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Abstract

Myocardial fibrosis due to maladaptive extracellular matrix remodeling contributes to dysfunction of the failing heart. Further
elucidation of the mechanism by which myocardial fibrosis and dilatation can be prevented or even reversed remains of great interest as a
potential means to limit myocardial remodeling and dysfunction. Matrix metalloproteinases (MMPs) are the driving force behind
extracellular matrix degradation during remodeling and are increased in the failing human heart. MMPs are regulated by a variety of
growth factors, cytokines, and matrix fragments such as matrikines. In the present report, we discuss the regulation of MMPs, the role of
MMPs in the development of cardiac fibrosis, and the modulation of MMP activity using gene transfer and knockout technologies. We
also present recent findings from our laboratory on the regulation of the extracellular MMP inducer (EMMPRIN), MMPs, and
transforming growth factor-b in the failing human heart before and after left ventricular assist device support, as well as the possibility of1

preventing ventricular fibrosis using different anti-MMP strategies. Several studies suggest that such modulation of MMP activity can
alter ventricular remodeling, myocardial dysfunction, and the progression of heart failure. It is therefore suggested that the interplay of
MMPs and their regulators is important in the development of the heart failure phenotype, and myocardial fibrosis in heart failure may be
modified by modulating MMP activity.  2000 Elsevier Science B.V. All rights reserved.
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1. Introduction roteinases (TIMPs) and their regulators determines the
progression of the fibrotic process in the heart. Modulation

Myocardial matrix remodeling has been proposed to of this process may alter the final outcome of fibrosis and
participate in the development of ventricular dilatation and eventually, myocardial function. In the present report, we
heart failure. Matrix metalloproteinases (MMPs), which will discuss new insights into the expression and the
are present in the myocardium and are capable of degrad- regulation of MMPs and their regulators, and the effect of
ing all the matrix components of the heart, are the driving changes in their activity on cardiac structure and function.
force behind myocardial matrix degradation during re-
modeling. Thus, an increase in MMP activity may result in
fibrillar collagen degradation, extracellular matrix (ECM) 2. Regulation of the expression and activity of MMPs
remodeling, and progressive ventricular dilatation. The
MMPs are regulated at both pre- and posttranscriptional 2.1. Regulation of MMP gene expression
levels, and can also be regulated by substrate interaction,
and by endogenous physiological inhibitors [1,2]. There- MMP expression can be modified at the transcriptional
fore, the interplay of MMPs, tissue inhibitors of metallop- level by a variety of physiologic signals including growth

factors, cytokines, and matrikines. Each MMP gene has a
unique promoter that contains various transcription factor
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binding sites. An activator protein (AP-1) site is present in (EMMPRIN), a member of the immunoglobulin super-
the promoter of the MMP-1, -3 and -9 genes [3,4] and the family, is a glycoprotein first identified on the outer surface
MMP genes are highly inducible by phorbol myristate of human tumor cells [17]. EMMPRIN stimulates human
acetate (PMA) [4], possibly acting via the AP-1 site. A fibroblasts to produce MMP-1, -2, and -3, and upregulates
single AP-1 site is sufficient to drive transcription of the MMP-1 mRNA expression in a concentration-dependent
MMP genes in Hela cells, but not in fibroblasts [3,4]. This manner [17,18]. For MMP-1, this stimulating effect re-
difference may be due to AP-1 complex formation by quires p38 activity [19]. Since previous studies have
different Jun and Fos protein family members, which form shown that MMPs are increased in the failing human heart
heterogenous complexes that bind to AP-1 site with [20,21], we hypothesized that EMMPRIN may be involved
different affinities [5]. In fibroblasts, basal transcription of in the regulation of their expression. Relative to nonfailing
the MMP-1 gene is controlled by the proximal AP-1 sites, hearts, the level of EMMPRIN protein was significantly
while transcriptional induction seen in response to PMA is elevated in failing human hearts (Fig. 1). This upregulation
mediated principally by several sequences in the proximal was independent of MMP-1, -2, -3 and -9 expression, as
promoter [1]. Likewise, stimulation of MMP-9 gene the increase in EMMPRIN did not correlate with changes
promoter activity by Ras requires multiple transcription in MMP-1 protein, MMP-2 activity, or MMP-9 protein and
factor binding sites including polyoma enhancer activator- activity in the human heart (Fig. 1C,D) [22].
3 (PEA-3) and AP-1 [6]. Because mechanical stretch has been shown to induce

