
1

Interpolants from Z3 proofs
Kenneth L. McMillan Microsoft Research

Abstract—Interpolating provers have a number of applications
in formal verification, including abstraction refinement and
invariant generation. It has proved difficult, however, to construct
efficient interpolating provers for rich theories. We consider
the problem of deriving interpolants from proofs generated by
the highly efficient SMT solver Z3 in the quantified theory
of arrays, uninterpreted function symbols and linear integer
arithmetic (AUFLIA) a theory that is commonly used in program
verification. We do not directly interpolate the proofs from Z3.
Rather, we divide them into small lemmas that can be handled
by a secondary interpolating prover for a restricted theory.
We show experimentally that the overhead of this secondary
prover is negligible. Moreover, the efficiency of Z3 makes it
possible to handle problems that are beyond the reach of existing
interpolating provers, as we demonstrate using benchmarks
derived from bounded verification of sequential and concurrent
programs.

I. INTRODUCTION

Interpolating provers have a number of applications in
formal verification, including abstraction refinement [9] and
invariant generation [17]. Given a valid implication P → Q,
an interpolating prover can produce an interpolant for the
implication, that is, a formula I , expressed using the common
vocabulary of P and Q, such that P → I , I → Q. There
are various methods to accomplish this, but a common one
is to extract the interpolant from a proof refuting P ∧ ¬Q,
using an interpolation calculus [18]. Typically, one computes
interpolants modulo a theory, for example, the theory of linear
arithmetic over the integers. In this case, the interpolant is
allowed to contain any interpreted symbols of the theory. The
required proof may be obtained from a satisfiability modulo
theories (SMT) solver, instrumented to produce proofs.

A significant practical difficulty with this approach is to
obtain an efficient SMT solver that produces proofs in the
required proof system. The theory solvers in a modern SMT
solver are complex, in part due to the requirement of fast
incremental operation to support backtracking, and in part due
to the complexity of the theories themselves (for example,
efficient solving of integer linear arithmetic constraints has
long been a topic of research). Because of the difficulty of
producing efficient proof-generating theory solvers, existing
interpolating provers are typically less efficient than state-
of-the-art SMT solvers, or do not support all of the desired
theories. In practice, this inefficiency has been compensated
somewhat by reducing the complexity of the input formulas,
for example by considering only a single program execution
path, as in [9], [19]. If interpolating solvers matching the per-
formance of the best SMT solvers were available, however, it
might be possible to use interpolation in a broader context, for
example, considering more complex control flow, or perhaps
concurrency.

In this paper, we consider the problem of deriving inter-
polants from proofs generated by the state-of-the-art SMT
solver Z3 [8] in a rich theory, namely, the quantified theory
of arrays and linear integer arithmetic (AUFLIA, according to
the SMT-LIB nomenclature [2]).

Z3’s proof calculus is complex, and rich enough to poly-
nomially simulate proofs systems such as extended resolution
that do not admit feasible interpolation1. Moreover, it allows
“theory lemmas” that can introduce any validity of the theory
without proof. Thus, for example, to refute a pair of complex
formulas A and B, the proof system would allow a theory
lemma that simply says A∧B → FALSE. As a result, there is
no reason in principle why a Z3 proof should contain sufficient
information to construct an interpolant.

For this reason, we will take an approach that considers a Z3
proof as guide for construction of a proof by a secondary, less
efficient, interpolating prover. We will translate Z3 proofs into
a proof calculus that does admit feasible interpolation, with
“gaps”, or lemmas, that must be discharged by the secondary
prover. This approach succeeds if the secondary prover can
in practice discharge these lemmas in time that is small in
relation to the time Z3 used to construct the original proof.
A key test in this regard is the number of backtracks that
the secondary solver must perform. If this is low, then the
secondary solver need not have highly efficient incremental
theory solvers. There is then no need to modify Z3 for the
purpose of interpolant generation.

An additional benefit of this approach is that the secondary
solver need not implement the entire theory. Our secondary
solver implements only the quantifier-free theory of linear
arithmetic and uninterpreted function symbols (QF UFLIA).
Quantifier instantiation is performed by Z3, as is instantiation
of the axioms of the array theory. Thus, we can in principle
use any of the available interpolating provers for QF UFLIA
as our secondary solver [3], [4].

To test these ideas, we use a collection of interpolation
problems in AUFLIA, derived from bounded verification of
sequential and concurrent programs using the Poirot tool [15].
Because these formulas have complex Boolean structure, they
exploit the ability of Z3 to backtrack efficiently. We observe
experimentally that interpolants can be efficiently derived from
the Z3 proofs, while existing interpolating provers are unable
to handle these formulas.
Related work Previous to this work there were no interpolat-
ing provers available for AUFLIA. A number of interpolating
SMT solvers have been produced for subsets of this theory,

1Extended resolution proofs generalize resolution proofs by allowing res-
olution on arbitrary formulas, rather than just propositional atoms. This
system is known, under cryptographic assumptions, not to admit feasible
interpolation [13].

2

including Princess [3] (UFLIA), MathSAT4 [4] (QF UFLRA)
and SMTInterpol2 (QF LIA). Their performance is not com-
parable to Z3, as we will observe in in section V, using Z3
to instantiate the quantifiers and array axioms. Any solvers
supporting QF UFLIA can be used as the secondary solver in
the present approach.

Interpolation has also been implemented in the first-order
prover Vampire [10], however it is complete only in the ground
case and applies only to rational (not integer) arithmetic.
Moreover, it lacks an SMT solver’s efficiency in combining
Boolean and theory reasoning.

Interpolation in the theory of arrays has been handled in
different ways. The method of [11] is based on discovery of
local instantiations of the array axioms (a local predicate is
expressed entirely in the vocabulary of A or the vocabulary of
B). It is necessarily incomplete, but is guaranteed to produce
quantifier-free interpolants for quantifier-free formulas. The
present method is complete but may introduce quantifiers in
the interpolants caused by non-local axiom instantiations. The
method of [12] is similar to the present one in this respect.
The primary difference is that it eagerly instantiates the array
axioms, whereas here we rely on instantiations generated by
Z3. Also, we should note that the present method is not specific
to the array theory. It can handle any theory which Z3 handles
by axiom instantiation (though it cannot in general handle
axiom schemas).

