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ABSTRACT

MicroRNAs (miRNAs) are ubiquitously expressed

small non-coding RNAs that, in most cases,

negatively regulate gene expression at the post-

transcriptional level. miRNAs are involved in

fine-tuning fundamental cellular processes such as

proliferation, cell death and cell cycle control and

are believed to confer robustness to biological

responses. Here, we investigated simultaneously

the transcriptional changes of miRNA and mRNA

expression levels over time after activation of the

Janus kinase/Signal transducer and activator of

transcription (Jak/STAT) pathway by interferon-c

stimulation of melanoma cells. To examine global

miRNA and mRNA expression patterns, time-series

microarray data were analysed. We observed

delayed responses of miRNAs (after 24–48 h) with

respect to mRNAs (12–24h) and identified biological

functions involved at each step of the cellular

response. Inference of the upstream regulators

allowed for identification of transcriptional regula-

tors involved in cellular reactions to interferon-c

stimulation. Linking expression profiles of transcrip-

tional regulators and miRNAs with their annotated

functions, we demonstrate the dynamic interplay of

miRNAs and upstream regulators with biological

functions. Finally, our data revealed network

motifs in the form of feed-forward loops involving

transcriptional regulators, mRNAs and miRNAs.

Additional information obtained from integrating

time-series mRNA and miRNA data may represent

an important step towards understanding the

regulatory principles of gene expression.

INTRODUCTION

MicroRNAs (miRNAs) have been discovered in 1993, and
initially, these small non-coding RNAs have not attracted
much interest from the scientific community (1). However,
in recent years, it has emerged that the highly conserved
and ubiquitously expressed miRNAs are of paramount
importance for the regulation of gene expression in
humans, animals and plants (2). Thus far, >1600 mature
miRNAs have been identified in humans (mirBase version
19), and each miRNA is predicted to regulate several
hundreds of target genes, leading to the conservative
estimate of >60% of human protein-coding genes being
regulated by miRNAs (3,4). The binding of miRNAs to
their target mRNAs generally results in mRNA down-
regulation or degradation, with subsequent repression of
protein synthesis (2,5). A common and established feature
is that miRNAs do not need an entirely complementary
region in the 30 UTR of the target gene mRNA to bind to
but can do with varying numbers of mismatching nucleo-
tides. This renders in silico predictions of miRNA target
genes very difficult, and thus far no efficient algorithm
exists, which is able to reliably predict all, but no false-
positive, target genes (6).
Given the large number of protein-encoding genes

that miRNAs can regulate post-transcriptionally, it is
evident that they modulate and fine-tune almost all biolo-
gical processes (7). Consequently, miRNAs have been
implicated in the regulation of processes that promote
cancer growth, or conversely, in processes that might
prevent cancers and other diseases from developing
(8–11). Considering their tremendous regulatory potential
and their often tissue- and disease-specific expression
patterns (12), de-regulated individual miRNAs or altered
global miRNA expression profiles could be indicative of
disease risks and burdens; therefore, miRNAs are currently
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being assessed as possible biomarkers to aid diagnosis
and prediction of different types and stages of cancers,
including melanoma (13,14). In addition, miRNAs are dis-
cussed as targets for cancer therapeutics and as possible
biomarkers (15). Despite recent progress in understanding
miRNA effects on cell behaviour, the precise mechanisms
and implications of miRNA actions are currently debated.
To answer these questions, the dynamic regulation of
miRNA expression changes will have to be considered,
which thus far has been largely neglected (16).
The initial point of regulation of miRNA biogenesis, the

transcription of miRNA genes, is a tightly controlled
multi-step process, which often involves auto-regulatory
feedback loops and feed-forward loops (FFLs) in which
miRNAs participate together with transcription factors
(TFs) (7,17–19). Gene expression, in general, results in
variable levels of gene transcripts and proteins. Together
with expression noise, the magnitude of which is influenced
by intrinsic and extrinsic factors (20), gene transcription
and its inferred regulatory networks can be considered as
‘dynamic information processing systems’ (21–23).
However, the fluctuations in transcript levels (expression
noise) have to be counter-balanced by a certain level of
robustness in the biological responses, and this sturdiness
is thought to be maintained by miRNAs (24). In this
context, the integration of matching mRNA and miRNA
data sets will become increasingly important. Recently,
Muniategui et al. (25) have reviewed and grouped math-
ematical and computational approaches for analysing the
interplay between miRNAs and mRNA into three main
categories: dependency analysis, linear regression and
Bayesian methods. It was further emphasized that models
combining heterogeneous experimental data, such as
time-series data, would be more reliable to predict
miRNA–mRNA interactions. Dynamic data of a given
biological system can add valuable information to a
better understanding of the underlying cellular processes
that might be missed using cross-sectional data that only
focus on single time points (26). Recently, Kim et al. (27)
have analysed complex network dynamics by using
time-series–derived expression data; with principal
network analysis, they were able to capture major activa-
tion patterns from two data sets and to generate the
associated sub-networks and their interactions. Jayaswal
et al. (28), in contrast, used odds ratio statistics to
perform an integrative analysis on matched miRNA and
mRNA time-course microarray data, which identified
miRNAs with regulatory potential and their targeted
mRNAs. Associations between TFs and miRNAs in
monocytic differentiation were also determined in a time-
lagged expression correlation analysis, which identified
12 TFs regulating the expression of several key miRNAs
(29). The importance of time-series gene expression data
was also underscored by a recent review in which
Bar-Joseph et al. (30) expertly summarized current know-
ledge on this topic: different biological scenarios lead
to different response patterns or programs, resulting
in cyclic, sustained or most commonly peaked impulse
responses after a stimulus and/or environmental
perturbations.

To investigate whether integrative time-series–derived
data would provide a means to better explain and
identify complex regulatory interactions, we generated
data sets representing a melanoma cell–derived
miRNome and transcriptome (mRNAs) analysed at dif-
ferent time points after a transcriptional activation
stimulus. We developed an analysis pipeline and
combined known methods to extract information from
these dynamic data sets, aiming at the visualization of
functional variations that are connected to expression
changes. We stimulated melanoma cells with interferon-g
(IFN-g), a type II cytokine, which is known to induce
STAT1-mediated growth inhibition and anti-proliferative
effects in these cells (31,32). We set out to find potential
explanations for these biological effects by integration of
dynamic miRNA and mRNA data sets. Time-series dif-
ferential expression analyses were performed, mainly in
the form of contrasts between experimental conditions
(IFN-g–treated samples versus untreated controls) using
the R/Bioconductor package ‘limma’ (33), in combination
with profile correlation analysis, Ingenuity� Pathway
Analysis (IPA) and data visualization with Circos (34).
We and others have shown before that activation of
STAT TFs specifically up-regulates the expression of
several miRNAs in a time- and dose-dependent manner
(35–40). In the current study, we have observed a delayed
response of the miRNome with respect to the transcrip-
tome, and have dynamically connected biological func-
tions involved in cellular responses to IFN-g. The
up-regulation of several TFs downstream of STAT1,
which might be required for full transcriptional activation
of most miRNAs as well as different processing times of
primary miRNA transcripts (41), might account for this
delayed miRNome response. In addition, we have
identified several FFLs including TFs, miRNAs and
mRNAs. We argue that the integration of time-series–
derived miRNA and mRNA expression data provides
valuable information for generation of biological
networks and is highly relevant for fully understanding
the regulation of biological responses and processes.

