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ABSTRACT

Planned wide-field weak lensing surveys are expected to reduce the statistical errors on the shear field to unprecedented levels. In
contrast, systematic errors like those induced by the convolution with the point spread function (PSF) will not benefit from that
scaling effect and will require very accurate modeling and correction. While numerous methods have been devised to carry out the
PSF correction itself, modeling of the PSF shape and its spatial variations across the instrument field of view has, so far, attracted
much less attention. This step is nevertheless crucial because the PSF is only known at star positions while the correction has to be
performed at any position on the sky. A reliable interpolation scheme is therefore mandatory and a popular approach has been to use
low-order bivariate polynomials. In the present paper, we evaluate four other classical spatial interpolation methods based on splines
(B-splines), inverse distance weighting (IDW), radial basis functions (RBF) and ordinary Kriging (OK). These methods are tested
on the Star-challenge part of the GRavitational lEnsing Accuracy Testing 2010 (GREAT10) simulated data and are compared with
the classical polynomial fitting (Polyfit). In all our methods we model the PSF using a single Moffat profile and we interpolate the
fitted parameters at a set of required positions. This allowed us to win the Star-challenge of GREAT10, with the B-splines method.
However, we also test all our interpolation methods independently of the way the PSF is modeled, by interpolating the GREAT10
star fields themselves (i.e., the PSF parameters are known exactly at star positions). We find in that case RBF to be the clear winner,
closely followed by the other local methods, IDW and OK. The global methods, Polyfit and B-splines, are largely behind, especially
in fields with (ground-based) turbulent PSFs. In fields with non-turbulent PSFs, all interpolators reach a variance on PSF systematics
σ2

sys better than the 1 × 10−7 upper bound expected by future space-based surveys, with the local interpolators performing better than
the global ones.
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1. Introduction

The convolution of galaxy images with a point spread function
(PSF) is among the primary sources of systematic error in weak
lensing measurement. The isotropic part of the PSF kernel makes
the galaxy shape appear rounder, while the anisotropic part in-
troduces an artificial shear effect that may be confused with the
genuine shear lensing signal.

To tackle these issues, various PSF correction methods have
been proposed (Kaiser et al. 1995; Luppino & Kaiser 1997;
Hoekstra et al. 1998; Kaiser 2000; Bernstein & Jarvis 2002;
Hirata & Seljak 2003; Refregier & Bacon 2003) and some
of them implemented as part of shear measurement pipelines
(Heymans et al. 2006; Massey et al. 2007; Bridle et al. 2010).
However, these correction schemes do not have built-in solu-
tions for addressing another problem: the spatial variation of the
PSF across the instrument field of view that may arise, for in-
stance, from imperfect telescope guidance, optical aberrations
or atmospheric distortions.

A non-constant PSF field implies the PSF is no longer ac-
curately known at galaxy positions and must then be estimated
for the accurate shape measurement of galaxies. Bivariate poly-
nomials, typically used as interpolators for this purpose, have in
several cases been found unable to reproduce sparse, multi-scale
or quickly varying PSF anisotropy patterns (Hoekstra 2004;
Jarvis & Jain 2004; Van Waerbeke et al. 2002, 2005; Jee & Tyson
2011).

This raises the question of whether there exists alternative
PSF models and interpolation schemes better suited for PSF es-
timation than those used so far. Indeed, it seems important to
improve this particular aspect of PSF modeling in the perspec-
tive of future space-based missions such as Euclid or advanced
ground-based telescopes like the LSST (Jee & Tyson 2011).

Only recently has the PSF variation problem begun to be
taken seriously with, notably, the advent of the GRavitational
lEnsing Accuracy Testing 2010 (GREAT10) Star Challenge, one
of the two GREAT10 challenges (Kitching et al., in prep.). The
Star Challenge images have been designed to simulate a variety
of typical position-varying PSF anisotropy patterns and compet-
ing PSF interpolation methods were judged on their ability to
reconstruct the true PSF field at asked, non-star positions.

The Star Challenge gave us the opportunity to evaluate a
number of alternative schemes suitable for the interpolation of
realistic, spatially-varying PSF fields. The objective of this paper
is twofold: (1) to describe our approach for tackling the problems
raised by the Star Challenge and to discuss our results; (2) to per-
form a comparative analysis of the different interpolation meth-
ods after applying them on the Star Challenge simulations.

Our paper is thus organized as follows. We begin by review-
ing the most commonly used PSF representation and interpola-
tion schemes in Sect. 2 and continue with a overview of the inter-
polation schemes mentioned above in Sect. 3. We then describe
our PSF estimation pipeline and analyze our results in Sects. 4
and 5. Lastly, in Sect. 6, we measure the respective accuracy of
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Fig. 1. Interpolating a spatially-varying PSF field. The illustrated field
is a subset of an actual GREAT10 Star Challenge PSF field.

all methods based on the solutions made available after comple-
tion of the challenge and discuss the merits of each method. We
conclude in Sect. 7.