In [5] an entirely different approach to arrays is taken,
extending the signature of the array theory to allow quantifier-
free interpolation. If such an approach were used in the
secondary solver, we could safely discard the array axiom
instances produced by Z3. In this way, the present method can
either accommodate the weaknesses or exploit the strengths of
the secondary interpolating prover.

A significant hurdle in interpolating proofs generated by
SMT solvers is that interpolating proof calculi require the
pivots of resolution steps to be local, but SMT solvers may
for various reasons resolve on non-local predicates. In [6] a
method is introduced to raise non-local pivots to the leaves of a
resolution proof by re-ordering resolution steps. This method
is worst-case exponential. Here we take a less general but
linear-time approach that relies on knowledge of the structure
of Z3 proofs. It is sufficient to raise resolutions on non-
local pivots introduced by equational rewriting in Z3, which
accounts for most cases of non-local resolution pivots. The
remaining cases are handled by a different technique called
“lemma extraction”.

Overview of the paper In the next section, we cover some
background including definitions and notations used in the
paper. Section III introduces a simple proof calculus allowing
feasible interpolation, while section IV describes our approach
of translating Z3 proofs into this calculus. Section V then
describes our experimental evaluation.

II. BACKGROUND

We use standard first-order logic over a countable vocabu-
lary Σ of function and predicate symbols, with associated ari-

2http://swt.informatik.uni-freiburg.de/research/
tools/smtinterpol

ties. Function symbols with arity zero will be called constants.
We will use t, u, v to represent first-order terms and φ, ψ, p, q
and capital Roman letters to represent first-order formulas. We
distinguish a finite subset ΣI of Σ as interpreted symbols. In
particular, we assume that ΣI contains the binary predicate
symbol =, representing equality. We assume a countable
set V of variables, distinct from Σ. We will use x, y, z to
represent variables. The vocabulary of a term or formula φ,
denoted L(φ) is the set of uninterpreted function and constant
symbols occurring in φ. If S is a vocabulary, we say L(S) is
the set of first-order terms and formulas φ such that L(φ) ⊆ S.
We will also write L(φ) for L(L(φ)) and s � φ to indicate
that a symbol s occurs in φ.

A theory is a set of first-order formulas over Σ. We say a
formula φ is valid relative to a theory T if every model of
T is a model of φ, and we write this |=T φ. We use capitol
Greek letters Γ and ∆ to stand for multisets of formulas. We
will write a formula multiset as list of formulas and formula
multisets. Thus, if Γ is a multiset of formulas and φ a formula,
then Γ, φ represents Γ∪{φ}. We write ∧Γ for the conjunction
of the formulas in Γ, ∨Γ for the disjunction and ¬Γ for the
multiset of negations of formulas in Γ.

A sequent is written Γ ` ∆, where Γ and ∆ are multisets
of formulas. Here, Γ is said to be the antecedent and ∆ the
consequent. We also call the elements of Γ assumptions. This
sequent is valid if the conjunction of the formulas in Γ implies
the disjunction of the formulas in ∆, given a background
theory T . That is, Γ ` ∆ is valid if |=T

∧
Γ →

∨
∆.

An empty antecedent or consequent will be represented by
a blank. Thus ` φ means φ is valid, and φ ` means φ is a
contradiction (implies the empty disjunction or FALSE). We
will sometimes use calligraphic letters such as J to stand for
sequents.

A formula or term is said to be ground if it contains no
variables. A position π is a finite sequence of natural numbers,
representing a syntactic position in a term or formula. If φ
is a formula or term, then φ|π represents the subformula or
subterm of φ at position π. Thus, φ|ε is φ itself, φ|i is the i-th
argument of φ, φ|ij is the j-th argument of the i-th argument,
and so on. The notation φ[ψ]π means φ with ψ substituted in
position π.

An interpolant for a valid implication A→ B is a formula
I such that A → I and I → B are valid, and such that I
is written using the vocabulary common to A and B, that is,
I ∈ L(A) ∩ L(B). The Craig interpolation lemma [7] states
that an interpolant always exists for a valid implication in
first order logic (FOL). Validity in this definition may also be
relative to a theory T , though interpolants may not always
exist in this case. When dealing with refutation systems, it is
more convenient to speak of an interpolant for an unsatisfiable
conjunction A∧B. An interpolant for the conjunction A∧B
is a formula I ∈ L(A)∩L(B) such that A→ I and B → ¬I
are both valid. In the sequel, let A and B be fixed formulas.

An inference is of the form

P1 · · · Pk
C

where P1 · · · Pk is a multiset of sequents called premises

3

(which we will often abbreviate {Pi}) and C is a sequent
called the conclusion. An inference is sound if validity of
the premises implies validity of the conclusion. Generally,
inferences are instances of inference rules, or patterns. Such
a rule is sound when every instance matching the pattern, and
satisfying any side conditions, is sound.

A derivation tree is a directed tree whose nodes are labeled
with inferences. The premises of each node must contain
the multiset of conclusions of its children. A derivation tree
may be open, however, in the sense that some premises of
inferences are not conclusions of any child. We call these
unproved sequents the premises of the derivation tree. A tree
with no premises is said to be closed. The conclusion of a
derivation tree is the conclusion of its root node.

III. INTERPOLATING PROOF CALCULI

We begin by introducing a very simple proof calculus and
a corresponding interpolation calculus [18] that allows us
to derive interpolants from proofs. Our eventual goal is to
translate proofs from Z3 into this calculus.

We will say a formula is local when it is expressed either in
the the vocabulary of A or in the vocabulary of B. A sequent is
local when all its formulas are expressed in the the vocabulary
of A, or all are expressed in the vocabulary of B. That is, Γ `
∆ is local when Γ,∆ ⊆ L(A) or Γ,∆ ⊆ L(B). We will say
that a sequent is strict if each individual formula in the sequent
is local, that is, if Γ,∆ ⊆ L(A)∪L(B). Similarly, we will say
that an inference or derivation tree is local (respectively strict)
if all of its premises and conclusions are local (respectively
strict). In writing proof rules, we will use the notation Γ `l ∆
to indicate a local sequent and Γ `s ∆ to indicate a strict
sequent.