MATERIALS AND METHODS

Time-series experiments

To investigate the dynamic regulation and potential
co-regulation of miRNAs and mRNAs, time-course
experiments were performed as described before (40).
An overview of the experimental setup is shown in
Supplementary Figure S1. Briefly, the time-course experi-
ments were carried out using the human A375 melanoma
cell line (ATCC, CRL-1619TM). Cells were seeded into six-
well plates at a density of 50 000 cells/well and were either
left untreated (ctrl) or stimulated with human IFN-g
(PeproTech Inc., final concentration of 50 ng/mL) for
the indicated time points. In parallel, a second control
time-series experiment was performed including a
pre-treatment step with 5 mM Janus kinase (Jak) inhibitor
I (JII; Calbiochem), added 1 h before commencing IFN-g
stimulation. For microarray applications, RNA was
extracted using the miRNeasy Mini kit (Qiagen); for
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quantitative real-time PCR (qPCR) validations, TRIsure
(Bioline) was used. The description of the qPCR method
and primer sequences is given in Supplementary Data
(Supplementary Table S1). We extracted and analysed
RNAs from three biological replicates, each consisting
of three technical replicates. RNA quality was assessed
using Nanodrop 2000 Spectrophotometer (Thermo
Scientific) and Agilent 2100 Bioanalyzer (Agilent
Technologies).

miRNA and mRNA microarray expression profiling

miRNA microarrays were performed using the Affymetrix
GeneChip� miRNA 2.0 Array technology as described
by Reinsbach et al. (40). In addition, matching mRNA
microarrays for selected time points (ctrl, 3, 12, 24, 48
and 72 h) were performed using Gene Chip� Human
Gene 1.0 ST Array (Affymetrix, Santa Clara, CA, USA)
on 17 samples. miRNA and mRNA microarray expres-
sion data are available at ArrayExpress (www.ebi.ac.uk/
arrayexpress) under accession numbers E-MEXP-3544
and E-MEXP-3720, respectively.

Microarray data analysis

The workflow of data processing and analysis is outlined
in Figure 1. Pre-processing of microarray data was per-
formed with Partek� Genomics Suite version 6.5 (Partek�

GS) using the robust multi-chip analysis algorithm, which
performs background adjustment, quantile normalization
and probe summarization as described before (42).
For mRNA data, GC content correction was used, as sug-
gested by the default pipeline of Partek� GS. To decrease
the number of uninformative features, we used a filtering
step: features, for which the maximum expression over all
arrays did not reach a signal intensity of 7 in a log2 scale,
were removed. Different methods [‘betr’ (43), ‘timecourse’
(44) and ‘limma’ (33)] to identify significantly differentially
expressed (SDE) miRNAs and mRNAs were tested
(Supplementary Data and Supplementary Table S2).
In this study, linear models and the empirical Bayes
method from the ‘limma’ package of R/Bioconductor
were used for differential analysis of the miRNA and
mRNA time-series data sets as described before (45). In
addition, to obtain a list of features significantly regulated
at each time point, we used the same ‘limma’ model and a
set of contrasts, comparing expression in IFN-g–treated
samples versus untreated controls. To control for false
discovery rates (FDR), we used the Benjamini–Hochberg
method to adjust P-values.
Microarray data were visualized as heat maps using

a standard eponymous function of R. A hierarchical
clustering algorithm was applied to determine similar
patterns in miRNA and mRNA expression profiles.
Clustering was supported by bootstrapping using the
‘clusterCons’ package of R (46).

Correlation analyses using CoExpress

Negatively correlated miRNA-mRNA pairs were deter-
mined by the in-house developed stand-alone software
tool CoExpress (freely available at www.bioinformatics.
lu/CoExpress), which performs interactive detection
of correlated profiles in large expression data sets.
The software allows single-data type analysis for identifi-
cation of miRNA-mRNA co-expression events as well as
two-data type analysis for detection of correlated miRNA-
mRNA expressions. Details on CoExpress are given in the
Supplementary Data section.

Data mining and visualization

Canonical pathway analysis. Lists of mRNAs and
miRNAs, differentially expressed between each condition
(time points) and untreated controls (with FDR< 0.001),
were uploaded in the IPA tool (Ingenuity� Systems, www.
ingenuity.com) and analysed based on the IPA library of
canonical pathways (content date 2012-05-08). The signifi-
cance of the association between each list and a canonical
pathway was measured by Fisher’s exact test. As a result,
a P-value was obtained, determining the probability that
the association between the genes in our data set and a
canonical pathway can be explained by chance alone.
Functional analysis. To identify biological functions and/
or diseases that were most significant to our data sets
functional analysis was done. As in canonical pathway
analysis, features that met the FDR cut-off of 0.001
when comparing each condition with the untreated
control were analysed by IPA. Right-tailed Fisher’s
exact test was used to calculate a significant P-value for

Figure 1. Graphical representation of the computational workflow. In
the first step, miRNA and mRNA array data were pre-processed
and the quality was assessed using Partek� GS. A filtering step was
included to select only expressed and detectable features. Co-expression
analysis and identification of potential targets were performed directly
on the paired miRNA-mRNA data. Differential expression analysis
was performed using the ‘limma’ package of R/Bioconductor to
identify significant differentially expressed mRNAs and miRNAs over
time. Functional and pathway analysis together with identification of
upstream regulators was carried out in IPA based on SDE molecules.
The dynamic behaviour of gene regulation circuitry in response to
IFN-g stimulus was visualized as Circos plots.
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each functional category as referenced in Ingenuity�

Knowledge Base. The obtained P-value was further
adjusted using the Benjamini–Hochberg correction. We
focused our analysis on IPA categories with an adjusted
P� 0.01 (presented in at least one time point) directly
related to cellular functions and diseases, providing dy-
namical information about enriched biological functions.
Upstream regulator analysis. Based on previous knowledge
of expected effects between transcriptional regulators
(TRs) and their target genes stored in the Ingenuity�

