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We implemented a method for the treatment of field induced transitions in trajectory surface

hopping simulations, in the framework of the local diabatization scheme, especially suited for

on-the-fly dynamics. The method is applied to a simple one-dimensional model with an avoided

crossing and compared with quantum wavepacket dynamics. The results show the importance of

introducing a proper decoherence correction to surface hopping, in order to obtain meaningful

results. Also the energy conservation policy of standard surface hopping must be revised: in fact,

the quantum wavepacket energetics is well reproduced if energy absorption/emission is allowed

for in the hops determined by radiation-molecule coupling. To our knowledge, this is the first time

the issues of decoherence and energy conservation have been analyzed in depth to devise a mixed

quantum-classical method for dynamics with molecule-field interactions. © 2014 AIP Publishing

LLC. [http://dx.doi.org/10.1063/1.4862738]

I. INTRODUCTION

Mixed quantum-classical methods, employing classical

nuclear trajectories propagated “on the fly,” are nowadays

routinely used for the theoretical study of the excited state dy-

namics of molecular systems. In most cases the light-induced

excitation process does not need to be explicitly considered,

and can be replaced by a sensible choice of starting condi-

tions. However, sometimes the explicit inclusion of the in-

teraction with radiation is needed or desirable: for example,

in the simulation of quantum control or multiphoton pro-

cesses. Several research groups have proposed different ap-

proaches to this problem, based on quantum-classical Liou-

ville dynamics,1, 2 mean field,3–5 or surface hopping (SH).6–19

In this contribution, we focus on the SH method, which is

probably the most popular. SH was initially conceived for the

description of nonradiative electronic transitions in molecu-

lar dynamics, and since then has benefited from 40 years of

development.20–26 On the other hand, the explicit treatment

of radiative (field induced) processes in SH is a relatively

recent improvement, and several important issues need fur-

ther consideration, especially when radiative and nonradiative

transitions are taken into account concurrently.

Within the SH framework, we cite the approaches FISH

(field induced surface hopping)7, 16–19 and SHARC (SH in

adiabatic representation including arbitrary couplings):12–15

beside being able to account for radiative and nonradia-

tive transitions, both methods may also include spin-orbit

couplings.

SH is a stochastic method in which a swarm of indepen-

dent trajectories are run on the electronic potential energy

surfaces (PESs) to simulate the dynamics of a molecular sys-

tem. Nonadiabatic events are represented as “hops” between

a)Electronic mail: giovanni.granucci@unipi.it

different PESs. In standard calculations, not taking into

account the coupling with radiation, the conservation of the

total energy of the system is enforced for each trajectory, even

when a hop occurs. While this is far from being mandatory,

it is however a simple way to achieve the basic requirement,

namely, conservation of the average energy for the full swarm,

still preserving the independency of the single trajectory.

From this point of view, the case in which the interaction with

the radiation field is explicitly included is more complicated,

as both energy nonconserving (field-induced) and energy

conserving (nonradiative) transitions are taken into account.

The approach used by Richter et al.12 in this context was to

enforce energy conservation after a hop only if the potential

energy difference of the states involved lies outside the

laser bandwidth: they were able to obtain a good agreement

with full quantum results for the momentum probability

distribution in the simulation of IBr photodissociation.

A known issue in SH is the lack of quantum decoherence,

which originates from the fact that, for a given trajectory, the

probability amplitudes for all the electronic states refer to the

same nuclear phase space point and are fully coupled. The

methods used to amend this problem are usually based on en-

ergetic criteria, enforcing decoherence by collapse of the elec-

tronic wavefunction on the “current” state (the one on which

PES the trajectory is running), when the electronic energy dif-

ferences are large.27–29 Other recipes require the conservation

of the total energy along a trajectory, and therefore cannot

be applied without modifications in the present context.30–32

In general, consideration of decoherence in SH appears to be

very important when field-induced transitions are involved:

in fact, the nonadiabatic events following the initial excita-

tion are poorly described if one does not take into account

that the ground state wavepacket usually propagates very dif-

ferently from the excited states ones. An important excep-

tion may be offered by simulations aimed at reproducing the
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control of molecular processes by shaped laser fields, as in

that case one is usually interested in maximizing the popula-

tion of a given excited state, while the ground state population

can be disregarded in the subsequent nonadiabatic dynamics.