We should note that strictness is not an issue in purely
propositional clausal proofs. Every clause in such a proof is
necessarily strict because every propositional atom in it occurs
in either A or B. In the current more general setting, non-
strictness may occur either because of mixed terms within an
atomic formula, or because the formulas in the sequent are not
atomic.

The rules of our proof calculus SP are as follows:

LOCAL
Γ `l ∆

|=T ∧Γ→ ∨∆

RES
Γ `s ∆, p Γ `s ∆′,¬p

Γ ∪ Γ′ `s ∆ ∪∆′

CONTRA(Γ)
Γ,Γ′ `s
Γ′ `s ¬Γ

The first rule, LOCAL, allows us to introduce any valid local
sequent. As we will see, computing interpolations for local
sequents is trivial. The second rule, RES, allows us to resolve
two strict sequents on some pivot formula p. Note that resolv-
ing two local sequents might result in a strict but not local
sequent, since the pivot p might be in both L(A) and L(B).
Note also that the pivot p need not be an atomic formula. It
is only required to be local. The third rule, CONTRA, allows
us to move formulas Γ from the left- to the right-hand side of

a strict sequent. That is, if assuming Γ entails a contradiction,
then one of the formulas in Γ must be false. Notice that the
rules of our system allow us to produce only strict sequents.
The soundness of these rules is easily verified. Completeness is
also easily shown for theories that have the Craig interpolation
property, though this is not relevant to the current discussion.

Now, given a derivation of a sequent A,B `, we would like
to derive an interpolant for A ∧ B. We can do this using an
interpolation calculus in the style of [18]. We sketch one such
system here, though a detailed understanding of this system is
not needed for what follows.

For any set Γ of formulas, we will write ΓB for Γ ∩ L(B)
and ΓA for Γ\L(B) (note the asymmetry in these definitions).
A sequent in the interpolation calculus (also called an inter-
polation) is of the form (A,B) ` ∆ [φ]. The antecedent is
a pair of formulas, A and B, the consequent is a multiset of
formulas ∆ and the formula φ acts as an interpolant for the
sequent. The sequent is said to be valid when

1) A and ¬∆A imply φ,
2) B and ¬∆B imply ¬φ, and
3) φ ∈ L(A) ∩ L(B).

Another way to say this is that the interpolation is valid
when φ is an interpolant for A ∧ (∧¬∆A) and B ∧ (∧¬∆B).
Moreover, when ∆ is the empty set, φ is an interpolant for
A∧B. The set of interpolation rules SI , shown in Figure 1 is
sound in the sense that they produce valid interpolations from
valid interpolations. These rules can be interpreted roughly as
follows. To interpolate a purely local sequent on the A side,
we take the disjunction of the formulas of ∆ that are in the
common vocabulary of A and B. To interpolate a purely local
sequent on the B side, we simply take TRUE as the interpolant.
If we resolve on an A-side formula, we take the disjunction
of the interpolants, while resolving on the B side gives the
conjunction. The rule for proof by contradiction has no effect
on the interpolation.

Now suppose we have a derivation in system SP of a
sequent A,B `s. This is, we have proved that formulas
A and B are inconsistent. We can transform this into a
derivation of an interpolation (A,B) ` [φ] in the system
SI . To do this, we replace each inference in the proof by a
corresponding inference in SI , so that each sequent Γ ` ∆
in the proof is replaced by an interpolation of the form
(A,B) ` ¬(Γ \ {A,B}), ∆ [φ]. That is, in the derived
interpolation, the assumptions other than A and B are moved
to the consequent side. As an example transformation step, if
ψ ∈ L(A) ∩ L(B), and φ ∈ L(A) \ L(B), we have

LOCAL
A, φ `l ψ

→ LOCALA
(A,B) ` ¬φ ∨ ψ [ψ]

Because we move assumptions to the right in the translation,
the CONTRA rule becomes particularly trivial. For example,
we have:

CONTRA
A,ψ `l
A `l ¬ψ

→ CONTRA
(A,B) ` ¬ψ [φ]
(A,B) ` ¬ψ [φ]

Note that our ability to replace each inference of SP by
a corresponding inference of SI depends critically on the
strictness and locality conditions in SP . For example, we can

4

LOCALA
(A,B) ` ∆ [∨∆B]

∧A |=T ∨∆, ∆ ⊆ L(A)

LOCALB
(A,B) ` ∆ [TRUE]

∧B |=T ∨∆, ∆ ⊆ L(B)

RESA
(A,B) ` ∆, p [φ] (A,B) ` ∆′,¬p [φ′]

(A,B) ` ∆ ∪∆′ [φ ∨ φ′] p ∈ L(A) \ L(B)

RESB
(A,B) ` ∆, p [φ] (A,B) ` ∆′,¬p [φ′]

(A,B) ` ∆ ∪∆′ [φ ∧ φ′] p ∈ L(B)

CONTRA
(A,B) ` ∆ [φ]
(A,B) ` ∆ [φ]

Fig. 1. Interpolation system SI .

always replace an instance of LOCAL by an instance of either
LOCALA or LOCALB because the locality condition demands
that Γ ` ∆ is written in either L(A) or L(B).

IV. TRANSLATING Z3 PROOFS

Our goal in this section will be to convert proofs from Z3
into proofs in our simple proof calculus SP , and from there
into our interpolation calculus SI to obtain an interpolant.

Given a set of assumptions Γ that are inconsistent relative
to a theory T that Z3 supports, it can produce a proof
of a sequent Γ `. However Z3’s proof system is much
richer than the simple one we have sketched. At present the
system contains 38 documented rules. Many of these relate to
particular theories that Z3 supports such as linear arithmetic
and the theory of arrays. There is a also a rule, for example,
for universal quantifier instantiation. The system also contains
rules equivalent to our RES and CONTRA rules.