Cytokines are important regulators of MMP gene ex- neutral transmembrane MMPs in cardiac fibroblasts [23],
pression. It has been shown that the expression of col- and MMP-2 and -9 are stimulated by transmural pressure
lagenase and c-jun is coregulated by tumor necrosis factor- [24], we hypothesized that EMMPRIN as well as other
a (TNFa) [7]. Both TNFa and interleukin-1b (IL-1b) MMPs could be modulated in vivo by changes in hemo-
induce a prolonged activation of c-jun gene expression, dynamic load. To test this hypothesis, we used left
which may result in MMP gene activation through the ventricular tissue samples from failing human heart before
AP-1 sites [8]. We have previously reported that MMP and after left ventricular assist device (LVAD) support to
gelatinolytic activity in cultured neonatal cardiomyocytes study the regulation and relationship of EMMPRIN and
and fibroblasts is increased by TNFa and IL-1b [9]. This MMPs. LVAD unloading for various durations led to a
change in MMP activity leads to a rapid decrease in ECM further increase in the expression of EMMPRIN. The fold
accumulation. IL-1b also increases the stability of MMP-1 induction in EMMPRIN levels correlated with the duration
transcripts resulting in higher levels of steady-state mRNA of LVAD support of the heart (Fig. 2A,B). However,
[10]. Thus both pre- and posttranscriptional mechanisms MMP-2 activity did not change in the failing human heart
contribute to the increases in MMP gene expression in compared to nonfailing controls, and in the LVAD sup-
response to cytokines. ported heart compared to that before LVAD support. MMP-

Transforming growth factor-b (TGFb ) is also an 1 and -3 expression did not change, while MMP-91 1

important regulator of MMP gene expression. TGFb acts decreased after LVAD support [22]. Thus, EMMPRIN1

through the TGFb inhibitory element (TIE), a cis-acting expression alone does not appear to regulate MMP expres-1

element found in the promoter region of most MMP genes, sion, while hemodynamic load appears to regulate MMP-9
with the exception of MMP-2 [11]. While TGFb suppres- in the human heart.1

ses overall proteolytic activity through reduced proteinase The expression of MMP genes, especially MMP-9, can
synthesis and by increased TIMP expression, it increases also be altered by the substrates of MMPs, cell–cell and
both MMP-2 and -9 expression in some cell types [12]. In cell–ECM adhesion molecules, and agents that alter cell
addition, the effects of TGFb on the expression of MMPs shape [25]. The laminin peptide, seryl-isoleucyl-lysyl-val-1

are influenced by aging, and altered composition or yl-alanyl-valine (SIKVIV), induces MMP-9 in human
modification of TIE binding factors in aging fibroblasts monocytes, while intact laminin does not [26]. A fibro-
may underlie this effect [13]. nectin fragment that contains the central arginyl-glycyl-

In contrast to MMP-1, -3 and -9, MMP-2 is constitutive- aspartate (RGD) cell binding region also induces MMP-9
ly expressed at low levels by many cells [14]. For expression [27]. Cells plated on a mixture of tenascin and
example, MMP-2 transcription is not readily induced by fibronectin show upregulated expression of MMP-9 [28].
PMA or IL-1b, which may be explained by the absence of This response can be blocked by antibodies directed
AP-1, PEA-3 and TIE binding sites in the MMP-2 against b-integrins and by cytochalasin D, suggesting
promoter or the presence of a novel TATA box and a SP-1 signal transduction through cell–cell contact and cyto-
consensus sequence [15]. However, high level transcription skeletal components.
of MMP-2 is subject to the interplay of double (AP-2) and
single-stranded (YB-1) DNA binding transcription factors
with a discrete 40-base pair enhancer element (RE-1) 2.2. Storage of MMPs in the ECM
located in the 59-flanking region of the MMP-2 gene [16].