Nevertheless, as recognized by Tavernelli and co-workers10 in

performing local control theory calculations on LiF, even in

that case decoherence effects may have some minor impact.

In the present contribution, we introduce the inter-

action with the radiation field in the framework of our

local diabatization (LD) on-the-fly scheme for SH.33, 34 The

method is applied to a one-dimensional model system, which

allows to address the problems outlined above of energy

(non)conservation and lack of quantum decoherence, and to

compare the SH results with quantum dynamics calculations.

II. METHOD

In this section, we briefly recall Tully’s “fewest switches”

version of the SH method21 and the LD algorithm,33 focusing

on the modifications we have introduced to account for the

interaction with an external electric field.

Let Ĥel be the electronic Hamiltonian of the molecu-

lar system considered, in the absence of the field, and ϕK

(K = 1. . . N) a set of N (approximate) eigenstates of Ĥel , with

eigenvalues UK, spanning the electronic subspace S(t) of in-

terest. Note that Ĥel may include the spin-orbit interaction as

well.35 The total Hamiltonian is then Ĥ = Ĥel + Ĥext , where

Ĥext = − �E(t) · �μ (1)

describes the interaction with the external electric field �E(t),

�μ being the molecular dipole operator. In the SH scheme, the

nuclear motion is subject to the classical Newton equations. In

particular, a given nuclear trajectory Q(t) is evolved on a sin-

gle adiabatic PES UK(Q), but it may hop to another surface

at any time. The electronic motion is described by a wave-

function expanded in terms of the adiabatic basis considered

�(t) =

N
∑

K

AK (t)ϕK (Q(t)). (2)

The complex coefficients AK(t) are obtained inserting �(t)

in the time dependent Schrödinger equation (TDSE) for the

electrons only21

ȦK = −
i

¯
AKUK −

∑

L

AL

(

GKL +
i

¯
H ext

KL

)

, (3)

where GKL and H ext
KL are

GKL =

〈

ϕK

∣

∣

∣

∣

∂ϕL

∂t

〉

, H ext
KL = − �E(t) · 〈ϕK | �μ|ϕL〉. (4)

In the LD scheme, the integration of Eq. (3) is performed in an

alternative “locally diabatic” N-dimensional electronic basis

|η〉, spanning the same subspace S as |ϕ〉, and defined so as

to be approximately constant in the integration time step �t

(hereafter we set t = 0 at the beginning of the time step for

simplicity):

|η(0)〉 = |ϕ(0)〉 , (5)

|η(�t)〉 ≡ |η(0)〉 = |ϕ(�t)〉 T+(�t), (6)

where the unitary matrix T(�t) is obtained by Löwdin

orthonormalization of the overlap S = 〈ϕ(0)|ϕ(�t)〉. At the

beginning of the time step we have, by definition, T(0) = 1.

In the LD basis, the integration of the electronic TDSE is

particularly easy. In fact, the dynamic couplings 〈ηI |∂ηL/∂t〉
vanish by construction, while the analogous couplings GKL in

the adiabatic basis give rise to numerical problems in regions

close to PES crossings. In particular, by expanding �(t) in the

locally diabatic basis

�(t) =

N
∑

K

DK (t)ηK , (7)

we get

Ḋ = −
i

¯
HD, H = H0 − �E · �M, (8)

where the matrices H0 and �M are defined at the beginning and

at the end of the integration time step

H0(0) = U(0) �M(0) = 〈ϕ(0) | �μ| ϕ(0)〉 , (9)

H0(�t) = T(�t)U(�t)T+(�t), (10)

�M(�t) = T(�t) 〈ϕ(�t) | �μ| ϕ(�t)〉 T+(�t). (11)