A very powerful rule in the Z3 system is the THLEMMA
rule. This rule takes an arbitrary set of sequents as premises
and can produce as a conclusion any sequent implied under
one of Z3’s theories. The theory solver may provide some
hints as to how the proof should be performed, but in general
complete proofs of theory lemmas are not provided.

To cope with this, our approach will be to construct a
proof in SP that is as detailed as possible, leaving unproved
“lemmas” at the leaves of the derivation tree. To fit within our
system, these lemmas must be strict. It will be the job of a
secondary prover to provide interpolations for these lemmas.
In the worst case, the proof might reduce to a single big lemma
of the form A,B `. In practice, though, we will observe that
the lemmas tend to be small, and are easily handled by an
interpolating prover much less efficient than Z3. Moreover,
the lemmas never require quantifier instantiation or the theory
of arrays, allowing us to use a secondary prover supporting
only equality and integer arithmetic.

We approach the proof translation in several stages. The
first stage, called axiom elimination, removes any non-local
instances of axioms. In the next stage, localization, we find
any possible applications of the LOCAL rule. Any closed sub-
tree of the proof whose conclusion is local can be simply
replaced by a single instance of the LOCAL rule. This typically

removes a large fraction of the proof. In the last stage, lemma
extraction we eliminate any inferences that are not available
in SP . This is done by replacing sub-trees of the proof with
lemmas to be interpolated by a secondary prover.

We now consider each of the proof translation stages in de-
tail, beginning with the simplest, localization, and proceeding
to lemma extraction and axiom elimination. We then cover a
few additional optimizations. We will describe these transfor-
mations in terms of replacement rules, that is, substitutions of
a sound derivation sub-tree by another sound derivation tree
with the same premises and conclusion.3

A. Localization
Any local closed sub-tree of a derivation can be replaced

by an instance of the LOCAL rule. We represent this by the
following replacement rule:

∗
Γ `l ∆

→ LOCAL
Γ `l ∆

We use the label ∗ here to indicate application of any number
of sound inference rules. This rule says that any closed sub-
tree using rules of the Z3 proof calculus whose conclusion is
Γ `l ∆ can be replaced with an instance of LOCAL with the
same conclusion. A maximal local sub-tree is a local closed
sub-tree that is not a sub-tree of any other local sub-tree. In
the localization stage, we apply this replacement rule to all
maximal local sub-trees.

B. Lemma extraction
Consider a sound (possibly open) sub-tree whose premises

`l p1 through `l pk are local and whose conclusion `s ∆ is
strict. This sub-tree demonstrates that the premises imply the
conclusion, that is, the sequent ` ¬p1, . . . ,¬pk,∆ is valid.
We can thus introduce this as a lemma, using the following
rule, which we add to SP to allow introduction of any valid
strict sequent:

LEMMA
Γ `s ∆

|=T ∧Γ→ ∨∆

3We should also note that in the proof representation provided by Z3, the
antecedents of sequents are not explicit. These can be reconstructed, however,
by a preliminary pass over the proof structure.

5

Note that the LEMMA rule generalizes the LOCAL rule in that
it allows a conclusion that is strict but not necessarily local.

Having introduced ` ¬p1, . . . ,¬pk,∆ as a lemma, we can
then resolve it with all the premises ` pi in turn to obtain
the conclusion ` ∆. This gives us a way to replace sub-trees
with lemmas. This is important, as Z3 often sprinkles short
segments of equality reasoning between resolution steps in its
proofs. To express this transformation as a replacement rule,
we will use the notation RES∗ to indicate multiple applications
of the resolution rule. We then have the following replacement
rule:

∗ {Γi `s pi}∪iΓi `s ∆
→

RES∗
LEMMA

∪iΓi `s {¬pi} ∪∆
{Γi `s pi}

∪iΓi `s ∆

We can make several improvements to this basic transforma-
tion. First, note that it requires all assumptions in the premises
to be present in the conclusion. If this is not the case, we can
rewrite a premise Γi,Γ′i `s pi to Γi `s (∧Γ′i)→ pi, where Γ′i
are not assumptions in the conclusion, provided (∧Γ′i) → pi
is local.

Moreover, assumptions in the conclusion can be dropped
if they are not actually used in the sub-tree. The resulting
lemma will still be valid. In fact, there is only one rule in the
Z3 calculus that uses assumptions. This is the ASSUMP rule,
introducing sequents of the form φ ` φ. If an assumption
does not appear in an occurrence of ASSUMP within the sub-
tree, it can be dropped from the lemma. Finally, we can use
the LOCAL rule in the replacement instead of LEMMA if the
lemma happens to be local, saving a lemma.

We will call the above transformation lemma extraction.
Lemma extraction applies to any subtree that is strict, where
the consequents of all premises are singletons4. We will call
such a sub-tree extractable. Every node is contained in a
unique minimum extractable subtree. This sub-tree can be
found by moving up the tree to the first ascendant with
a strict conclusion, then extending downward to the first
descendant along each branch whose conclusion is strict and
has a singleton consequent. Note that a minimum tree must
exist containing any given node, because the conclusion of the
root node of the tree is A,B ` which is strict.

We wish to use lemma extraction to remove from the proof
any inferences that do not occur in SP . The question is which
sub-trees to transform into lemmas. Since we want the lemmas
to be as small as possible, we will always extract minimal
extractable subtrees.

We will say that an inference is foreign if it does not occur
in SP . This can be because it uses a rule not present in SP , or
because it does not meet the strictness condition. A derivation
tree node is foreign if the inference labeling it is foreign. A
foreign node is maximal foreign in a given derivation if it
is not a strict descendant of any foreign node. In applying

4In fact it can be generalized to the case where the consequents of the
premises are local multisets, though this has not been implemented and does
not appear to be necessary in practice

lemma extraction, we eliminate the minimal extractable sub-
tree of some maximal foreign node. Note that this sub-tree
contains the foreign node, but not always at the root. This
process is repeated until no foreign nodes remain. Thus, lemma
extraction proceeds from the root to the leaves of the proof
tree, extracting the smallest possible lemmas. Of course it is
conceivable that the root node is foreign, and the the minimal
extractable sub-tree is the entire tree. In this case the entire
proof reduces to one large lemma, and we have gained nothing.
However, in practice we find that the extracted lemmas are
quite small.