2. An overview of existing PSF interpolation

schemes

Before correcting galaxies in the image for a spatially-varying
PSF field, every shear measurement pipeline has, in one way or
another, to interpolate the PSF between the stars, as illustrated
in Fig. 1. The way this is best achieved depends essentially on
the PSF model used and on the PSF interpolation algorithm. The
PSF model defines which features of the PSF are to be repre-
sented, which also determines on which quantities spatial inter-
polation is performed. The role of the interpolation scheme, on
the other hand, is to apply a prediction algorithm to find the best
estimates for those quantities.

In the KSB method Kaiser et al. (1995) and its KSB+ vari-
ant (Luppino & Kaiser 1997; Hoekstra et al. 1998), the relevant
features of the PSF model are its ellipticity and size, which are
estimated from the second-order geometrical moments of the
PSF image. The main idea behind the PSF correction scheme is
that the PSF distortion on a galaxy image can be well described
by a small but highly anisotropic kernel q, convolved with a
large, circular seeing disk. To find the appropriate q for galaxies,
the values of q∗ at star positions (and sometimes the so-called
“smear” and “shear” polarization tensors Psm∗ and Psh∗) are in-
terpolated across the image. For doing so, the typical procedure
is to fit a second or third-order bivariate polynomial function.

Exactly which quantity is interpolated and which order is
used for the polynomial depends on the KSB+ implementa-
tions. See e.g. Heymans et al. (2006, Appendix A), Massey et al.
(2007) and recently published studies using KSB+ (Hoekstra
et al. 1998; Clowe & Schneider 2002; Heymans et al. 2005;
Hetterscheidt et al. 2007; Paulin-Henriksson et al. 2007; Fu et al.
2008; Umetsu et al. 2010).

A model representing a PSF as only a size and first-order de-
viation from circularity certainly appears quite restrictive. One
can instead look for an extensive, but compact description of the
PSF image, better suited to operations like noise filtering or de-
convolution. A natural approach is to characterize the full PSF as
a compact, complete set of orthogonal basis functions provided
in analytical form, each basis being associated with a particular
feature of the image (shape, frequency range, etc.). Ideally, this
would not only simplify galaxy deconvolution from the PSF but
also allow to better model the spatial variation of the PSF across
the field of view.

Bernstein & Jarvis (2002) and Refregier (2003); Refregier
& Bacon (2003); Massey & Refregier (2005) have proposed
PSF expansions based on the eigenfunctions of the two-
dimensional quantum harmonic oscillator, expressed in terms of
Gauss-Laguerre orthogonal polynomials (Abramowitz & Stegun
1965). These functions can be interpreted as perturbations
around a circular or elliptical Gaussian. The effect of a given
operation (such as shear or convolution), on an image can then
be traced through its contribution on each coefficient in the ba-
sis function expansion. For instance, the second-order f2,2 co-
efficient of a Shapelet is the ellipticity estimator based on the
Gaussian-weighted quadrupole moments used in KSB.

Modeling the PSF variation patterns with Shapelets typi-
cally involves the following steps: stars are expanded in terms
of Shapelet basis functions and the expansion coefficients for
each of the basis functions are fitted with a third or fourth-order
polynomial. The interpolated values of the Shape let coefficients
are then used to reconstruct the PSF at galaxy positions.

This scheme has been successfully applied to several weak
lensing cluster studies (Jee et al. 2005a,b, 2006, 2007b; Bergé
et al. 2008; Romano et al. 2010). However, it has been argued
(Jee et al. 2007a; Melchior et al. 2010) that even a high-order
Shapelet-based PSF model is unable to reproduce extended PSF
features (such as its wings) and that the flexibility of the model
makes it vulnerable to pixelation and noise. So, although the
level of residual errors after Shapelets decomposition appears
low enough for cluster analysis, it may prove too high for preci-
sion cosmic shear measurement.

Actually, it is not clear if there exists any set of basis
functions expressed in analytical form that is capable of accu-
rately describing all the signal frequencies contained in the PSF.
An alternative approach is to decompose the PSF in terms of
basis functions directly derived from the data through Principal
Component Analysis (PCA), as pioneered by Lauer (2002),
Lupton et al. (2001). This approach is supposed to yield a set
of basis function, the so-called “Principal Components”, opti-
mized for a particular data configuration and sorted according to
how much they contribute to the description of the data.