In the above equations U is the diagonal matrix collecting

the adiabatic energies UK. Taking advantage of the invariance

of the LD basis, H can be obtained at intermediate times by

linear interpolation

H(t) ≃ H(0) + [H0(�t) − H0(0)]
t

�t

− �E(t) · [ �M(�t) − �M(0)]
t

�t
, (12)

where of course H(0) = H0(0) − �E(0) · �M(0). Equation (8)

can be integrated by a simple approximate formula:

D(�t) ≃ exp

(

−
i

¯
H(�t/2)�t

)

D(0). (13)

From the diabatic coefficients one then gets the adiabatic

ones: A(�t) = T+(�t)D(�t). Equation (13) yields accurate

results when H changes slowly with time in the interval �t;

this is indeed the case for the locally diabatic energies and

dipoles, but not for the electric field �E(t), which may oscil-

late with a period of the same order of magnitude of �t.36 We

resort, therefore, to the following ansatz

D(�t) ≃ exp

(

−
i

¯
H(tns

)�t ′
)

. . . exp

(

−
i

¯
H(tj )�t ′

)

. . .

× exp

(

−
i

¯
H(t1)�t ′

)

D(0), (14)

�t ′ =
�t

ns

, tj =
2j − 1

2ns

�t (j = 1 . . . ns), (15)

which amounts to integrating the electronic TDSE with a

smaller time step �t′. Note, however, that the relevant elec-

tronic quantities (energies, wavefunctions, and couplings)

need to be evaluated only at �t time intervals (thanks to
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the LD scheme), and the number of electronic states consid-

ered is usually small: as a consequence, the parameter ns can

be chosen large enough as to perform a very accurate inte-

gration of the TDSE within the approximation (12), without

noticeably increasing the computational cost of a dynamic

simulation performed on-the-fly.

Following Tully’s fewest switches prescription,21, 24, 37

the transition probability PK→L from the current electronic

state K to state L is given by

PK→L =
max

{

0,
∫ �t

0
BKLdt

}

pK (0)
, (16)

where pK(0) = |AK(0)|2 is the population of state K and the in-

tegral accounts for the variation of BKL (the rate of decrement

of pK, due to state L) within a time step. We have

ṗK = −
∑

L

BKL, BKL = −BLK , (17)

BKL = 2ℜ{ρLKGKL} −
2

¯
ℑ
{

ρLKH ext
KL

}

. (18)

In the above equation, we made use of the electronic density

matrix ρKL = AKA∗
L. The integral appearing in Eq. (16) can

be computed numerically, exploiting the same partition of the

time interval �t in ns substeps �t′ introduced above for the

integration of the TDSE (see Eq. (15)). The diagonalization

of H0(tj) yields T(tj) which is in turn exploited to evaluate the

adiabatic quantities ρLK(tj), H ext
KL(tj ), and GKL(tj), needed in

Eq. (18) for BKL(tj). Note in particular that the GKL couplings,

not computed in the LD algorithm for the TDSE integration,

can be obtained considering that, as far as the LD basis is

invariant in the time step �t

G = −Ṫ+T. (19)

Therefore, a numerical approximation for G(tj) which keeps

the antihermiticity (needed for the antisymmetry condition

(17) to be satisfied) is

G(tj ) =
T+(tj−1)T(tj ) − T+(tj )T(tj−1)

2�t ′
. (20)

For notational simplicity we define BKL =
∫ �t

0

BKLdt/�t . According to Eq. (18), BKL is partitioned in two

contributions: the first one, B
mol

KL , is due to the nonadiabatic

couplings and the second one, B
ext

KL, to the external electric

field. This allows for a distinction between radiative (field

induced) and nonradiative electronic transitions. In particular,

the surface hop from state K to state L is labeled as radiative

or nonradiative if B
ext

KL > B
mol

KL or B
mol

KL > B
ext

KL, respectively.

For nonradiative hops, we impose the conservation of the

total energy, i.e., the module of the nuclear velocity is

rescaled in order to compensate for the sudden variation of

the electronic energy (and, as usual in SH, a nonradiative

upward hop is forbidden if the nuclear kinetic energy is

not sufficient for such a compensation). The radiative hops,

on the contrary, do not entail any action to enforce energy

conservation and are never forbidden.