Finally, having introduced the LEMMA rule into our proof
calculus, we require a corresponding interpolation rule:

LEMMA
(A,B) ` ∆ [φ]

†

The side condition † is that φ is an interpolant for (∧¬∆A)∧A)
and (∧¬∆B) ∧ B. This is just a statement of the condition
for validity of the conclusion. We have no syntactic way of
computing an interpolant for a lemma. Rather, we use the
secondary interpolating prover to compute an interpolant φ
for the formulas ((∧¬∆A) ∧ A) and ((∧¬∆B) ∧ B). Thus,
each lemma we introduce by lemma extraction entails one call
to the secondary prover.

C. Axiom elimination

Z3 uses a variety of axioms in its proofs. Instances of these
axioms are introduced as conclusions of the form ` φ with no
premises. If the secondary prover is unaware of these axioms
(for example, it does not support the theory of arrays) then
it is essential to capture the axiom instances in the Z3 proof
using the LOCAL rule. Otherwise, the secondary prover may
fail to prove a lemma.

Unfortunately, axiom instances are not always local. A
prominent example of this is the axiom for universal quantifier
instantiation:

QUANTI ` (∀x. φ)→ φ[t/x]
t is ground

This says that a formula universally quantified over variable
x implies the same formula under substitution of any ground
term t for free instances of x. The difficulty with this rule is
that t is an arbitrary ground term. Thus, the conclusion of the
rule may not be local, even if φ is local.

We can, however, force an axiom instance to be local if it
is truly needed, at the possible expense of adding quantifiers
to the interpolant. To do this we add a fresh set of localization
symbols X to ΣI . That is, we take these symbols to be
interpreted so they do not count as part of the vocabulary of a
term and may always occur in interpolants. We assume a total,
well-founded order ≺ on X . We will write s .= t to stand for
an equation s = t such that s ∈ X and t is a ground term such
that for all symbols s′ ∈ X occurring in t, s′ ≺ s. Such an
equation will be called a definition. Note that the well-founded
order prevents circular definitions.

6

We introduce the following rule to allow us to drop a
definition no longer in use:

ELIM
s
.= t,Γ `s ∆
Γ `s ∆

s 6� Γ,∆

Now consider an axiom φ[·], with a placeholder to be filled
by an arbitrary term of a given sort. Suppose that φ itself is
local, but we are given an instance φ[t] that is not local. Let π
be a highest local position in t. That is, π is a syntactic position
in formula t such that t|π is local, but no higher position in
t is local. We can eliminate this non-locality by choosing a
fresh localization symbol s, defining s .= t|π , and substituting
s into position π in t. Note that for this to be legitimate, the
symbol s must be greater in the order ≺ than any localization
symbol occurring in t|π .

We can apply this idea to localize axiom instances using
replacements of the following form:

∗ ` φ[t] {Ji}
Γ `s ∆

→ ELIM

∗ ` φ[t[s]π] {Ji}
s
.= t|π,Γ `s ∆

Γ `s ∆

That is, suppose we can prove some strict sequent Γ `s ∆
from the axiom instance φ[t] and some other premises {Ji}.
If we assume the definition s

.= t|π , we can prove the same
result from the alternative axiom instance φ[t[s]π]. This can be
done by carrying the assumption up to the level of the axiom
instance and applying substitution to yield the original formula
φ[t]. A definition elimination step is then used to remove the
assumption. Note this inference is strict since the definition
s
.= t|π is constructed to be local. In this way we obtain the

original conclusion Γ `s ∆ from the altered axiom instance
φ[t[s]π].

By repeated applying this rule, we eventually reach the top
position of t. At this point, we obtain φ[s], which is a local
instance of the axiom. Thus it can be replaced with an instance
of the LOCAL rule. Note this procedure easily generalizes
to axioms with multiple placeholders. We apply the above
transformation to all the minimal closed strict sub-trees of
the proof. The result is that all axiom instances are eliminated
from the proof, hence the secondary prover need not be aware
of these axioms.

Now, since we have introduced the ELIM rule into our proof
system, we must also introduce corresponding interpolation
rules. These rules are as follows:

ELIMA
(A,B) ` s .= t,∆ [φ]
(A,B) ` ∆ [∃s. φ]

s 6� A,B,∆ t ∈ L(A)\L(B)

ELIMB
(A,B) ` s .= t,∆ [φ]
(A,B) ` ∆ [∀s. φ]

s 6� A,B,∆ t ∈ L(B)

Notice that eliminating a definition on the A side adds an
existential quantifier to the interpolant, while eliminating a
definition on the B side adds a universal. Also note that the
side condition that s not occur in A or B is critical to the
soundness of the rule. That is, if A implies φ and s does not
occur in A, then A implies ∀s. φ. Similarly, if A and s = t
imply φ and s does not occur in A, then A implies ∃s. φ,
with t providing the witness for the existential.

Finally, notice that in case multiple definitions are intro-
duced, their order of elimination is the reverse of the order of
introduction. Thus, definitions corresponding to larger terms
produce the inner quantifiers.

In practice, we apply this transformation to three ax-
ioms: the quantifier instantiation axiom shown above, and the
two standard axioms of the non-extensional array theory. In
general, this method can be applied to any theory that is
finitely axiomatizable in FOL, provided the prover provides
the required axiom instances. However, it does not apply to
axiom schemas (such as the congruence axiom schema for the
theory of uninterpreted functions) because we cannot quantify
over functions and predicates in FOL. Though the ELIM rule
introduces quantifiers in the interpolants, in practice these
can often be eliminated using simple rules, for example, by
replacing ∃s. s = x ∧ φ with φ[x/s].

D. Accounting for rewriting

One of the most common reasons that non-strict inferences
occur in Z3 proofs is rewriting. That is, if resolution is only
performed on predicates that occur in the original assumptions
A and B, then only strict inferences can occur in a resolution
tree. However, Z3 typically generates some non-local predi-
cates by rewriting. That is, for some predicate p occurring in
A or B, Z3 infers p⇔ p′, where p′ is not local, by rewriting p
with some unconditional equations in A and B. The non-local
predicate p′ is then substituted for p, resulting in resolutions
on non-local predicates. Since non-strict inferences result in
larger lemmas, we would like to substitute the original p back
in for p′ in the proof to increase strictness.

