observe only the
capsule for Re = 6 and Ca = 0.3 reaching the centreplane. For this particular data
point, deformability effects are strongest and inertia effects are weakest. Shin & Sung
(2011) observed a similar variation of zeq(Re) for simulated deformable capsules
in two dimensions. In particular, for a confinement of χ = 0.2, they observed the
maximum of zeq(Re) between Re = 30 and 40, depending on the details of the particle
deformability (note that their definition of Re is identical to ours).

The lateral particle distributions as shown in figures 3 and 4 are not only a result
of the single-particle behaviour in figure 7. If this was the case, one would find all
particles located on two planes corresponding to ±zeq. This is obviously not the case,
so particle–particle interactions play an important role as well. For example, we find
zeq(Re = 417)/H = 0.36, 0.28 and 0.11 for Ca = 0.003, 0.03 and 0.3, respectively, but
∆ = 0.45, 0.36, 0.23 for the suspension for the same values of Re and Ca. Particle–
particle interactions therefore lead to a dispersion of the particles, pushing them farther
towards the walls. Figure 8 shows the average of the magnitude of the lateral particle
velocity, |uz|/û0, which is an indicator for lateral particle dispersion. We observe that
the fluctuation profile for Ca = 0.03 does not strongly depend on the Reynolds number
(figure 8a). However, a combination of large Ca and Re leads to a dramatic decrease
of the lateral particle motion (figure 8b), which could be related to the effect described
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FIGURE 8. Average of the lateral particle velocity magnitude |uz| normalised by the
reference velocity û0 plotted against lateral position z/H for (a) Ca = 0.03 and (b) Ca =
0.3. The legend is valid for both plots. Particular attention should be paid to the
fluctuations for Re0 = 417 and Ca = 0.3 (symbol ⋄ in panel (b)): velocity fluctuations
are significantly smaller than for smaller values of Re0 at the same Ca, which is not
observed for Ca = 0.03. This suggests that the combination of large Re and Ca reduces the
particle dispersion, which facilitates particle focusing, see supplementary movie available
at http://dx.doi.org/10.1017/jfm.2014.315.

by Doddi & Bagchi (2008a) and further facilitates inward migration and therefore
particle focusing.

In the present case, it is expected that (i) the wall repulsion, (ii) the particle
deformation in the presence of a curved velocity profile, (iii) the inertial lift and
(iv) the hydrodynamic dispersion of particles all play a role. These contributions
are generally different functions of Ca and Re and also of volume fraction and
confinement.

3.5. Particle properties

After having presented the suspension properties, let us turn to the behaviour of the
suspended particles. All particles have been observed to perform tank-treading-like
dynamics at all times. This is in agreement with previous investigations of initially
spherical capsules (Yazdani, Kalluri & Bagchi 2011). We note that initially non-
spherical capsules can also undergo tumbling motion (Shin & Sung 2012). Only the
single particle on the centreplane (Re = 6, Ca = 0.3) does not perform tank-treading,
but rather assumes a steady bullet-shape configuration. In the suspension, deformations
and inclinations are fluctuating due to particle–particle interactions.

The particle deformation is quantified by the Taylor deformation parameter

D = a − c

a + c
> 0, (3.9)

where a and c are the largest and smallest axes of the inertia ellipsoid of the deformed
particle (Krüger et al. 2011). Undeformed particles fulfil a = c and therefore D =
0. The deformation is related to the constitutive law of the particles and the fluid
stresses on the particle surface, which are responsible for their deformation. Based
on the analytical work by Barthès-Biesel & Rallison (1981), one can compute the
deformation parameter of a capsule in simple shear flow for a given capillary number
in the small-deformation regime (i.e. for particle shapes with a small deviation from
that of a sphere). We consider deformations large if D > 0.1 (corresponding to an
aspect ratio of a/c > 1.22). For the elasticity model employed in the current work,

http://dx.doi.org/10.1017/jfm.2014.315
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the relation between the deformation parameter and the capillary number reads

D = 45

4

κα

κs

+ 2

3

2
κα

κs

+ 1
Ca (3.10)

up to first order in Ca. As κα/κs = 2 is fixed in the present study, one predicts D =
6 Ca in the small-deformation limit. It has to be noted that (3.10) is only valid for
κb = 0, which is not the case in our simulations. However, as κb is rather small, it is
expected that the bending elasticity becomes important only when the local membrane
curvature is large. Owing to (2.8) the shear stress, and therefore the local capillary
number, increases with distance from the centreplane (i.e. Ca=Ca(z)), and the particle
deformation is an increasing function of the lateral particle position z.