Extracellular matrix (ECM) metalloproteinase inducer MMPs are synthesized and secreted as proenzymes

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/article/46/2/214/416340 by guest on 16 August 2022



216 Y.Y. Li et al. / Cardiovascular Research 46 (2000) 214 –224

Fig. 1. The relationship of increased expression of EMMPRIN and MMPs. (A) Western blot analysis showed increased expression of EMMPRIN in both
dilated cardiomyopathy (DCM, n57) and ischemic cardiomyopathy (ICM, n58) relative to non-failing heart (n58). The protein expression of MMP-1 (B)
and -9 (Ref. [21]) was also increased, but EMMPRIN protein did not correlate with either MMP-1 or -9 (C, and D). * P,0.05 compared to that of
nonfailing heart.

(zymogens). After secretion the proMMPs bind to various 2.3. Localized activation of MMPs
ECM components, which may serve as a means of
extracellular storage for rapid activation and mobilization Although intracellular activation of proMMPs has been
upon stimulation. Interestingly, MMPs can display selec- reported [32], the majority of proMMPs are secreted and
tive affinity with discrete components of the ECM. It has stored in the ECM. The activation of proMMPs in the
been demonstrated that MMP-2 is associated with elastin- interstitium is mediated by both plasmin-independent and
containing structures, MMP-3 with basement membrane plasmin-dependent pathways [33]. Plasmin is a potent
and occasionally with collagen fibers, and MMP-13 with activator of most MMPs, promoting cleavage of the latent
proteoglycans, collagen and elastin [29]. proMMP-9 forms proenzyme to the active molecule [34]. Urokinase-like
a high-affinity complex with a2(IV) chains on the cell plasminogen activator (uPA) generated plasmin works with
surface to facilitate the surface /matrix association of MMP-3 to activate MMP-9 [35]. proMMPs can be acti-
proMMP-9 [30], whereas the binding of MMP-9 to a1(I) vated by removing the carboxyl terminus of the
chains [31] may serve as a means of substrate targeted proenzyme. uPA associated with uPA receptor favors
degradation. localized ECM degradation. It is suggested that the binding
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Fig. 2. The expression of EMMPRIN was further increased after LVAD support of the failing human heart. (A) Western blot analysis of EMMPRIN
showed increased expression after LVAD support: a, before LVAD; b, after LVAD; (B) EMMPRIN increment correlated with the duration of LVAD support.

and activation of uPA on its receptor provide a mechanism 2.4. Inhibition of MMPs
for localized proteolytic activity at the cell. In a similar
fashion, membrane type (MT)-MMPs activate MMP-2 on The MMPs are inhibited by TIMPs, synthetic com-
the cell surface with the MT1-MMP–TIMP-2 complex pounds, as well as a2-macroglobulin [41]. TIMPs are
serving as a receptor for proMMP-2 [36], suggesting the secreted proteins with multiple functions. In addition to
presence of parallel transmembrane control systems for MMP inhibition, TIMP-2 inhibits cultured endothelial cell
MMPs. The activated MT1-MMP and MMP-2 on the cell proliferation independent of protease inhibitory activity
surface can serve as an activator of other MMPs such as [42]. Growth-stimulatory activity has also been described
MMP-13. This membrane-associated pathway is inducible for TIMP-1, -2, and -3 [43].
by a variety of agents including collagen type I, con- Because of the importance of ECM remodeling, there is
canavalin A or TGFb. The concentration of TIMP-2 a significant interest in utilizing MMP inhibition as a
determines its role in localized activation of MMPs. At therapeutic strategy [44]. Since the activity of MMPs is
low concentrations, TIMP-2 serves as a receptor for increased, while TIMPs are decreased in the failing human
proMMP-2, whereas at high concentrations, TIMP-2 neu- heart [20,21,45], these interests have been directed at
tralizes MT-MMP and prevents MMP-2 activation [36]. modulating the heart failure process through inhibition of