In Ref. 33, the transition probability PK→L was obtained

in a different way, i.e., by directly looking at the change of

the state K population in a time step, expressing it in terms

of the unitary matrix connecting the coefficients A(0) and

A(�t), and proposing a partition of that expression in contri-

butions pertaining to the electronic states L �= K. The present

algorithm represents an improvement, in that it allows to

distinguish between radiative and nonradiative contributions.

Moreover, expressing the change of current state probabil-

ity without explicit reference to the LD basis (see Eqs. (17)

and (18)) allows to partition it in a physically sound way,21

avoiding the appearance of unwanted “diagonal” (K → K)

terms.

Our overlap driven decoherence correction (ODC)

scheme32 is easily adapted for taking into account the interac-

tion with the laser field. Let K be the current state, and assume

the jth ancillary frozen Gaussian wavepacket

GL,j (x) =

(

2a

π

)1/4

exp{−a(x − QL,j )2 + ixPL,j/¯}

(21)

is just spawned on state L. According to the ODC algorithm,

initially QL, j is set equal to the current nuclear position Q

for state K (for simplicity, we consider here only one di-

mension, the extension to the multidimensional case being

straightforward). In the absence of the laser field, the mo-

mentum PL, j is obtained from the current nuclear momentum

MQ̇ rescaled to allow for energy conservation; in the present

context the rescaling is only done when B
mol

KL > B
ext

KL. More-

over, the Gaussian wavepacket parameters PL, j and QL, j are

not propagated in time using the “zeroth order” approxima-

tion of Ref. 32, since this was based on the momentum change

required by energy conservation. Rather, we resort to Heller’s

evolution for frozen Gaussian wavepackets38, 39

ṖL,j = −
dUL(Q)

dQ
, (22)

Q̇L,j = PL,j/M. (23)

To avoid increasing the computational burden, the gradi-

ents dUL/dQ are approximated as those of the current nu-

clear position Q for state K, instead of computing them at

QL, i. This is a good approximation as far as the QL, i are

close to the current nuclear position. When they diverge, the

ancillary wavepackets are anyway discarded. The Newton

equations (22) and (23) are integrated using the standard ve-

locity Verlet algorithm.40 In on-the-fly dynamics, this proce-

dure is anyway more computationally demanding than the

zeroth order approximation referred above, as it requires, in

principle, the evaluation of the gradients of all the other PESs,

in addition to that of the current state. While this approach is

still viable in a semiempirical framework, as the one consid-

ered in Sec. III, it may become too expensive in an ab initio

context.

III. TWO STATE, ONE-DIMENSIONAL MODEL SYSTEM

We applied the method described in Sec. II to a one-

dimensional model system, which allowed us to compare the

SH results to the full quantum time evolution (conducted with

the same Ĥext of Eq. (1)). The model system corresponds to

the one we already used in Ref. 32, and it is appropriate for the
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FIG. 1. Model system considered in this study. Presented are the adiabatic

potential energy curves (solid lines) and the transition dipole μ12 (dashed

line). U1 and U2 label the lower and the upper state PES, respectively. The

squared module of the starting wavepacket is also shown (thick line).

description of ionic/covalent crossing in alkali halides. The

PES and couplings were obtained on the fly using our Float-

ing Occupation Molecular Orbitals Configuration Interaction

(FOMO-CI) and an AM1 semiempirical Hamiltonian, with

semiempirical parameters modified by us to yield potential

energy curves roughly similar to those of LiF. The reduced

mass of the diatomic has been set to m = 14 583 a.u. (8 amu).

In this way, the lower state minimum at r0 = 3.743 bohrs is

characterized by an harmonic frequency ω0 = 262 cm−1. The

starting wavepacket lies on the lower state PES and corre-

sponds to the ground state of a harmonic oscillator of mass

m and frequency ω0, centered in r0. We show in Figure 1 the

energies of the two electronic states considered, together with

the starting wavepacket and the transition dipole moment

μ12 = 〈ϕ1|μ‖|ϕ2 〉 (note that, as both states have 
 symmetry,

the transition dipole moment is parallel to the internuclear

axis).