Knowledge Base upstream regulator analysis was
performed. Two statistical measures, standard in IPA,
were used to detect potential TRs: an overlap P-value
and an activation Z-score. First, the analysis examined
how many known targets of each TR were present in
our data set, resulting in an estimation of an overlap P-
value. We set a threshold of an overlap P< 0.05 to identify
significant upstream regulators. Second, the known effect
(activation or suppression) of a TR on each target gene
was compared with observed changes in gene expression.
Based on concordance between them, an activation Z-
score was assigned, showing whether a potential TR was
in ‘activated’ (Z-score> 2), ‘inhibited’ (Z-score<�2) or
uncertain state.
Circos plots. We built Circos plots (34) to simultaneously
visualize activated/inhibited upstream TRs (mainly con-
sisting of TFs, Histone deacetylases (HDACs) and
nuclear receptors), miRNAs and selected biological func-
tions for each time point. Briefly, we first included known
activated/inhibited upstream TRs based on SDE genes for
each time point (‘inferred TFs’). Next, we selected
miRNAs targeting these inferred TFs from TarBase v.6
(http://www.microrna.gr/tarbase) (47). Then, we identified
other non-TR target genes of these miRNAs and created a
network representing inferred TRs, miRNAs targeting
these TRs and mRNAs, targeted either by TRs and/or
by selected miRNAs. Importantly, only mRNAs and
miRNAs, which showed significant differential expression
in at least one condition (compared with untreated
controls), were included in the network. Next, the
identified SDE mRNAs (that are targeted by TR and/or
miRNA) were subjected to IPA for functional annotation.
To increase readability of the final Circos plots, we
combined biologically related Ingenuity� functions into
12 functional categories. Finally, we visualized identified
networks and connections between molecules and func-
tional categories using Circos.
Identification of regulatory loops. To identify regulatory
loops involving TRs, miRNAs and their common
targets, we first targeted our approach to build networks
of previously inferred TRs and their corresponding SDE
mRNA targets for each time point. Secondly, SDE
miRNAs were overlaid onto the networks. Next, connec-
tions were associated with miRNAs that share the same
targets as TRs and which were at the same time targeted
by the TRs (a specific type of FFL in the form of ‘TF !

miRNA–targets’, edges from both regulators to target).
Finally, a subset of FFLs from the networks was extracted
based on biological significance. All the connections of
these FFLs were based on experimentally validated inter-
actions referenced in the Ingenuity� Knowledge Base, and

the mRNAs and miRNAs were selected based on their
connectivity and their significance of differential expres-
sion at each time point.

RESULTS

In the current study, we analysed and integrated matched
time-series miRNA and mRNA microarray data, which
were generated from melanoma cells after IFN-g stimula-
tion as outlined in Supplementary Figure S1. The previ-
ously described dynamic miRNA data sets (40) were
combined with newly generated and matched mRNA ex-
pression levels from the same samples for selected time
points. Optimal sampling time points had been determined
before by monitoring expression changes in response to
IFN-g stimulation of a small number of miRNAs and
genes [data not shown and (40)]. Given a fixed budget,
we mostly opted for microarray duplicates rather than trip-
licates and could therefore include more time points.
However, to increase sensitivity and to control for batch
effects, we performed an additional third replicate for 24,
48 and 72h. Two replicates of paired miRNA–mRNA
microarray expression data were obtained for the control;
for 3, 12, 24, 48 and 72h of IFN-g–treated samples; and for
the JII-pre-treated control (JII ctrl). We have shown before
that JII prevented the phosphorylation and thus activation
of STAT1 TF and its downstream actions, and therefore
served as an additional control (40).

Analysis pipeline for identification of differentially
expressed mRNAs and miRNAs

The outline of computational analysis steps as applied to
all data sets is depicted in Figure 1. A multi-step approach
was performed to identify SDE miRNAs and mRNAs
over time. First, we checked the quality of the time-series
mRNA data sets using Partek� Genomics Suite. No
outlier microarrays or batch effects were detected (data
not shown). If not stated otherwise, we included the
third mRNA replicates in the analysis. As illustrated by
the correlation study (Supplementary Figure S2), reprodu-
cibility for mRNA expression data was evaluated by
calculating coefficients of determination (r2) as previously
done for miRNA expression data (40). Average coefficient
of determination with 95% confidence was equal to
0.979±0.005 for both replicates and 0.903±0.004 for
non-replicates, showing the robustness of expression
data sets. After pre-processing and quality control, a fil-
tering step was included (as outlined in ‘Materials and
Methods’ section), which reduced the number of con-
sidered features for both data sets, and improved the
estimated FDR. In total, 16 193 mRNAs (out of 33 279)
and 160 miRNAs (out of 1100) passed the filtering and
were considered for further analysis. To identify the best
possible method for analysing these data sets, we first
compared three methods available as R/Bioconductor
packages: ‘limma’, ‘betr’ and ‘timecourse’. Empirical
Bayes methods and linear modelling (‘limma’) performed
better than other methods in terms of flexibility (as there is
no need to have equal numbers of experimental replicates)
and in terms of FDR on permutated and simulated data

4 Nucleic Acids Research, 2013
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(Supplementary Data). Therefore, differential expression
analysis was performed using the limma package. For
further analyses, a threshold FDR< 0.001 was applied,
resulting in 65 miRNAs and 6056 mRNAs SDE over all
time points. Using the same model and contrasts between
expression levels in IFN-g–treated samples versus un-
treated controls, we identified SDE mRNAs for each
time point separately.

Dynamic expression changes of miRNAs are delayed
relative to mRNA expression changes

To obtain a global view of the behaviour of filtered and
paired miRNA–mRNA expression data, principal compo-
nent analysis (PCA) was performed on each of the two
data sets. The first principal component of two independ-
ent PCAs was plotted (Figure 2A), showing transcriptome
evolution over time, with the horizontal axis representing
variability in miRNome and the vertical axis representing
variability in mRNAs. Remarkably, the principal compo-
nents of both mRNA and miRNA data showed strong
and reproducible time effects and accounted for 39% of
data variability for mRNA and 58% for miRNA. Owing
to the properties of the principal component, this repre-
sentation shows the main variability of mRNA and
miRNA expression levels of all samples. Early time
points (3 and 12 h) and both controls (untreated and JII
pre-treated) cluster together implying that the overall
changes of the transcriptome were comparable with the
average variability between replicates. The behaviour

suggests that miRNA expression changes after IFN-g
stimulation were delayed with respect to mRNA expres-
sion changes, which were observed already at earlier time
points. Interestingly, miRNA levels continued to change
until 72 h, whereas mRNA levels were not altered signifi-
cantly after 48 h. This suggests that mRNA expression
levels adapt faster to the cytokine stimulus, possibly to
initiate a rapid inflammatory response, which is then
followed by a second transcriptional wave where
miRNAs are involved in the regulatory cascade to fine-
tune and adjust the system responses in the form of
feedback regulators. Such miRNA-mediated feedback
and FFLs have been described as common network
motifs (48), and this observation was further supported
by our ‘limma’ differential expression analysis. Several
contrasts (two-class comparisons) were generated
through comparisons between IFN-g–treaded samples
and untreated controls. The resulting number of signifi-
cant mRNAs and miRNAs (FDR< 0.001) is shown in
Figure 2B, where biggest effects of cytokine stimulation
on the transcriptome were scored between 12 and 24 h for
mRNAs and between 48 and 72 h for miRNAs. At 24 h,
�45% of all significantly expressed mRNAs were
up-regulated, whereas expression changes of miRNAs
(>50%) occurred later (at 48 h).
Hierarchical clustering based on the expression profiles

of significantly regulated mRNAs and miRNAs is
shown in Figure 3. For better readability, we only show
the top 100 SDE mRNAs and all 65 SDE miRNAs.
Further analyses were performed using all significantly

Figure 2. Projection of dynamic changes of the transcriptome and the miRNome of melanoma cells after IFN-g stimulation. (A) PCA visualizes the
evolution of both data sets over time, with the vertical axis corresponding to the first principal component of mRNA data and the horizontal axis
showing the principal component of miRNA data. The percentage of variability in the data sets represented by each axis is shown. The dots represent
sample duplicates (complete arrays) for the indicated stimulation times. (B) The number of SDE mRNAs and miRNAs with FDR< 0.001 for each
condition compared with the untreated control is shown. The maximum gradient was observed between 12 h/ctrl and 24 h/ctrl for mRNAs and
between 24 h/ctrl and 48 h/ctrl for miRNAs.