Local activation of MMPs is most readily facilitated by activated MMPs. However, the TIMPs have not proven
binding of collagens. The presence of soluble collagen suitable for pharmacological applications due to their short
stimulates collagenase and collagenolytic activity [37]. For half-life in vivo. Thus, synthetic inhibitors of MMPs have
example, MMP-13 expression and activity are induced in been developed and evaluated in animal models and initial
fibroblasts cultured on three-dimensional collagens [38], results have been promising in improving cardiac pump
and monocytes cultured on type I collagen release more function and blocking progression of heart failure [46]. A
MMP-9 than do cells plated directly on plastic [39]. Type I series of other low-molecular-weight MMP inhibitors, with
collagen also induces dose-dependent posttranscriptional varying efficacy and specificity of MMP inhibition, have
MMP-2 activation. Specific antibodies against the subunits been developed [47]. Batimastat (BB-94) was the first
of a2b1 integrins, the major collagen I receptor, partially synthetic MMP inhibitor with a collagen-mimicking hydro-
inhibit MMP-2 activation [40]. xamate structure and was studied in humans. Chemically
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modified tetracyclines were the first agents to obtain The potential importance of MMPs in the development
approval for clinical use in anti-MMP therapy of periodon- of heart failure has recently been demonstrated by trans-
tal diseases [48]. However, their effects on cardiac re- genic myocardial overexpression of MMP-1 in mice.
modeling remain undefined. Myocardial overexpression of MMP-1 produces left ven-

tricular hypertrophy and hypercontractility in young mice
and ventricular dilatation and failure in old mice ([60] and

3. The effect of overexpression or deficiency of H.E. Kim, personal communication). Similarly, other
MMPs or TIMPs transgenic mice with elevated myocardial MMP activity

have demonstrated normal cardiac function in young mice
3.1. Virus mediated gene transfer and the development of ventricular dilatation and failure in

older mice [61,79].
Various recombinant viral vectors have been constructed While TIMP proteins may not prove amenable to

that contain genes for MMPs or TIMPs and which achieve therapeutic purpose, transgenic expression of TIMPs may
high levels of expression, usually through use of the provide important insights into their role in matrix homeo-
cytomegalovirus major immediate early promoter. Several stasis and cardiac remodeling. However, to date such
reports show that vascular smooth muscle cell functions results have not been reported.
can be regulated in vitro and in vivo by adenoviral MMP
or TIMP gene transfer. It has been shown that adenovirus 3.3. Gene knockouts
mediated expression of TIMP-1 inhibits smooth muscle
cell migration and reduces neointimal hyperplasia in Gene ablation through homologous recombination (gene
vascular balloon injury [49,50]. Furthermore, overexpres- ‘‘knockout’’) has also been applied to the investigation of
sion of TIMP-1, -2, or -3 mimics synthetic MMP inhibitors MMP and TIMP functions. Growth plates from MMP-9-
in inhibiting smooth muscle cell chemotaxis and invasion null mice in culture show a delayed release of an an-
through reconstituted basement membrane [51]. Alterna- giogenic activator, establishing a role for this proteinase in
tively, syngeneic rat smooth muscle cells retrovirally controlling angiogenesis [25,62]. In addition, lack of
transduced with TIMP-1 cDNA and seeded onto the MMP-9 gene partially protects against cardiac aneurysm
luminal surface of the vessels resulted in local TIMP-1 rupture, while uPA inactivation completely protects against
overexpression, led to preserved elastin in the media, and rupture after myocardial infarction [63]. Plasminogen-de-
prevented aneurysmal degeneration and rupture [52]. ficient mice show delayed posttransplant allograft arterio-