There may be many possible ways to achieve this. We
briefly sketch here one simple approach that has proved
effective. We first scan the proof for any sequents of the form
Γ ` p⇔ p′, where Γ ⊆ {A,B}, p is local, and p′ is not local.
We can use this equivalence to push resolutions on p′ towards
the leaves of the derivation tree. From the equivalence p⇔ p′,
we can derived the two implications p→ p′ and p′ → p. Let
RPL(p′, p) be a shorthand for a derivation tree of the following
form:

RES
Γ ` ∆, p′ ∗

Γ ` p′ → p
Γ ` ∆, p

That is, RPL(p, p′) uses the implication p → p′ to replace p
with p′. Now we can replace any occurrence of resolution on
p′ using the following rule:

RES
Γ ` ∆, p′ Γ ` ∆′,¬p′

Γ ∪ Γ′ ` ∆ ∪∆′
→

RES

RPL(p′,p)
Γ ` ∆, p′

Γ ` ∆, p
RPL(¬p′,¬p)

Γ′ ` ∆′,¬p′
Γ′ ` ∆′,¬p

Γ ∪ Γ′ ` ∆ ∪∆′

That is, we eliminate a resolution on p′ by replacing p′ with
the equivalent p and resolving on p. The resulting instances
of RPL can be pushed up the resolution tree by simply re-
ordering resolutions. Here we show only one case (omitting

7

the RES labels to save space):

Γ ` ∆, p′, q Γ′ ` ∆′,¬q
Γ,Γ′ ` ∆,∆′, p′

∗
Γ,Γ′ ` p′ → p

Γ,Γ′ ` ∆,∆′, p
→

Γ ` ∆, p′, q ∗
Γ,Γ′ ` p′ → p

Γ,Γ′ ` ∆,∆′, p, q
Γ′ ` ∆′,¬q

Γ,Γ′ ` ∆,∆′, p

In this way, the resolutions on non-local atoms are pushed
upward in the derivation tree until they meet a non-resolution
inference. Since these resolutions are foreign they will even-
tually be eliminated by lemma extraction. By moving them
upward in the derivation tree, we make the resulting minimal
extractable sub-trees smaller and thus reduce the size of
lemmas that must be proved by the secondary prover.

E. Accounting for sub-tree sharing

The proofs generated by Z3 are represented not as trees, but
as DAG’s. That is, in the proof representation it is possible
(and in fact common) for two nodes to share children. Of
course we must take care not to process shared sub-trees
twice in the translation process. This is easily done for the
localization step, which remains linear time in the proof size.
Lemma extraction is quadratic on DAG-like proofs because
the minimal extractable sub-trees of distinct foreign inferences
can overlap. In practice, though, since these sub-trees tend to
be small, this effect is insignificant. Axiom elimination is in
principle also quadratic on DAG’s, since the definitions needed
to localize each axiom instance may need to be eliminated at
many nodes in the DAG. If this is a problem in practice, it
can be solved by placing all instances of ELIM at the root of
the derivation tree. The method of Section IV-D is also linear
time for DAG-like proofs.

F. Summary of interpolation procedure

To summarize, the translation from a Z3 proof of A,B `
to an interpolant for A ∧ B proceeds in the following steps.
We first push resolutions on non-local atoms upward in the
derivation by using proved equivalences with local atoms. Next
we convert the axiom instances to local formulas. This involves
introducing fresh defined symbols, which are later eliminated
using the ELIM rule. The localization phase then eliminates
all closed sub-trees with local conclusions (including axiom
instances) using the LOCAL rule. Lemma extraction is then
used to eliminate sub-trees that cannot be represented in
SP . This phase introduces the LEMMA rule. The resulting
proof is translated inference-by-inference into a derivation
in the interpolation calculus SI . In this process, lemmas
are interpolated by calls to the secondary prover. Quantifiers
are introduced in translating the ELIM rule. The result is a
derivation of (A,B) ` [φ] where φ is an interpolant for A∧B.

V. EXPERIMENTAL RESULTS

In this section, we describe some experiments to evaluate
the efficiency of the above approach in practice.

Our implementation is written in C++, calling directly to
Z3 via its API. We use version 2.19 of Z3 without modifi-
cation. This is important because we do not wish to degrade
the performance of Z3 in any way, except insofar as proof
generation degrades performance. Except for proof generation,
we use Z3 with default options. Our secondary prover is a
simple SMT solver supporting QF UFLIA and interpolation. It
uses a standard Nelson/Oppen theory combination, with theory
propagation. Linear arithmetic is handled by the Simplex algo-
rithm, with a branch-and-cut approach for integer arithmetic.
Interpolation is done using essentially the system of [18], with
the addition of the DIV rule of [22] to handle Gomory cuts.
In principle, however, any interpolating prover that handles
QF UFLIA can be used as the secondary prover.

For benchmarks, we need a set of problems that require
the power of Z3, and at the same time are representative of a
realistic application of interpolation. Unfortunately, existing
benchmarks are either very simple or not realistic. Earlier
evaluations, such as [14], have used either formulas involving
a single program execution path, or synthetic benchmarks
derived from arbitrarily partitioning formulas derived from
SMT-LIB benchmarks into conjuncts A and B. The former
are inappropriate because by construction they are too simple
to test the performance of the solver, while the latter are
inappropriate because of the arbitrary partitioning. Since the
performance of our method depends on locality in the proof,
a realistic partitioning is essential for evaluation. Moreover,
we would like to evaluate the method on problems for which
interpolation is actually relevant.