Nucleic Acids Research, 2013 5
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Figure 3. Heat maps representing the time evolution of the top 100 mRNAs and all 65 differentially regulated miRNAs detected through multi-class
‘limma’ analysis (FDR< 0.001). Standardized expression values for each feature were reordered by hierarchical clustering, resulting in three
pronounced clusters depicted on the right of each heat map. Each cluster contains member gene or miRNA profiles (grey lines) and mean expression
values (dots). (A) The top 100 significantly expressed and annotated mRNAs fall into three main groups (cluster A, B, C). Names of TFs involved in
IFN-g signalling are marked in red. Clustering was supported by bootstrapping using the ‘clusterCons’ package of R. Altered cluster annotations
were only observed for two genes (A2M and APOBEC3G), which after bootstrapping were more likely to belong to cluster C rather than B. (B) The
majority of all SDE miRNAs belong to two clusters (a and c), with delayed up- or down-regulation after 24 h, respectively. Cluster b contains only
two miRNAs (miR-125b* and miR-21*).

6 Nucleic Acids Research, 2013
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regulated mRNAs (FDR< 0.001) (Supplementary Figure
S3). Based on this approach, we have identified three main
clusters for mRNAs (Figure 3A), supported by a boot-
strapping analysis using ‘clusterCons’ package of R (1000
iterations of hierarchical clustering with Euclidian
distance). Cluster A showed delayed mRNA up-regulated
expression reaching a plateau at 48 h, whereas cluster B
contained genes responding rapidly to IFN-g stimulation.
The average profile showed up-regulation after IFN-g
stimulation, followed by a decrease in expression down to
almost baseline levels after 72 h. This latter cluster included
well-known TFs involved in IFN-g–stimulated signalling:
STAT1 and IRF1 and also chemokines (CXCL10 and
CXCL11), which are typically up-regulated by IFN-g treat-
ment (49). Finally, cluster C included down-regulated
mRNAs (after 24 h) that remained at low expression
levels until 72 h. Figure 3B depicts miRNA expression
changes for the selected time points. We have previously
observed that miRNA expression patterns significantly
change only after 48 h (40), and were able to further
confirm these alterations using the herein described differ-
ent analysis pipeline. The JII control samples (72 h)
demonstrate that mRNA and miRNA regulations were
diminished by blocking the Jak/STAT signalling cascade,
indicating that the observed expression changes were
caused by IFN-g–activated downstream regulators. It is
known that IFN-g treatment activates a variety of target
genes and among those several TFs (49). Our data again
suggest that these activated TFs then start a second wave of
transcriptional activations, which seems to include many
miRNAs the expression levels of which subsequently
increase with a certain time delay.

Correlation and validation of dynamically regulated
mRNAs and miRNAs

Next, we identified positively and negatively correlated
miRNA–mRNA pairs using CoExpress, an in-house bio-
informatics tool (http://www.bioinformatics.lu/
CoExpress), which combines correlation analysis with
miRNA target gene predictions (see Supplementary Data
and Supplementary Table S3). A negative dynamic correl-
ation between a given miRNA and a predicted target
mRNA could be the first indicator of a potential direct
interaction. Supplementary Figure S4A summarizes
the number of co-expressed mRNAs for each of the
co-expressed miRNAs (jrj> 0.95). The first nine miRNAs
with most negatively correlated events (miR-31, -1308, -
424*, -29b-1*, -23a*, -92a-1*, -29a, -22, -27a*) belonging
to cluster a (Figure 3B) show a clear tendency to have more
negatively correlated expressions with mRNAs, whereas
miR-27b (cluster c) had the highest proportion of positively
correlated events. Interestingly, increasing the stringency of
the correlation threshold resulted in a higher proportion of
negatively correlated events (Supplementary Figure S4B).
Microarray-measured expression levels were validated by
qPCR for nine miRNA–mRNA pairs that were selected
based on correlation, confirming expression patterns
for all tested pairs (Supplementary Figure S5). We mainly
focussed on two miRNAs, miR-29b-1* and miR-424*,
that we have previously shown to be among the top

10 dynamically up-regulated miRNAs after IFN-g
treatment (40).
CoExpress was used to identify negatively correlated

and biologically interesting mRNAs that are known to
be involved in tumourigenesis of melanoma or other ma-
lignant tumours (50–53). TIAM1 (T-cell lymphoma
invasion and metastasis 1) and IGFBP5 (insulin-like
growth factor–binding protein 5) were dynamically anti-
correlated with miR-29b-1*. MMP1 (matrix metallo-
peptidase 1) and SOX5 [SRY (sex-determining region
Y)-box 5] showed inverse correlations over time with
miR-424*, while VCAN (versican) was negatively
correlated with both miRNAs. Expression levels of all
JII-pre-treated samples remained largely unchanged over
time for SOX5 and HDAC9, indicating that the observed
changes in the miRNA levels were likely caused by the
IFN-g–induced Jak/STAT signalling. In contrast, for
MMP1 and IGFBP5, mRNA levels in the JII-treated
control samples were also down-regulated, suggesting
additional IFN-g–independent effects. Taken together,
quality measures as well as validation of microarray
results confirmed high quality and reproducibility of
both data sets. In the following steps, we combined and
analysed these time-series–derived data sets representing
dynamic expression changes of the melanoma miRNome
and transcriptome to identify interactions that only
become visible over time.