Adenoviral TIMP-2 gene transfer is also effective in sclerosis, suggesting plasmin proteolysis is involved in
reducing blood vessel neointimal thickening primarily by accelerated arteriosclerosis by mediating elastin degra-
inhibiting MMP activity and smooth muscle cell migration dation, macrophage infiltration, media remodeling, medial
in vitro and in vivo [53,54]. While the functional impor- smooth muscle cell migration, and formation of a neoin-
tance of TIMP-3 downregulation in the failing human heart tima [64]. Gene knockout also provides important in-
[21] remains unknown, adenovirus mediated overexpres- formation about the activation of MMPs. For example,
sion in model systems of heart failure may prove illuminat- although activation of proMMP-9 was enhanced in the
ing. TIMP-4 is the only known TIMP whose expression presence of plasmin(ogen), the activation of proMMP-2 or
appears to be cardiac-specific [55]. TIMP-4 expression is proMMP-9 is not affected by gene knockout of MMP-3,
upregulated in rat carotid arteries after balloon injury [56]; plasminogen activators or plasmin(ogen) [33,65], suggest-
however, it is downregulated in the ischemic failing human ing that in vivo activation of MMPs may occur via
heart [21]. The cardiovascular effect of TIMP-4 over- plasminogen-independent mechanisms.
expression remains to be defined. No phenotype abnormality was originally reported in

mice lacking the TIMP-1 gene [66]. Nevertheless, it was
3.2. Transgenics later demonstrated that mice deficient of TIMP-1 gene

showed increased left ventricle mass and left ventricular
Transgenic technology has provided an opportunity to end-diastolic volume [67]. In addition, female mice lacking

assess the effects of prolonged altered expression of MMPs TIMP-1 gene showed reduced levels of ovarian TIMP-2
and/or TIMPs in vivo [57]. Transgenic mice overexpres- and -3 mRNA, suggesting cross-regulation among TIMPs
sing MMP-7 in reproductive organs showed altered integri- [66].
ty of the ECM, cellular differentiation, and tissue-specific
cellular destruction [58]. In addition, targeting of an
autoactivating mutant of MMP-3 to mammary epithelia of 4. The role of MMPs and their regulators in the
transgenic mice resulted in progressive development of development of cardiac fibrosis
reactive stroma and increased collagen content [59], sug-
gesting that enhanced MMP-3 activity is associated with Cardiac fibrosis is defined not only as an increase in the
increased collagen formation and fibrosis. concentration of matrix collagens in the interstitium, but
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also changes in collagen type, organization and cross-links fourths of the collagen molecule length from the amino
[68]. Reparative fibrosis is a result of a scarring process in terminus [82]. The resulting three-fourths and one-fourth
which small and large areas of necrosis heal after direct fragments are completely degraded by MMP-2 and -9 in
insults such as infarction of the myocardium [68]. Reactive addition to MMP-1 and -3. In coronary artery ligation
fibrosis may be a fibrogenic response of the myocardium to induced myocardial infarction, collagen degradation ex-
a variety of stimuli including chronic elevations in an- ceeds synthesis during the early phase of repair at the
giotensin II, mineralocorticoids, and immune complexes. infarct site. Increases in collagenase and gelatinolytic
In the ischemic failing human heart, multiple foci of activities appear at the infarct site on day 2 postligation,
reactive fibrosis account for more than two-thirds of peak by day 7, and decline thereafter. An increase in
fibrous tissue, whereas the infarct scar constitutes only collagenase mRNA expression which appears at day 7 may
one-third [69]. Collagen exists in several genetically serve to replace the consumed latent MMP pool in the
distinct types. Type I and III are predominant in the ventricles [83].
myocardium with type I being predominant in the adult Digestion of the ECM releases molecules with potent
heart [70]. Increased collagen formation, with changes in effects on matrix synthesis, such as matrix bound growth
the ratio of type I to type III, may occur in response to a factors as well as matrikines. Matrikines are fragmented
variety of growth signals. Various changes in the com- matrix peptides that have biological activities in regulating
position of collagen types and cross-links have been connective tissue cell activity [80,84]. MMPs play an
reported during the development of cardiac fibrosis in active role in the formation of some of the matrikines. The
different animal models as well as in patients with heart tripeptide glycyl–histidyl–lysine derived from several
failure [71–74]. However, the mechanisms involved in the ECM proteins [including collagen a2(I), a2(V), and
differential regulation of the two collagen types during a2(IX) chains, osteonectin, thrombospondin-1 and fibrin a