The electric field �E(t) is linearly polarized along the

internuclear axis of the molecule, the orientation of which is

assumed fixed along the x axis. In particular we set

Ex(t) = E0 e
−2 ln(2)

(

t−t0
τp

)2

cos(�t), Ey = Ez = 0, (24)

where E0 is the maximum amplitude of the electric field, τ p

is the pulse length (full width at half maximum of the squared

Gaussian envelope), and � is the carrier wave frequency, set

so as to be in resonance with the 1 → 2 transition at r0: ¯�

= U2(r0) − U1(r0) = 0.04824 a.u. Four sets of simulations

have been performed, each one characterized by different val-

ues of the pulse parameters. In particular, for the amplitude E0

we used 0.0015 and 0.015 a.u. (corresponding, respectively,

to peak powers Ip of about 0.079 and 7.9 TW/cm2). For the

pulse length τ p we used 500 and 6000 a.u., with t0 = 2000

and 10 000 a.u., respectively.

The full quantum calculations have been carried out by

expressing the starting wavepacket in the diabatic basis32 and

performing the time evolution on a grid with a second order

split-operator algorithm.41 The results are then presented by

reverting back the quantum wavefunction �q to the adiabatic

basis:

�q(r, t) = χ1(r, t) |ϕ1〉 + χ2(r, t) |ϕ2〉 . (25)

For the SH simulations we used swarms of 10 000 trajec-

tories; the initial conditions were obtained by sampling the

Wigner distribution corresponding to the starting quantum

wavepacket.42 The integration time step was �t = 0.1 fs, and

we set ns = 20 (see Sec. II). After some test calculations, the

parameters representing the overlap threshold (Smin) and the

width (σ ) of the ancillary Gaussian wavepackets used in the

ODC scheme32 were set to 10−8 and 0.5 a.u., respectively.

In Figure 2, we show the population of the upper state as

a function of time, for the four simulations considered. In the

full quantum case, p
q

2 (t) =
∫

|χ2(r, t)|2 dr is shown. For SH,

we report the fraction of trajectories �2 running on U2 and the

upper state population averaged over the swarm of trajectories

〈p2〉 (the latter quantity is omitted for clarity when the ODC

decoherence correction is used, as it is almost coincident

with �2).

Let us consider first the case in which the laser pulse has

the weakest amplitude and shortest FWHM (top left panel

of Figure 2). Approximately, the laser field is only present

in the time range 25–70 fs; it is able to transfer about 18%

of the population to the upper state. At times t > 70 fs we

are, therefore, left with an almost stationary wavepacket oc-

cupying the minimum energy region of the ground state, rep-

resenting 82% of the total population and with vanishingly

small coupling to the upper state wavepacket. It is, there-

fore, the latter which, reaching the avoided crossing region at

rc = 8.32 bohrs, gives rise to the nonradiative population

transfer at t = 150–200 fs and reduces p
q

2 to 0.026. The

wavepacket just created on the lower state then proceeds to

dissociation. Note that the Landau Zener adiabatic transition

probability (starting from the Franck-Condon point with zero

kinetic energy) is pLZ = 0.855, which is in quantitative agree-

ment with the drop of p
q

2 from 0.18 to 0.026. The wavepacket

remained in the upper state cannot dissociate: therefore, it

goes back to the avoided crossing region, giving rise to the

population transfer at t = 260–300 fs, and so on. While the

nonadiabatic quantum wavepacket dynamics is very well re-

produced by the SH method with ODC, without decoherence

correction SH fails badly because the trajectories go through

the avoided crossing with substantial amplitudes in both elec-

tronic states. For example, the trajectories initially excited

to the upper state reach the avoided crossing region with

p1 = 0.80 and p2 = 0.20 in the average, so they behave more

as if they belonged to the ground state than to the excited

one: by crossing the strong interaction region, 〈p2〉 further in-

creases instead of decreasing, and too few downward hops

take place.