For these reasons, we instead use a set of benchmark
interpolation problems derived from bounded verification of
safety properties of sequential and concurrent programs. These
formulas are generated by the tool Poirot [15]. This tool
unwinds the loops in a program and in-lines procedure calls
up to some determined bound. The result is a conjunction of
formulas in AUFLIA, each of which represents the semantics
of a single procedure instance, plus one additional constraint
representing a standard background theory and containing
quantifiers. The procedure instances form a tree, such that the
children of any node represent the procedures called within
that node. The formulas may represent an under-approximation
of the program behavior, in which case the leaf procedures are
replaced by the summary FALSE, or an over-approximation,
in which case the leaves are replaced by the summary TRUE.
The conjunction of the formulas is satisfiable when the given
safety property fails in the given over- or under-approximation.

For our benchmarks, we use the under-approximations,
which are typically unsatisfiable. We choose the sub-tree
rooted at an arbitrary procedure instance as the A formula,
and the remainder of the conjuncts as the B formula. An
interpolant for this pair is a formula involving only symbols
that represent the pre-state and post-state of this particular
procedure instance. Note that this can in principle be a large
set of symbols, since it can include symbols representing any
global variables referenced in the procedure or any of its
transitive callees. This can include symbols representing the
state of the heap.

We can think of the interpolant for A ∧ B as a potential

8

summary for the given procedure. It is guaranteed by the
procedure instance and is sufficient to prove the given property
in the given calling context. However, since the unwinding is
approximate, this summary is also approximate. Nonetheless,
it is possible that such approximate summaries can be used
to construct true inductive summaries, as in [21], or to derive
predicates for predicate abstraction, as in [9] or that they can
themselves be used as approximations of procedures in further
unwinding of the call tree.

For our purposes, the interest of these benchmarks is that,
because they represent a large space of possible program exe-
cutions, they cannot be easily solved by existing interpolating
provers. To evaluate our method using these problems, we
will measure two quantities: the overhead incurred in the
interpolation process, relative to the run time of Z3, and the
relative performance of our method compared to three existing
provers. The former is easy to measure. The latter is made
difficult by the fact that no interpolating provers exist that can
handle the full AUFLIA theory.

To work around this problem, we will make things easier
for the existing provers by providing them with the necessary
quantifier instantiations and array axiom instances. We can
do this by first applying axiom elimination to the Z3 proof,
then applying lemma extraction to the entire proof tree, less
the axiom instances. The result is an interpolation problem in
QF UFLIA. It should be kept in mind that the performance of
a prover on this problem puts a lower bound on performance
on the original problem, since the prover is relieved of the
need to handle quantifier instantiation and the array theory.

The results are summarized in Table I. All run times are
using one core of a 4-core 3.06 GHz Intel Xeon processor.
Memory usage is limited to 2.5GB. The first column gives
a name for the benchmark, the subscripts indicating different
under-approximations and sub-trees. The “mouser”, “serial”
and “fdc” examples are safety properties of Windows device
drivers from the Windows Static Driver Verifier [1]. The
“ndisprot” and “wmm” examples are derived from threaded
programs via the Lal/Reps construction [16], the latter using
a weak memory model. The next two columns give the size
of the A and B formulas in number of procedure instances
(not considering those approximated by the summary FALSE).
The next column shows the size of the Z3 proof in number
of inferences. The next three columns show the Z3 run time,
the interpolation time (including execution of the secondary
prover) and the fractional overhead introduced by interpola-
tion. The next column shows the number of lemmas produced.

Finally, the last three columns show the run times of
three existing interpolating provers on the full problems plus
quantifier and array axiom instantiations generated by Z3.
Run times longer than 1800s are notated > 1800. Memory
exhaustion is indicated by MEM. The MathSAT4 solver [4]
supports quantifier-free linear rational and integer difference
bound arithmetic. Though it does not support full LIA, we still
find that it can handle the smaller problems (meaning these
problems have no models in the LRA or difference bound
theories). It is, however, one to two orders of magnitude slower
than Z3 on these problems (note Z3 is handling quantifiers and
array axioms, while MathSAT4 is not). On the larger problems,

MathSAT4 exhausts memory. In two cases marked CRASH,
MathSAT4 crashed. The Princess prover [3] handles UFLIA.
Though in principle it can handle quantifiers, we nonetheless
eliminated the quantifiers from the input formulas. Despite
this, Princess failed to solve any problem within 1800s. We
also tested the SMTInterpol solver, which supports QF LIA,
but this tool exhausted memory on all problems.5

We can make two general observations from these data.
First, the overhead of interpolation relative to proof production
in Z3 is small, and in fact is smaller on the larger proofs.
This is in spite of the fact that the secondary prover is far
less sophisticated than Z3. By dividing the proof into relative
small lemmas, we have lessened the burden on the secondary
prover to the point that run time is dominated by Z3.

Second, these problems are out of range for existing in-
terpolating provers. Even with assistance provided by Z3 in
instantiating quantified formulas and axioms, the best of the
existing provers can handle only the smaller problems. By
exploiting a state-of-the-art SMT solver, we have obtained a
multiple order-of-magnitude performance improvement.

VI. CONCLUSION

In this work we have described an interpolating prover
that is simultaneously as efficient as state-of-the-art SMT
solvers and that handles the rich theory required by program
verification. This was accomplished by using an efficient
proof-generating SMT solver as a guide to a less efficient
interpolating prover. By dividing the proof generated by Z3
into small lemmas, we create interpolation problems small
enough for the interpolating prover to handle efficiently. In this
way, we obtain a heuristically efficient interpolation procedure
without requiring Z3 to produce proofs in a restricted system
that allows feasible interpolation. In fact, the system does not
depend on the specific set of proof rules used by Z3, with
the exception of a few, such as RES and CONTRA. Thus,
the Z3 proof system can potentially be expanded without
any modification to the interpolation system. Moreover, any
interpolating prover can be used as the secondary prover. This
may allow a variety of interpolation methods to be used.

Evaluation on a set of benchmarks derived from program
verification seems to indicate that the performance of an
efficient solver such as Z3 can expand the range of application
of interpolating provers beyond what was previously possible.
This might in turn support new classes of interpolation-based
algorithms for verification. One such class might be algorithms
that analyze whole programs rather than program paths.