cardiac fibrosis appear to be complex and diverse [75]. chain] during their partial degradation stimulates new
These changes may lead to alterations in the mechanical connective tissue formation [80]. Peptides derived from
properties of the tissue. For example, myocardial com- elastin [85], laminin and fibronectin [86], and osteonectin
pliance (DV /DP) is directly affected by the concentration [87] also participate in the modulation of cell activities,
as well as the ratio of different types of collagens in the MMP expression, and growth factor signaling. The in-
heart [74,76]. Elevations in type I collagen increase crease in mRNA of both type I and type III procollagens
myocardial stiffness, while increases in type III collagen after infarction [88] may result at least partially from
may facilitate myocardial compliance. However, myocar- matrikines. Therefore, MMP facilitated formation of mat-
dial stiffness in hypertension is proposed to be the conse- rikines may play an active role in the regulation of
quence of an enhanced myocardial collagen cross-linking fibrogenic process.
rather than an increase in total or type I collagen con- In addition to matrikines, MMPs may release additional
centrations [77]. The normal collagens in the failing heart biologically active factors that are associated with com-
are degraded by increased MMPs and are replaced by ponents of the ECM or cell membrane. A variety of growth
fibrous interstitial deposits of poorly cross-linked collagens factors have been found associated with particular com-
[78], which may lead to dilatation of the ventricles. ponents of the ECM: platelet derived growth factor

(PDGF) with osteonectin; active TGFb with collagen IV1

4.1. MMPs in myocardial fibrosis and fibronectin; and insulin-like growth factor with multi-
ple IGF binding proteins.

MMPs not only play a role in the degradation of matrix The role of MMPs in myocardial fibrosis can be best
components, but also modulate collagen synthesis. The end exemplified by the findings of Heymans et al. [63]. Either
result is often increased MMPs accompanied with in- uPA inactivation or adenoviral mediated TIMP-1 or plas-
creased fibrosis such as seen in the failing heart, and minogen activator inhibitor (PAI) overexpression reduces
decreased MMP activity accompanied with reduced fi- collagen deposition in the infarcted heart. By contrast,
brosis [22,63,79]. MMPs may participate in the fibrosis individual inactivation of MMP-3, -9 or -12 genes has no
and remodeling process through direct digestion of matrix effect. These findings suggest a redundant and cooperative
components, and regulation of the formation of matrikines: role among MMPs in myocardial fibrosis.
such as glycyl–histidyl–lysine [80] and release of bio-
logically active factors from the ECM (including TGFb , 4.2. Growth factors and cytokines in myocardial fibrosis1

insulin-like growth factor, and fibroblast growth factor
[81]). Myofibroblasts are specialized fibroblasts that express

The direct digestion of matrix components is an essen- receptors for TGFb , angiotensin II, endothelin and proin-1

tial part of matrix remodeling. MMPs have preferred flammatory cytokines, suggesting the ability to respond to
substrate specificities (Table 1). MMP-1 initiates the these regulatory factors [89]. Indeed, angiotensin II gener-
digestion of collagens by hydrolyzing the peptide bond ated de novo within the infarcted heart has autocrine and
following a Gly residue located at a distance of three- paracrine properties that influence the turnover of connec-
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Table 1
Major matrix metalloproteinases and their properties

aMMP Traditional Major Activator Inhibitors Inducers Major cell or tissue
name substrates (beside EDTA) distribution

MMP-1 Interstitial Collagen I, II, III, X Plasmin TIMP-1, -2, -3, -4 TNFa, IL-1b Widely including heart
collagenase gelatin MMP-3, -7, -10 tetracycline PDGF, phorbol

MMP-2 Gelatinase A Gelatin, laminin MT-MMP TIMP-1, -2, -3, -4 TGFb Ubiquitous
collagen I, IV, V, VII
fibronectin, elastin