Functional annotation of dynamically regulated
mRNAs and miRNAs

To better understand which and how biological functions
are affected by differentially regulated mRNAs and
miRNAs over time, we performed functional annotations
in Ingenuity� Systems (IPA) based on SDE mRNAs and
miRNAs (each condition was compared with untreated
controls). All 62 significant functional categories
reported by IPA (adjusted P< 0.01) are presented in
Figure 4. To show the time evolution among the
categories, the smallest adjusted P-values of member func-
tions were taken for each category and each time point.
Colouring was performed based on scaled log10-trans-
formed adjusted P-values, with white colour correspond-
ing to adjusted P� 0.01 and dark grey corresponding to
the smallest adjusted P-value for a given category among
all time points. Visualization of the resulting dynamics
allowed for comparison of functional enrichment
between the five time points. We found five groups with
temporal differences in enriched functional responses to
IFN-g treatment. The first group included very early
cellular reactions to IFN-g, with enrichment of functions
mainly observed between 3 and 12 h. In the second and
largest group, functional enrichments peaked around 12 h
after treatment and included several categories of immune
and inflammatory responses. A third group showed
smallest P-values for functions at intermediate time
points 24 h after IFN-g treatment, while only four
categories, including ‘cancer’ and ‘post-translational
modifications’, had enrichment peaks at 48 h. We have
previously observed that most miRNAs are being differ-
entially expressed at this time point (40), suggesting a
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4.3e-04 1.2e-03 3.1e-03 n/s 1.9e-03 2.2e-02