The decoherence problems outlined above are alleviated

if more population is transferred to the upper state during

the short pulse: this is actually what happens for E0 = 0.015

a.u. (middle left panel of Figure 2). Anyway, ODC improves

considerably the SH results even in this case, quantitatively

accounting for radiative and non radiative transfer of popula-

tion. Would the pulse be optimized (as to intensity, tuning, du-

ration, etc.) to transfer all the population to the upper state, as

in a coherent control experiment, the decoherence correction
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FIG. 2. Upper state population versus time. Top (middle) panels: results for E0 = 0.0015 (respectively, E0 = 0.015 a.u.). Bottom panels: pulse shapes. Red

thick lines: full quantum results. Blue solid lines: SH with ODC decoherence correction, fraction of trajectories on the upper state (�2). Green solid (dashed)

lines: SH without decoherence correction, �2 (respectively, 〈p2〉, see text).

should not be needed anymore, at least up to the first crossing

of the strong interaction region.

With longer pulses (τ p = 6000 a.u., right column of

Figure 2) the agreement deteriorates. At least in part, this is

related to the effect of the displacement of the wavepacket

in the excited state during the laser pulse, which is not faith-

fully reproduced by the trajectory swarm. Going back to the

test with τ p = 500 a.u. and E0 = 0.015, we clearly see that

the upper state probability undergoes Rabi-like oscillations.

In a two-level system (no nuclear dynamics), with the transi-

tion dipole μ(r0) = 0.928 a.u., this would be a 3.34π pulse,

i.e., it would produce a final probability p2 = sin 2(3.34π )

= 0.75, after 3 complete population switches. With a repulsive

potential in the upper state, such Rabi-like oscillations obey

the simple two-state rule only if the pulse is very short,43, 44

otherwise the wavepacket starts moving out of the Franck-

Condon region, i.e., out of resonance, during the time the field

is on. This effect is much more important for the 6000 a.u.

pulses and is underestimated by the semiclassical treatment.

In our tests, the carrier wave is in resonance with the 1 → 2

transition at r0; as a consequence, the lowest energy trajec-

tories, oscillating in the close proximity of r0, are preferably

excited (note that the Wigner sampling of the v = 0 eigen-

state of the harmonic oscillator yields a distribution of ener-

gies P(E) ∝ e−2E/¯ω). Let us now focus on the first 150 fs of

the test with E0 = 0.0015 a.u. (top right panel of Figure 2).

During this time the nonadiabatic effects are negligible, be-

cause the quantum or classical wavepackets have not reached

the avoided crossing region. Considering the trajectories that

are excited before t = 150 fs, the averaged kinetic energy at

the time of the first upward hop is 0.266 mEh, noticeably less

than in the initial swarm in the ground state (0.307 mEh).

So, the SH trajectories promoted to the upper state at the

beginning of the dynamics are characterized by an average
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kinetic energy 〈K2〉 lower than that of the corresponding

quantum wavepacket: for instance, at t = 150 fs, 〈K2〉
= 3.62 mEh while 〈χ2|p̂

2/2m|χ2〉/〈χ2|χ2〉 = 4.68 mEh. The

upper state trajectory swarm is then slower than the quantum

wavepacket, and spends more time in the quasi-resonance re-

gion. Its Rabi-like oscillations are less disturbed by the nu-

clear motion and the final population of the excited state is

different from the quantum one. Clearly, as τ p increases, the

resonance condition is imposed more sharply, while the ex-

cited molecule has more time to elongate the bond and get

out of resonance, so this effect becomes more important.

Even with the differences outlined above, the SH tra-

jectories reproduce fairly well the behavior of the quantum

population with τ p = 6000 a.u. and the weaker field intensity

(top right panel of Figure 2). The decoherence correction still

improves very much the SH results. With the stronger field

(E0 = 0.015, middle right panel of Figure 2) we obtain a

poorer agreement. In that case, due to the large intensity of

the radiation, it is harder to follow in detail the wavepacket

dynamics; probably interference effects between wavepacket

components created by radiative and non-radiative transitions

play a non negligible role.