The time-averaged particle deformation parameter D(z) is presented in the left
column of figure 9 together with the data points for a single particle in its final
equilibrium state. Equation (3.10) is shown in the plots as a solid black line. For
the smallest capillary number (Ca = 0.003), all particles are only slightly deformed.
The deformations at Re = 6 match the theory for single capsules in simple shear
flow except for particles that are closest to the walls. The reason is that the flow
is inhomogeneous and the particles are extended. The outermost particles are in
very close proximity to the walls (figure 4a); this leads to an additional particle
deformation. We emphasise that the small-deformation theory is only strictly valid for
single isolated particles in simple shear flow. Still, it provides a good approximation
in the present case.

For Ca = 0.03, where the deformation is larger and therefore less well described by
the linear relation in (3.10), we observe that particle deformation increases with the
Reynolds number. A similar trend has been observed for simulated three-dimensional
capsules (Doddi & Bagchi 2008a) and two-dimensional vesicles (Kim & Lai 2012;
Laadhari et al. 2012). This can be understood by considering the local particle
reference frame; for a tank-treading capsule or vesicle, the fluid circulates around the
particle. The curvature radius of the streamlines is smallest near the particle tips so
that inertia leads to larger centrifugal drag forces at the tips and therefore to a larger
deformation. The observed increase of deformation with Re is expected to amplify
the inward migration of the particles, which may at least partially explain the data in
figure 7 and therefore the inertial focusing in figures 3 and 4.

For an even higher capillary number (Ca = 0.3) the deformation is very large,
reaching aspect ratios of more than a/c = 2.5. The theory by Barthès-Biesel &
Rallison (1981) is not valid any more. Interestingly, the Re dependence nearly
vanishes then; only in the central region (z ≈ 0) does the deformation increase with
Re. The particles are probably already deformed so much that the additional inertial
stresses do not contribute noticeably. It is interesting to note that also particles at the
centreplane are deformed, which is caused by their finite size.

The inclination angle of a particle is the angle between its large main axis and the
flow direction. In the small-deformation regime the inclination angle assumes a value

θ

2π
= θ0

2π
− 15

16
Ca, (3.11)

where θ0 = π/4 (i.e. 45◦) is the asymptotic value for Ca → 0 (Barthès-Biesel 1980).
The computed inclinations are shown in the right column of figure 9 for three
different capillary numbers. Since the angles for z < 0 are negative, we report only
the magnitude and denote it by θ . Indeed, figure 9 reveals that all particles at |z| > r
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FIGURE 9. (a,c,e) Deformation parameter D and (b,d,f ) inclination angle θ for different
Re and for (a,b) Ca = 0.003, (c,d) Ca = 0.03 and (e,f ) Ca = 0.3. The legend is valid for all
plots. For the suspension (open symbols), only every second data point of D is shown for
the sake of clarity. Filled symbols denote the data points for a single particle. The vertical
dotted line corresponds to the centreplane. The inclined solid lines correspond to the small-
deformation predictions (3.10) (Barthès-Biesel & Rallison 1981) and (3.11) (Barthès-Biesel
1980), respectively. The small-deformation theory predicts the results for small Ca and Re
well. Inertia effects tend to increase the particle deformation and inclination.

have an inclination angle of ≈45◦ in the limit of small Re and Ca. Depending on
Ca, one observes different characteristics of the inclination angle. For Ca = 0.003, θ

strongly depends on Re, especially in the wall vicinity. However, θ increases with
Re and reaches values of approximately 60◦. Laadhari et al. (2012) also observed an
increase of the inclination angle of steadily tank-treading vesicles with Re. Only in
the vicinity of the centreplane (|z|< r) is θ independent of Re. Also for Ca = 0.03 and
0.3, the angles are strictly increasing with Re. The increase of the local viscosity with
Re (figure 5) can be explained based on these findings; when the average inclination
angle increases with Re, the particles assume a larger cross-section in the channel,
which in turn leads to a larger flow resistance and therefore dissipation.
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As predicted by (3.11), the inclination angle also shows a strong z dependence.
Owing to the finite size of the particles located near the centreplane of the Poiseuille
flow, θ cannot be directly compared to that in a simple shear flow. Therefore, the
inclination angles in the central region show strong deviations from the analytic
solution.