MMP-3 Stromelysin Proteoglycans TIMP-1, -2, -3, -4 TNFa, IL-1b, EGF Heart, lung, liver
fibronectin, gelatin phorbol
collagens III, IV, V, IX

MMP-7 Matrilysin Gelatin, fibronectin TIMP-1, -2, -4 LPS Postpartum uterine
proteoglycan

MMP-8 Neutrophil Collagens I, II, III MMP-3, -7, -10 TIMP-1, -2 TNFa, IL-1b Neutrophils, postpartum uterine
collagenase gelatin

MMP-9 Gelatinase B Gelatin, proteoglycans Plasmin TIMP-1, -2, -3, -4 TGFb, TNFa, IL-1b WBC, osteoclast, trophoblasts
collagens IV, V, VII MMP-2 tetracycline LPS, phorbol, EGF
fibronectin, elastin ischemia

cell-matrix contact
MMP-10 Stromelysin-2 Gelatin TIMP-1, -2 Heart, lung, liver, intestine
MMP-11 Stromelysin-3 Gelatin TIMP-1, -2
MMP-12 Metalloelastase Elastin TIMP-1, -2 Placenta, Mf, stromal cells
MMP-13 Rodent Collagen I, II, III MT-MMP LIF, TNFa, IL-1b Widely including heart

collagenase phorbol postpartum uterine
MMP-14 MT1-MMP Collagen, aggrecan TIMP-2, -3 TNFa, IL-1b, EGF Lung, kidney, spleen, placenta

proMMP-2 phorbol, ConA
MMP-15 MT2-MMP Collagen, aggrecan Stretch Heart, lung, liver, colon, kidney
MMP-16 MT3-MMP Brain, lung, placenta
MMP-17 MT4-MMP Heart, brain, colon, WBC, ovary
MMP-18 Collagenase-4 Collagen
N/A MT5-MMP proMMP-2 Brain

a TGFb5transforming growth factor b; TNFa5tumor necrosis factor a; IL-1b5interleukin-1b; LPS5lipopolysaccharide; EGF5epithelial growth
factor; PDGF5platelet derived growth factor; LIF5leukemia inhibitory factor; WBC5white blood cell; ConA5concanavalin A; Mf5macrophage.

tive tissue [89]. The stimulating effects of TGFb on ECM as well as (2) the stimulating effect of those
collagen gene transcription have been documented in cytokines on the production of TGFb . This is demon-1

cardiac fibroblasts [90]. In infarcted rat heart, locally strated by studies in transgenic mice overexpressing TNFa

generated angiotensin II is correlated to TGFb expression (TNF1.6) that develop myocardial fibrosis and failure [61].1

and synthesis [91]. It is proposed that early induction of The mouse heart had significantly increased activity of
TGFb via the angiotensin II type 1 receptor plays a major MMPs [79] and expression of TGFb, which may coordi-1

role in the development of cardiac fibrosis [92]. TGFb nately participate in the fibrogenic process. As a result, the1

treatment of cardiac fibroblasts increases the abundance of
proa2(I) and proa1(III) mRNA and type I and type III
collagens [90]. Similarly, recombinant adenovirus medi-
ated overexpression of TGFb results in elevated levels of1

type III collagen gene expression in vascular smooth
muscle cells and fibroblasts [93]. Consistent with in vitro
and animal studies, we have found that TGFb levels1

correlate with the deposition of collagens in the human
heart (Fig. 3), suggesting a role of TGFb in the regulation1

of human myocardial fibrosis.
Proinflammatory cytokines such as TNFa and IL-1b can

both enhance and inhibit collagen production in lung
fibroblasts [94]. In cultured neonatal rat cardiomyocytes,
TNFa and IL-1b stimulate the activity of MMPs and
accelerate the breakdown of matrix proteins within 48 h of