An interesting question to address in the future is how this
method affects the quality of interpolants produced. Some
methods have been proposed that, in effect, search the space
of available proofs for one producing an interpolant satisfying
certain criteria, with the goal of preventing the interpolants
from diverging with deeper unwindings [11], [20]. It seems
possible that using larger lemmas may allow greater flexi-
bility to the secondary prover in constructing high quality
interpolants. Thus a trade-off of performance and interpolant

5The benchmarks and scripts to run the provers are available at
http://www.kenmcmil.com/z3interp.

9

Problem Procedures Proof Time (s) interp/Z3 Lemmas Time (s)
A B size Z3 interp MathSAT4 Princess SMTInterpol

mouserA1 22 12 15864 0.098 0.010 0.102 5 0.986 > 1800 MEM
mouserA2 1 34 24270 0.421 0.011 0.026 0 1.804 > 1800 MEM
mouserA3 1 38 23331 0.232 0.008 0.034 0 1.718 > 1800 MEM

serial1 111 23 69006 3.309 0.042 0.013 11 115.947 > 1800 MEM
serial2 1 138 70341 3.375 0.039 0.012 0 121.928 > 1800 MEM

mouserB1 456 12 253078 28.0 0.345 0.012 162 MEM > 1800 MEM
mouserB2 454 12 249548 29.4 0.276 0.009 176 MEM > 1800 MEM
mouserB3 1 468 269550 26.2 0.183 0.007 21 MEM > 1800 MEM

fdc1 148 5 115090 3.78 0.107 0.028 91 MEM > 1800 MEM
fdc2 1 153 114109 3.67 0.101 0.028 0 MEM > 1800 MEM
fdc3 1 155 115420 3.28 0.073 0.022 16 MEM > 1800 MEM

ndisprot1 1 29 31468 0.460 0.089 0.193 283 CRASH > 1800 MEM
ndisprot2 1 71 133863 5.61 0.208 0.037 0 CRASH > 1800 MEM

wmm1 1 2 15657 0.082 0.014 0.170 20 0.313 > 1800 MEM

TABLE I
RESULTS OF INTERPOLATION EXPERIMENTS ON POIROT FORMULAS.

quality might be achieved by adjusting the proof translation
process.

Acknowledgments Thanks to Shaz Qadeer and Akash Lal
for providing the formulas generated by Poirot, to Alberto
Griggio for assistance with MathSAT4, to Philipp Rümmer
for assistance with Princess, and to the anonymous reviewers
for thorough and insightful comments.

REFERENCES

[1] Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K. Rajamani.
Slam and Static Driver Verifier: Technology transfer of formal methods
inside Microsoft. In IFM, pages 1–20, 2004.

[2] Clark Barrett, Morgan Deters, Albert Oliveras, and Aaron Stump. Design
and results of the 3rd annual satisfiability modulo theories competition
(SMT-Comp 2007). International Journal on Artificial Intelligence
Tools, 17(4):569–606, 2008.

[3] Angelo Brillout, Daniel Kroening, Philipp Rümmer, and Thomas Wahl.
Beyond quantifier-free interpolation in extensions of Presburger arith-
metic. In VMCAI, pages 88–102, 2011.

[4] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto
Griggio, and Roberto Sebastiani. The MathSAT 4 SMT solver. In CAV,
pages 299–303, 2008.

[5] Roberto Bruttomesso, Silvio Ghilardi, and Silvio Ranise. Rewriting-
based quantifier-free interpolation for a theory of arrays. In RTA, pages
171–186, 2011.

[6] Roberto Bruttomesso, Simone Rollini, Natasha Sharygina, and Aliaksei
Tsitovich. Flexible interpolation with local proof transformations. In
ICCAD, pages 770–777, 2010.

[7] W. Craig. Three uses of the Herbrand-Gentzen theorem in relating model
theory and proof theory. J. Symbolic Logic, 22(3):269–285, 1957.

[8] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient
SMT solver. In TACAS, pages 337–340, 2008.

[9] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstrac-
tions from proofs. In POPL, pages 232–244. ACM, 2004.

[10] Krystof Hoder, Laura Kovács, and Andrei Voronkov. Interpolation and
symbol elimination in vampire. In IJCAR, pages 188–195, 2010.

[11] Ranjit Jhala and Kenneth L. McMillan. A practical and complete
approach to predicate refinement. In TACAS, volume 3920 of LNCS,
pages 459–473. Springer, 2006.

[12] Deepak Kapur, Rupak Majumdar, and Calogero G. Zarba. Interpolation
for data structures. In SIGSOFT FSE, pages 105–116, 2006.

[13] J. Krajı́c̆ek and P. Pudlák. Some consequences of cryptographical
conjectures for S1

2 and EF . Information and Computation, 140(1):82–
94, January 1998.

[14] Daniel Kroening, Jérôme Leroux, and Philipp Rümmer. Interpolating
quantifier-free presburger arithmetic. In LPAR (Yogyakarta), pages 489–
503, 2010.

[15] Akash Lal, Shaz Qadeer, and Shuvendu Lahiri. Corral: A whole-program
analyzer for Boogie. Technical Report MSR-TR-2011-60, Microsoft
Research, May 2011.

[16] Akash Lal, Tayssir Touili, Nicholas Kidd, and Thomas W. Reps. Inter-
procedural analysis of concurrent programs under a context bound. In
TACAS, pages 282–298, 2008.

[17] K. L. McMillan. Interpolation and SAT-based model checking. In CAV,
volume 2725 of LNCS, pages 1–13. Springer, 2003.

[18] K. L. McMillan. An interpolating theorem prover. Theor. Comput. Sci.,
345(1):101–121, 2005.

[19] K. L. McMillan. Lazy abstraction with interpolants. In CAV, volume
4144 of LNCS, pages 123–136. Springer, 2006.

[20] Kenneth L. McMillan. Quantified invariant generation using an interpo-
lating saturation prover. In TACAS, pages 413–427, 2008.

[21] Kenneth L. McMillan. Lazy annotation for program testing and
verification. In CAV, pages 104–118, 2010.

[22] P. Pudlák. Lower bounds for resolution and cutting plane proofs and
monotone computations. J. Symbolic Logic, 62(2):981–998, June 1997.