6.1e-04 3.1e-03 2.5e-03 n/s 1.5e-03 4.3e-02

3.8e-05 3.8e-04 1.0e-02 n/s n/s n/s

1.3e-03 6.5e-03 1.8e-02 n/s 3.5e-02 3.2e-02

3.8e-03 1.9e-02 n/s n/s n/s 4.3e-02

7.7e-04 6.5e-03 3.1e-02 n/s 3.5e-02 3.2e-02

1.3e-03 6.5e-03 3.1e-02 3.9e-02 2.3e-02 4.3e-02

7.7e-04 5.6e-03 3.1e-02 8.4e-03 1.5e-03 1.5e-02

5.2e-04 5.4e-04 1.2e-02 n/s 4.1e-03 2.6e-02

1.6e-03 1.5e-03 4.0e-03 n/s n/s 4.3e-02

2.6e-02 1.3e-13 2.3e-04 1.5e-02 1.3e-03 5.1e-03

n/s 1.3e-13 2.7e-04 1.2e-02 1.7e-03 5.1e-03

1.8e-02 2.3e-06 2.1e-04 4.8e-05 1.6e-05 4.8e-03

9.2e-06 7.4e-13 8.8e-05 2.1e-02 1.2e-03 4.3e-02

1.8e-02 1.2e-04 3.1e-02 n/s n/s 4.3e-02

1.8e-02 5.6e-04 2.0e-02 n/s 2.3e-02 n/s

9.5e-05 5.2e-10 1.4e-07 2.1e-02 1.3e-02 5.1e-03

2.0e-06 3.9e-14 3.3e-11 7.9e-03 1.5e-02 3.7e-03

9.5e-05 3.2e-10 1.4e-07 7.1e-04 1.3e-02 5.1e-03

9.5e-05 5.2e-10 1.4e-07 4.8e-05 9.8e-04 5.1e-03

8.7e-06 1.5e-18 3.4e-06 8.3e-03 2.1e-02 5.0e-03

1.8e-03 4.8e-09 3.2e-05 n/s n/s 2.6e-02

4.3e-04 1.3e-05 6.1e-04 n/s 1.5e-03 1.6e-02

6.1e-04 1.3e-05 6.1e-04 n/s n/s 1.6e-02

3.8e-05 1.4e-06 6.4e-06 2.6e-04 1.1e-04 9.1e-03

1.9e-03 1.7e-04 5.4e-04 n/s n/s 2.4e-02

4.5e-03 1.5e-03 8.7e-03 1.6e-02 2.0e-02 1.8e-02

6.1e-04 1.3e-05 1.6e-02 n/s n/s 4.3e-02

1.8e-02 3.1e-03 n/s n/s 3.7e-02 4.3e-02

8.5e-03 2.0e-04 n/s n/s n/s n/s

1.0e-02 6.5e-03 3.1e-02 4.7e-02 n/s 2.6e-02

4.5e-03 1.5e-03 2.3e-02 n/s n/s n/s

1.8e-02 1.3e-02 1.3e-05 7.1e-04 3.5e-02 3.9e-02

1.8e-02 1.3e-03 1.3e-05 7.1e-04 2.1e-02 4.3e-02

1.8e-02 4.0e-04 5.6e-07 3.5e-05 1.4e-04 4.3e-02

1.8e-02 4.0e-04 5.6e-07 3.5e-05 1.4e-04 4.3e-02

2.7e-03 1.5e-02 5.6e-07 3.5e-05 2.4e-04 4.3e-02

7.7e-04 6.3e-05 5.6e-07 3.5e-05 2.4e-04 1.5e-02

1.5e-03 1.6e-05 5.6e-07 3.5e-05 2.4e-04 1.8e-02

1.3e-03 1.2e-03 1.3e-06 3.1e-04 2.4e-05 1.5e-02

6.8e-03 6.5e-03 3.0e-04 4.7e-02 n/s 1.8e-02

1.8e-02 4.4e-02 8.7e-03 1.6e-02 2.0e-02 1.8e-02

n/s n/s 4.0e-03 n/s n/s n/s

1.8e-02 4.4e-02 3.7e-03 2.1e-02 n/s 3.5e-02

4.3e-04 3.0e-04 2.3e-05 7.6e-04 6.8e-04 1.5e-02

4.3e-04 3.0e-04 1.8e-04 2.5e-03 8.2e-04 8.0e-03

6.1e-04 3.1e-03 3.0e-04 4.6e-03 2.3e-03 2.6e-02

1.3e-03 4.3e-03 1.2e-03 3.9e-02 2.3e-02 2.6e-02

n/s 2.2e-02 1.3e-02 5.2e-03 1.1e-02 n/s

n/s 9.7e-03 1.3e-02 5.2e-03 1.1e-02 n/s

4.3e-04 3.7e-05 8.1e-13 1.3e-14 2.9e-14 3.7e-03

1.8e-02 1.3e-03 1.5e-02 1.2e-04 2.7e-03 1.5e-02

4.8e-04 1.3e-05 7.2e-06 1.1e-07 9.3e-08 3.7e-03

1.8e-03 1.3e-13 2.0e-08 1.1e-11 3.1e-14 5.1e-03

6.7e-03 1.4e-03 1.1e-05 4.4e-06 1.6e-08 2.6e-02

n/s 4.4e-02 1.2e-02 3.8e-03 1.6e-04 4.3e-02

1.8e-02 2.4e-02 2.2e-03 2.4e-02 2.0e-03 n/s

1.8e-02 1.5e-02 2.2e-03 1.6e-02 2.0e-03 1.8e-02

1.8e-02 1.9e-02 1.0e-03 5.3e-03 6.7e-04 1.5e-02

6.8e-04 7.1e-04 6.2e-07 4.1e-05 1.4e-07 1.5e-02

2.6e-02 1.0e-02 3.7e-03 8.1e-03 1.7e-03 4.3e-02

n/s n/s 4.0e-02 n/s 2.0e-02 6.4e-03 Renal and Urological Disease
Cell Cycle
Cardiovascular System Development and Function
Cardiovascular Disease
Small Molecule Biochemistry
Lipid Metabolism
Psychological Disorders
Reproductive System Disease
Gastrointestinal Disease
Cellular Movement
Hereditary Disorder
Cancer
Protein Synthesis
Post-Translational Modification
Embryonic Development
Cell Morphology
Cellular Development
Cellular Growth and Proliferation
Reproductive System Development and Function
Nutritional Disease
Amino Acid Metabolism
Renal and Urological System Development and Function
Organismal Development
Cell-To-Cell Signaling and Interaction
Tissue Development
Nervous System Development and Function
Cellular Function and Maintenance
Cellular Assembly and Organization
Organismal Injury and Abnormalities
Hepatic System Disease
Vitamin and Mineral Metabolism
Hair and Skin Development and Function
Antimicrobial Response
Cellular Compromise
Cell-mediated Immune Response
Molecular Transport
Inflammatory Response
Cell Death and Survival
Immune Cell Trafficking
Hematological System Development and Function
Ophthalmic Disease
Immunological Disease
Skeletal and Muscular Disorders
Inflammatory Disease
Dermatological Diseases and Conditions
Connective Tissue Disorders
Tumor Morphology
Tissue Morphology
Infectious Disease
Neurological Disease
Metabolic Disease
Endocrine System Disorders
Cell Signaling
Gene Expression
Skeletal and Muscular System Development and Function
Organ Development
Connective Tissue Development and Function
Lymphoid Tissue Structure and Development
Respiratory Disease
Organismal Survival
Hematopoiesis
Hematological Disease

Figure 4. Dynamic changes in inferred functional categories based on SDE mRNAs and miRNAs. The minimum adjusted P-values for member
functions were combined to illustrate dynamic changes in all enriched functional categories obtained from IPA analysis (‘n/s;: P> 0.05). The intensity
of grey boxes represents scaled adjusted P-values (log-transformed) for each category: white—non-significant (>0.01), dark grey—smallest adjusted
P-value for each category among the time points.
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second wave of transcriptional changes, including the
up-regulation of miRNAs after IFN-g treatment.
Finally, several categories such as ‘cellular movement’
and ‘cell cycle’ were only enriched very late after
cytokine stimulation. Taken together, functional annota-
tions of dynamic miRNA and mRNA expression changes
after IFN-g treatment showed that some categories were
predominantly enriched at only one specific time point,
emphasizing once more the importance of analysing
time-series–derived data.

Dynamic features of the interferon pathway

To dissect the temporal behaviour of key players involved
in interferon signalling in more detail, we analysed our
data using the Ingenuity� Systems (IPA) program. As
expected after stimulation with IFN-g, the interferon
signalling pathway was found to be highly significant,

especially at early time points (P-values for 3 h/ctrl and
12 h/ctrl were 4.8� 10�13 and 2.0� 10�13, respectively).
Figure 5 illustrates the IFN-g sub-network as provided
by the IPA Knowledge Base to which we connected ex-
pressed miRNAs that have been described to target the
pathway-associated mRNAs (TarBase v.5 and TargetScan
with total context score<�0.4) and were SDE in at least
one time point. Most of the genes (65%) involved in the
Jak/STAT signalling pathway were differentially ex-
pressed in at least one time point, which is depicted by
small adjacent bar charts showing the experimentally
measured expression levels over five time points (expres-
sion levels of the JII-treated control samples are shown on
the far right side).
Although STAT1 needs to be phosphorylated to become

activated, the gene itself is known to be up-regulated by
IFN-g stimulation (54), which was also confirmed here.

Figure 5. Representation of the top canonical pathway ‘interferon signalling’ detected when simultaneously analysing the mRNA and miRNA data
sets with IPA. Parts related to IFN-a/b were removed, and SDE miRNAs targeting the detected genes of the pathway were added. Connections
between miRNAs and their targets were established by IPA. Genes that were differentially expressed in at least one condition are marked with filled
grey symbols. Expression changes at 3, 12, 24, 48 and 72 h with respect to untreated controls are shown as bar charts close to each molecule. For
non-significant conditions, a line is shown instead of a bar. The last bar on the far right always corresponds to JII-treated control (72 h). Connections
between main players of the signalling pathway are depicted as lines: relationships between miRNAs and target mRNAs are shown as thin lines,
whereas relationships between TFs and target mRNAs are presented by thicker lines either indicating activation or repression.
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Three downstream targets of STAT1 (ARF1: ADP
ribosylation factor 1, IRF9: interferon regulatory factor 9
and TAP1: antigen peptide transporter 1) show an imme-
diate up-regulation after 3 h of interferon treatment,
whereas most targets reached peak expression levels at
24 h (IRF1: interferon regulatory factor 1, IRF9, TAP1,
IFITM1: interferon-inducible transmembrane protein 1,
IFI35: interferon-induced 35-kD protein and PSMB8: pro-
teasome b subtype 8). Consequently, the transcriptional
targets of IRF1 (BCL-2 and BAX) became up-regulated
in a second cascade, showing increased expression
levels only at later time points. In line with previous obser-
vations [reviewed in (49)], at 12 h, we observed a moderate
up-regulation of the suppressor of cytokine signalling
(SOCS1), a negative feedback regulator, which reduces
the activation of the Jak/STAT pathway. The temporal
expression profiles of miRNAs connected to this pathway
reveal inverse correlations with expression levels of their
possible target genes. For example, miR-301a-3p was
down-regulated at late time points, with its target gene
IRF1 showing increased levels; miRNAs known to target
BCL-2 were all down-regulated over time, whereas BCL-2
was up-regulated at 72 h. BAK, a target gene of IRF1
TF was not differentially regulated over time (white
symbol) and miRNAs targeting this mRNA were either
up-regulated (miR-29b-3p) or down-regulated (miR-27b-
3p and miR-125b-5p). Interestingly, several mRNAs in
the network showed similar expression profiles at 72 h in
the IFN-g–treated cells and in the JII-pre-treated cells
(STAT1, IRF9, IFI35 and IFITM1), suggesting that
feedback inhibitory processes were progressively developed
in IFN-g–treated cells recapitulating the phenotype
observed in cells inhibited with JII. To summarize,
visualizing dynamic expression data provides additional
information about the interplay between miRNAs and
mRNAs within the well-known IFN-g signalling cascade.

Integration of mRNA, upstream regulators and
miRNA data

Although initially designed and used for displaying com-
parative genomic data (34), Circos plots have also been
adapted to analyse mutations in cancer (55,56), meta-
genomic data (57) and dynamics of TF regulatory
networks (58). Here, we have applied Circos plots to inte-
grate data sets from three different sources, and to
our knowledge, this is the first time that data from
miRNome and transcriptome were simultaneously
combined with annotated functions (Figure 6). We chose
to work with biological functions because it provides more
robust results than working with individual genes. To
decrease complexity of the graphs and to allow for
better readability, we only show those TRs, miRNAs
and inferred functions that were selected through the
pipeline described in ‘Materials and Methods’ section.
Based on this integrative approach, we observed that
miRNAs only become connected to TRs and biological
functions at very late time points (48 and 72 h), indicating
that they are activated by TRs downstream of the
activated Jak/STAT signalling cascade. Similar to what
was seen in Figure 5, Circos plots representing 3 h of