Fig. 3. Correlation of the levels of TGFb with collagen deposition in the1exposure [9]. However, in the intact heart different long human myocardium. Myocardial TGFb content was measured by1
term effects may occur due to (1) the collagen synthesis- enzyme-linked immunosorbent assay. Myocardial collagen deposition
promoting effects of matrikines generated by digestion of was measured by hydroxyproline quantification.
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net accumulation of collagens may increase. Indeed the its derivatives may trigger the activation of MMPs. Fur-
myocardium of TNF1.6 mice shows increased collagen thermore, the changes in MMP activity and collagen
matrix [79]. Immunostaining of type I and III collagens content are associated with myocardial diastolic function.
also showed that the proportion of type III collagen was In the TNF1.6 mice, increased MMP activity and collagen
markedly increased in TNF1.6 transgenic mice [79]. content are associated with decreased transmittal Doppler

echocardiography E wave and A wave ratio (E/A ratio),
whereas decreased MMP activity and collagen content

5. Preventability or reversibility of fibrosis in the after AdTNFRI treatment were associated with normalized
failing heart by modulating MMP activity E/A ratio [79].

A more direct inhibition of MMPs was recently reported
Regardless of etiology, heart failure often culminates in [46] in which the MMP inhibitor PD166 793 (Parke-Davis)

a presentation of cardiac fibrosis, dilatation, and loss of was used in a porcine model of heart failure induced
contractility. Currently there is much interest in the through rapid ventricular pacing. The inhibitor treatment
mechanism and preventability of cardiac fibrosis and increased the endocardial shortening and left ventricular
dilatation. Modulation of the renin–angiotensin system by myocardial stiffness, reduced end-diastolic dimension and
angiotensin converting enzyme (ACE) inhibitors or an- left ventricular wall stress and myocyte length. Adminis-
giotensin receptor blockers alters the progression of tration of a broad-spectrum MMP inhibitor (CP-471 474)
myocardial fibrosis [95,96]. It has also been shown that attenuates early left ventricular dilatation after experimen-
inhibition of the renin–angiotensin system reverses cardiac tal myocardial infarction in mice [102]. Furthermore, the
fibrosis in deoxycorticosterone acetate (DOCA)-salt rats effects of MMP inhibition on end-systolic area and end-
and returns some indices of myocardial function to normal diastolic area are most prominent in animals that had
[97]. Myocardial fibrosis is a major pathological finding greater initial left ventricular dilatation.
that may be involved in both systolic and diastolic
dysfunction of the failing heart. In fibrotic myocardium,
collagen chains are fractured and replaced by poorly 6. Conclusion and perspectives
structured bands and sheets of collagen, or more soluble
matrix components, which leads to ventricular dilatation The myocardial ECM is under constant remodeling by
[98]. This constant remodeling of the ECM is regulated by MMPs, which are in turn regulated by various factors.
the activity of MMPs [89], which in turn are regulated by Although significant advancement has been made in the
growth factors and cytokines. For example, the expression understanding of the roles of MMPs, TIMPs and their
of TNFa and IL-1b is increased in patients with heart regulators in the cardiovascular system, there is still much
failure [99], and experimental studies have demonstrated to be learned about the interaction of MMPs and their
that the gelatinolytic activity of MMPs is increased in regulators in the development of myocardial fibrosis and
cardiac as well as other cells after stimulation by these the heart failure phenotype. From the current evidence we
cytokines [9,100]. Therefore, modulation of the myocardial have, it is reasonable to believe that modulation of MMPs
remodeling process and ultimately myocardial function in the failing heart directly or through factors that affect
could be achieved by changing the activity of MMPs either MMP activity will alter the ECM remodeling process,
by direct inhibition or by anti-cytokine treatment. which may eventually alter the progression of heart failure.

Indeed, anti-TNFa treatment with ENBREL (Etaner- Thus, the MMPs and TIMPs may provide an important
cept, p75 TNF receptor Fc fusion protein) has been therapeutic target for the discovery of new drugs for
reported to regress left ventricular remodeling and dilata- treating heart failure.
tion in humans with congestive heart failure [101]. We
hypothesized that changes in the activity of MMPs may
participate in this regression. To test this hypothesis, we Acknowledgements
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