In Table I, we report the dissociation probability pdiss

together with the average kinetic energy Kdiss of the frag-

ments, which would represent an experimentally measur-

able outcome for a system of this kind. The dissociation

threshold is arbitrarily set to r = 12 bohrs, and the results

of Table I are obtained at t = 700 fs = 28 940 a.u. In

the quantum wavepacket treatment, pdiss = 〈χ1, diss|χ1, diss〉,
where χ1, diss is the portion of χ1 at r > 12 bohrs (we

remind that in the present simulations dissociation can

only be obtained on the ground state PES), and Kdiss

= 〈χ1,diss |p̂
2/2m|χ1,diss〉/〈χ1,diss |χ1,diss〉. Similarly, in the

SH treatments, pdiss is the fraction of trajectories with

r > 12 bohrs, and Kdiss their averaged kinetic energy.

Considering pdiss, as already discussed above (see

Figure 2), the SH results reproduce quantitatively the quan-

tum ones for the shortest pulse, and the agreement deterio-

rates for the longest pulse, especially with high intensity. The

kinetic energy of the dissociated fragment Kdiss shows a more

uniform agreement: the largest relative difference between

quantum and SH results amounting to 9%. We also performed

SH calculations suppressing the conservation of the total en-

ergy in nonradiative hops (labeled as SHnec in Table I). While

this has almost no effect on the dissociation probability, it is

important for the kinetic energy of the fragment: the SHnec

TABLE I. Dissociation probabilities (pdiss) and kinetic energies of the frag-

ments (Kdiss, mEh) at t = 700 fs. SHnec labels SH results obtained without

imposing energy conservation in non radiative transitions.

pdiss Kdiss

E0 τ p Quant SH SHnec Quant SH SHnec

0.0015 500 0.158 0.155 0.152 8.801 8.938 7.765

0.0015 6000 0.848 0.647 0.635 9.173 8.652 7.705

0.015 500 0.698 0.694 0.693 8.027 8.138 6.945

0.015 6000 0.865 0.513 0.503 8.429 7.634 7.122

results for Kdiss differ from the quantum values much more

than the SH ones. This shows that, in the simulation of energy

disposal with surface hopping, it is important to distinguish

between radiative and nonradiative transitions, and to enforce

energy conservation in the latter.

IV. CONCLUSIONS

In this work, we described a method for nonadiabatic

molecular dynamics simulations with explicit inclusion of ra-

diation induced transitions, in the framework of SH. The im-

plementation has been performed according to our local di-

abatization scheme, most useful in on-the-fly calculations as

it allows to use large integration time steps.33, 34 The method

has been applied to a one-dimension two-state model system

including an avoided crossing, in which both radiative (field

induced) and nonradiative transitions are important. Even

within this simple model, we were able to point out some

issues, to our knowledge not yet addressed in the literature,

concerning the ability of surface hopping with field-molecule

interactions to reproduce quantum wavepacket dynamics.

First, any partial switch of population caused by radia-

tive excitation, followed by nonadiabatic dynamics, entails

effects of quantum decoherence between the amplitudes in

the two electronic states that are not properly dealt with by

standard surface hopping. Using our ODC,32 suitably adapted

to the present context, we were able to accurately reproduce

the quantum results at least for very short pulses. With longer

pulses, the agreement was less good, but the ODC anyway

improved it.

Another issue concerns energy conserving (nonradiative)

and energy non conserving (radiative) transitions: this distinc-

tion has to be taken into account in SH in order to correctly

reproduce the energetics of the quantum wavepackets, and we

propose a simple recipe to this aim. Finally, minor discrep-

ancies arise from how the interplay of optical excitation and

nuclear motion is treated in SH and in quantum wavepacket

dynamics.
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8J. Petersen, R. Mitrić, V. Bonačić-Koutecký, J.-P. Wolf, J. Roslund, and H.

Rabitz, Phys. Rev. Lett. 105, 073003 (2010).
9I. Tavernelli, B. F. E. Curchod, and U. Rothlisberger, Phys. Rev. A 81,

052508 (2010).
10B. F. E. Curchod, T. J. Penfold, I. Tavernelli, and U. Rothlisberger, Phys.

Rev. A 84, 042507 (2011).
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