IFN-g treatment and 72 h of JII-control treatments
could almost be superimposed, suggesting that new con-
nections scored at later time points were indeed brought
about by Jak/STAT signalling. Although STAT1 was
activated (by phosphorylation) after 15min of IFN-g
treatment (40), it only became connected to annotated
functions at the 12-h time point, while no direct inter-
actions between STAT1 and selected miRNAs were
detected at any time point. Furthermore, after 12 h of
IFN-g signalling, other TRs such as IRF1, nuclear
factor of kappa light polypeptide gene enhancer in B-
cells (NFkB) and Enhancer of zeste homolog 2
(Drosophila) (EZH2) were predicted to be active based
on expression changes of their regulated genes. IRF1, a
TF activated by STAT1, was actively ‘communicating’
throughout the experiment and could be involved in the
downstream and delayed activation of several depicted
miRNAs. At 48 and 72 h, we detected six connections
between miRNAs and TRs. Additionally, the overall
number of interactions between all players and inferred
functions dramatically increased at these late time
points. Again, this was not seen in the JII-treated
negative control samples, implying that the established
connections cannot be attributed to noise or mere
‘ageing’ of cells in culture. Of note, miR-93-5p, one of
three miRNAs depicted in the Circos plots, was not
present in the heat map (Figure 3B), as the hierarchical
clustering was generated based on multi-class ‘limma’
analysis and the adjusted P-value for miR-93-5p was
just above the selected threshold (with FDR=0.0013).
To generate Circos plots, we used contrasts between the
72-h time point and untreated samples in which
miR-93-5p was detected as SDE, with an adjusted P-
value of 0.0004 by two-class ‘limma’ analysis.

Common transcriptional regulatory network motifs
consisting of FFLs typically involve TFs, miRNAs and
joint targets. Surveying possible instances of miRNA–
mRNA–TF loops in our integrated time-lagged data sets
allowed for identification of several FFLs that only
became fully active at specific time points (Figure 7).
Five temporally interconnected FFLs appeared to be of
special interest because they could control the expression
of genes involved in biological functions that are relevant
to our model (cell adhesion, apoptosis and/or immune
response or cell cycle). At 24 h, expression of ICAM-1
(intercellular adhesion molecule-1) gene appeared to
be fine-tuned by a complex interplay between miR-21
and RelA itself under the control of miR-193b.
Simultaneously, the expression of the BCL-2 protein
family member MCL1 (myeloid cell leukemia sequence
1) gene was controlled by miR-29 and two TFs, the
RelA/NF-kB complex and TP53. At 48 h, although the
RelA/NF-kB TF complex was no longer active, TP53
still seemed to be involved in the miR-29–MCL1 loop,
but also controlled the expression of let-7a-5p miRNA
and BCL2L1 (BCL-2 like-1) gene, another member of
the BCL-2 protein family. Finally, at 72 h, an FFL
involving let-7a-5p miRNA and KDM5B [lysine
(K)-specific demethylase 5B] TR appeared to modulate
the expression of CCND1 (cyclin D1) gene. No active
FFL were detected at 3, 12 and 72 h or in control
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Figure 6. Circos diagrams showing dynamical dependency of the transcriptome, represented in the form of top biological categories (purple) and of
inferred upstream regulators: transcription regulators (TRs: brown) and miRNAs (blue). Time points for 3, 12, 24, 48 and 72 h and for the 72-h
JII-treated control were compared with the untreated control, and the SDE molecules were analysed by ‘limma’, with contrasts (FDR< 0.001) as
described in ‘Materials and Methods’ section. The width of the categories is related to the number of member mRNAs. A connection between a TR
and a functional category means that this TF was detected as an activated or inhibited TR by upstream regulator analysis, and that its target genes
grouping in the respective functional category were differentially expressed in at least one time point. A connection between a miRNA and a TR
implies that this miRNA was SDE and was predicted to target the TR genes. Finally, a connection between a miRNA and a functional category
indicates that one or several of its target genes of a differentially expressed miRNA belonged to the assigned category. The thickness of connecting
lines illustrates higher number of targets of TRs or miRNAs within this functional category.

Nucleic Acids Research, 2013 11

 at C
entre de D

ocum
enation pÃ

©
dagogique U

niversitÃ
©

 du L
uxem

bourg-C
am

pus W
alfer on January 17, 2013

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://nar.oxfordjournals.org/


samples treated with JII. Our data suggest that response to
IFN-g in our cell model involves a discrete set of TRs that
act sequentially and/or synergistically on cell stimulation.
Taken together, the integrative analysis of data sets rep-

resenting high-resolution time-series–derived mRNA and
miRNA microarray data allowed us to detect dynamic
interactions that would have been missed if only single
time points were considered. Our biostatistical and bio-
informatics analysis pipeline identified a very interesting
time delay of the miRNome with respect to the transcrip-
tome, and we speculate that most miRNAs become
up-regulated only after the first round of transcriptional
activation is completed. Furthermore, the incorporation
of inferred biological functions added another level of
complexity to this study, allowing for visualization of
dynamic changes in functional systems.

DISCUSSION

Owing to their ability to post-transcriptionally regulate
gene expression of almost all genes, miRNAs are known
to influence many cellular activities in healthy and
diseased states. Because they are involved in key cellular
processes, it remains essential to decipher more miRNA
target genes and to examine how miRNAs are regulated,
their temporal dynamic behaviour and their involvement
in defined cellular functions.
The current study was motivated by the question of how

the functional interplay between mRNAs and miRNAs is
regulated and changing dynamically. To explore the
global temporal response to IFN-g treatment, we
examined the expression levels of miRNAs and mRNAs
in a time-series experiment using A375 melanoma cells.
Time-series analysis, as opposed to comparison of
multiple steady states, gives important insights into the
causality of the observed interactions: while normally
only connections between molecules are described,
time-series data allow for addressing the direction of the
interaction and its rate, and thus provide a better under-
standing of cell dynamics (30,59). In a previous study (40),

we performed a detailed investigation of the dynamic be-
haviour of miRNAs over a wide time range after cytokine
stimulation with IFN-g, which activates the TF STAT1. A
surprising finding of this former study was that all
miRNA expression changes occurred with a delay only
after 24 h. To find an explanation for this result and to
identify dynamic regulatory networks, we performed a
series of mRNA microarrays using the same RNA
extracts. In addition to the identification of significantly
regulated miRNAs and mRNAs over time, this approach
allows for building and testing contrasts using the same
linear model (45). Based on our benchmarking results of
three methods (‘betr’, ‘timecourse’ and ‘limma’), ‘limma’
proved to be superior in terms of FDR for permutated
data sets and synthetic data. Using the ‘limma’ tool, we
confirmed the previously reported 23 differentially
regulated miRNAs (40), and further refined this data by
detecting an additional 42 miRNAs with an FDR< 0.001
(Figure 3B).