Comparing the data for a single particle and the suspensions, we generally observe
that collective effects lead to a decrease of the deformation parameter and an increase
of the inclination angle, in particular for larger values of Re. This may have additional
nonlinear feedback effects on the lateral particle distributions.

4. Summary and conclusions

We have performed three-dimensional computer simulations of a particle suspension
using a finite-element, immersed-boundary, lattice-Boltzmann method to investigate
the interplay of fluid inertia and particle deformability in a planar Poiseuille flow.
The channel Reynolds number Re and the particle capillary number Ca are used as
free control parameters (Re ∈ [3, 417], Ca ∈ [0.003, 0.3]), while the suspension volume
fraction φ and channel confinement χ are kept fixed (φ = 0.1, χ = 0.20). Additionally
we have performed reference simulations for a single particle (φ = 0.001) under
otherwise identical conditions.

We found that the Segré–Silberberg effect (Segré & Silberberg 1962a,b) is
suppressed upon an increase of the particle deformability. While the concentration
profile of the nearly rigid particles (Ca = 0.003) shows a central depletion region and
a distinct peak in the vicinity of the walls for Re ≈ 30–200, the central depletion
region for more deformable particles (Ca > 0.03) at fixed Re vanishes, and the
lateral particle distribution becomes more narrow. We therefore conclude that the
deformability-induced centrewards migration eventually exceeds the inertial lift force.
This view is supported by the behaviour of a single particle; in particular, the particle
for Re = 6 and Ca = 0.3 (i.e. for minimum inertia and maximum deformability effect)
assumes a lateral equilibrium position on the centreplane while all other particles end
up at finite distances.

Another peculiar suspension behaviour has been found when both Re and Ca are
large. For Re > 200 and Ca > 0.03, a particle focusing towards the centreplane takes
place, which is much stronger than the focusing caused by deformability alone (i.e.
for large Ca and small Re). This effect is partly caused by the tendency of a single
particle to move closer to the centreplane when Re becomes larger than approximately
45, as already observed by Shin & Sung (2011). But also the role of particle–particle
interactions at finite volume fractions is important. We observe a reduction of the
lateral particle velocity fluctuations, indicating a decrease of dispersion forces,
when both Re and Ca are large. This is in line with results obtained by Doddi
& Bagchi (2008a), who described a change of the nature of particle collisions and
consequential reduction of dispersion in this parameter regime. However, to the best
of our knowledge, the inertial focusing in a non-dilute deformable particle suspension
in Poiseuille flow has not been described before.

We have also seen that the local suspension viscosity decreases with Ca but
increases with Re. The former effect is well known and caused by reduced flow
resistance of soft particles, while the latter finding can be explained by analysing the
particle properties in the suspension. Both the particle deformation and inclination
increase with Re, which is in agreement with results previously published by other
groups (Doddi & Bagchi 2008a; Kim & Lai 2012; Laadhari et al. 2012). More
strongly inclined particles lead to an apparent growth of the volume fraction, which
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in turn increases the local dissipation. The inertia-augmented deformation may be one
explanation for the strong inward migration of deformable particles at high Reynolds
numbers.

Despite the growth of the local viscosity with Re, the inertial focusing of particles
towards the centreplane leads to situations where the apparent viscosity of the
overall suspension decreases. The decrease of the dissipation due to particles being
shifted from the high-dissipation region near the wall to the low-stress region at the
centreplane can overcompensate the local viscosity growth when Re is increased.

Generally, the interplay of velocity curvature (i.e. non-uniform stress), flow
confinement, inertia-augmented particle deformation and inertia-dependent particle
interactions leads to a complex suspension behaviour and non-homogeneous lateral
particle distributions, which in turn affects the rheology of the suspension. It is
highly non-trivial to disentangle cause and effect of the observed phenomena in
the present geometry. The large number of parameters forced us to reduce the
dimensionality of the parameter space. Additional studies are required to investigate
the relative contributions of the above-mentioned mechanisms and the effect of the
confinement and volume fraction on the inertial focusing. We hope that this work
will stimulate further experimental and theoretical investigations of deformability- and
inertia-induced effects in suspension flows.
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