Numbers of SDE genes and miRNAs (Figure 2B) and
the heat maps (Figure 3) clearly revealed a delayed
response of the miRNome to IFN-g stimulation with
respect to the transcriptome. Interestingly, Pedersen
et al. (60) have described two miRNAs that were
modulated already after 30min after IFN-b stimulation
of hepatocyte cells. Also, Kutty et al. (61) observed early
regulation of miR-155 after exposure to a tumour necrosis
factor-a, interleukin-1b and IFN-g cytokine mixture.
Here, we did not identify statistically significantly
regulated mature miRNAs reacting that quickly to
IFN-g in melanoma cells. In this context, we have
recently confirmed that primary miRNA transcripts
(pri-miRNAs) and precursor form (pre-miRNAs) (of the
miR-29 family) are up-regulated well before the corres-
ponding mature miRNAs after IFN-g stimulation of
melanoma cells (62). The combined analysis of miRNA
and mRNA data sets suggests that the IFN-g–initiated
Jak/STAT signalling cascade transcriptionally activates
other downstream TFs as well as other effector genes,
which may in turn participate in up-regulation of

24 h
48 h

72 h

TP53 KDM5BRelA/NF-κB

let-7amir-29

MCL1 BCL2L1

CCND1mir-21

ICAM-1

miR-193b

with TF's activation state

with RNA expression

Connections are concordant:

not detected

Figure 7. Graphical representation of regulatory sub-networks (extracted from IPA) includes three activated TRs (dark grey boxes), four genes
(rounded boxes) and four miRNAs (ellipses). Activation time for each part of the sub-network is shown by arrows on top. ‘mir’ represents the
immature form of miRNAs, whereas ‘miR’ denotes the mature form. Connections between molecules are presented with respect to experimental
observations and IPA predictions. Black: molecules have correlated (anti-correlated in case of inhibition) expression profiles. Dotted arrows: mRNA
profile of a target molecule is in concordance with the predicted activation state of the TF. Grey arrows: direct interaction was not observed,
suggesting presence of cumulative effect of other regulators.

12 Nucleic Acids Research, 2013

 at C
entre de D

ocum
enation pÃ

©
dagogique U

niversitÃ
©

 du L
uxem

bourg-C
am

pus W
alfer on January 17, 2013

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://nar.oxfordjournals.org/


expression levels of a number of responding miRNAs in
melanoma cells.

On comparison of both data sets, we observed only
three negatively regulated mRNAs at 3 h, while 117,
including STAT1-3, IRF1-6, IFI16 and other IFN-�-
related genes, were up-regulated. From 24 h onwards,
more down-regulated mRNAs were scored, which chrono-
logically was in good concordance with the elevated
miRNA levels, indicating that there might be an inverse
correlation for some of these miRNA–mRNA pairs. Three
main dynamic profiles were detected among the top 100
mRNAs (Figure 3A): late expression, early expression
followed by repression and late repression. These profiles
were also seen when analysing the expression profiles of
all significant mRNA (Supplementary Figure S3). The
65 SDE miRNAs, in contrast, presented only two major
dynamic profiles (Figure 3B): delayed up-regulation and
delayed down-regulation similar to our previous results,
which included a more detailed analysis of temporal
miRNA profiles (40).

It is well accepted that identification of target mRNAs
regulated by miRNAs is required to elucidate the exact
role of individual miRNAs or groups of related
miRNAs in a given cell. Several algorithms have been
established for in silico predictions of target mRNAs [see
review (25)]. However and as mentioned before, there is no
efficient algorithm that reliably predicts all targets with a
minimal number of false positives. A straight-forward
approach to improve target gene predictions could be
global correlation analyses of miRNAs and experimen-
tally matched mRNA expression patterns in combination
with standard target gene prediction algorithms at least
for those interacting pairs where miRNAs cause a
measureable decrease in mRNA levels. For this, we used
the in-house–developed tool CoExpress to build a
miRNA–mRNA correlation map, to compare negatively
correlated miRNA–mRNA pairs with TargetScan predic-
tions and to experimentally confirm interactions extracted
from TarBase. Using this approach, we detected 398
negatively correlated predicted targets for 21 miRNAs
(Supplementary Table S3 based on TargetScan), and we
were able to validate 14 selected miRNA–mRNA pairs by
qPCR (Supplementary Figure S5).

Overall, integrating time-series miRNA and mRNA
data sets provides valuable information not only for iden-
tification of possible miRNA target genes but also for the
elucidation of dynamic changes of the underlying biolo-
gical processes. Using Circos plots, we visualized specific
interactions between upstream TRs, miRNAs and also
mRNAs that were categorized in a set of biological func-
tions (Figure 6). Circos facilitates the integration of
different data sets, thus providing a more holistic view
of the evolving processes. Ebert and Sharp have recently
summarized evidence that suggests miRNAs to actively
confer robustness to biological processes by dampening
and/or increasing cellular responses to internal or
external stimuli (24). This random noise in transcription
rates, and as such in expression levels of genes and
proteins, may in part be kept within certain boundaries
by the action of miRNAs. Our data on temporal expres-
sion changes within the miRNome and transcriptome as

well as on TRs support this notion: in response to an
external stimulus (IFN-g), many TRs and other mRNAs
react rapidly with measurable expression level changes,
whereas miRNAs react with a considerable time delay.
This tentative ‘second wave’ of responses then brings
up-regulated miRNAs into play, which mostly down-
regulate their respective target genes, and thus control
and reduce inordinate cellular reactions.
Several interactions in the form of negative or positive

FFLs have already been established between TFs and
miRNAs (7,19,63). Very recently, Gerstein and collabor-
ators described a comprehensive architecture of the
human transcriptional regulatory meta-network derived
from integrating data from the Encyclopedia of DNA
Elements project with genomic and protein information
(64). The authors found that this meta-network exhibited
a high enrichment in FFLs, showing the importance of
this motif in transcriptional regulatory process. Looking
for specific FFLs, which include TFs regulating the ex-
pression of both a miRNA and its target mRNA at the
same time (FFL type: ‘miR ! TF–targets’, with edge
from both regulators to target), we found several regula-
tory relationships that could be of interest in our biolo-
gical system. By combining time-series stimulation of gene
expression by TFs with delayed transcriptional repression
by miRNAs, FFL motifs may create a toggle-switch mech-
anism by which the cell could timely coordinate responses
to IFN-g stimulation. Chalancon et al. (20) recently stated
that to gain a better understanding of gene regulatory
events in response to environmental changes, it is neces-
sary to measure expression changes at highest possible
resolution and under many different conditions over
wider time ranges. Although our study describes a rela-
tively small number of matched data sets, it represents the
first attempt to move to more quantitative time-resolved
data and could be considered as a proof of principle for
more extensive studies in future incorporating more con-
ditions, time points and cell systems; the herein established
computational analysis pipeline can easily be adapted
to additional data sources or requirements. Knowledge
from integrated data on individual miRNAs, families of
miRNAs and eventually on the entire miRNome together
with dynamic and matched transcriptome data will con-
tribute to a more comprehensive view of biological
systems, their regulation and their behaviour over time.
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‘Aides à la Formation-Recherche’ [4019604 to S.E.R.]
from the Fond National de la Recherche (FNR),
Luxembourg. Funding for open access charge:
University of Luxembourg and CRP-Santé Luxembourg.
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