In practice, two main procedures have been experimented
that essentially depend on the type data where PCA is applied.
Jarvis & Jain (2004) and Schrabback et al. (2010) fit selected
components of the PSF (e.g. ellipticity or KSB anisotropy ker-
nel) across all image exposures with a two-dimensional polyno-
mial of order 3 or 4. PCA analysis is performed on the coeffi-
cients of the polynomial, which allows the large-scale variations
of the PSF in each exposure to be expressed as a weighted sum
of a small set of principal components. A further, higher-order
polynomial fit is then conducted on each exposure to capture
more detailed features of the PSF.

On the other hand, and more recently, Jee et al. (2007a),
Nakajima et al. (2009) and Jee & Tyson (2011) experimented
a different procedure for modeling the variation of the Hubble
Space telescope (HST) ACS camera and a simulated Large
Synoptic Survey Telescope (LSST) PSF. Instead of applying
PCA on polynomial coefficients, they perform a PCA decom-
position on the star images themselves into a basis made of the
most discriminating star building blocks. Each star can then be
expanded in terms of these “eigenPSFs” and the spatial varia-
tion of their coefficients in that basis is modeled with a bivariate
polynomial.

Regardless of the procedure used, the PCA scheme proves
superior to wavelets and Shapelet for reproducing smaller-scale
features in the PSF variation pattern, thanks to improved PSF
modeling and the use of higher-order polynomials. In the case
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of Jarvis & Jain (2004), applying PCA across all exposures al-
lowed to compensate for the small number of stars available per
exposure. Moreover, PCA is not tied to any specific PSF model.

It should be noted, however, that at least two factors may
limit the performance of PCA in practical weak lensing applica-
tions: the first is that the PCA algorithm is only able to capture
linear relationships in the data and thus may fail to reproduce
some types of high-frequency variation patterns; the other is that
PCA misses the components of the PSF pattern that are random
and uncorrelated, such as those arising from atmospheric turbu-
lence. How serious these limitations prove to be and how they
can be overcome need to be investigated further (e.g. Jain et al.
2006; Schrabback et al. 2010).

All the above methods attempt to model PSF variation pat-
terns in an empirical way by the application of some mathemat-
ical formalism. It may, on the contrary be more beneficial to un-
derstand which physical phenomena determine the structure of
the PSF patterns and, once done, seek appropriates models for
reproducing them (Jee et al. 2007a; Stabenau et al. 2007; Jee &
Tyson 2011). The PSF of the HST ACS camera, for instance, has
been studied extensively and in some cases, the physical origin
of some of the patterns clearly identified. Jee et al. (2007a) and
Jee & Tyson (2011) could relate the primary principal compo-
nent to changes in telescope focus causes by constraints on the
secondary mirror supporting structure and the “thermal breath-
ing” of the telescope.

In fact, various combined effects make the PSF vary spa-
tially or over time. Some patterns are linked to the behavior
of the optical system of the telescope or the detectors. Others
are related to mechanical or thermal effects that make the tele-
scope move slightly during an observation. For ground-based in-
struments, refraction in the atmosphere and turbulence induce
further PSF distortion.

Incorporating such a wide diversity of effects into a PSF vari-
ation model is not an easy task. However, according to Jarvis
et al. (2008), models of low-order optical aberrations such as fo-
cus and astigmatism can reproduce 90% of the PSF anisotropy
patterns found in real observation data. If so, physically-
motivated models could provide an alternative or a complement
to purely empirical methods such as PCA.

3. Looking for better PSF interpolation schemes

The analysis of commonly used PSF interpolation schemes in
the previous section has shown that the range of PSF interpo-
lation algorithms is actually quite restricted: almost always the
quantities used to characterize the PSF are fitted using a bivariate
polynomial function.

But it is important to acknowledge there may exist alternative
interpolation schemes that would prove more effective for that
purpose than polynomial fitting. Beyond this, it is essential to
recognize the goal here is not to only interpolate changes in the
PSF but also to perform a spatial interpolation of such changes.

Interpolation (e.g. Press et al. 2007) is commonly understood
as the process of estimating of values at location where no sam-
ple is available, based on values measured at sample locations.
Spatial interpolation differs from regular interpolation in that it
can take into account and potentially exploit spatial relationships
in the data. In particular, it is often the case that points close to-
gether in space are more likely to be similar than points further
apart. In other words, points may be spatially autocorrelated, at
least locally. Most spatial interpolation methods attempt to make
use of such information to improve their estimates.

After a critical review of polynomial fitting, we consider and
discuss alternative spatial interpolation schemes for modeling
PSF variation patterns.

3.1. A critical view of polynomial fitting

In the context of spatial interpolation, fitting polynomial func-
tions of the spatial coordinate x = (xi, yi) to the sampled z(x)
values of interest by ordinary least squares regression (OLS) is
known as “Trend Surface Analysis” (TSA). The fitting process
thus consists in minimizing the sum of squares for (ẑ(x) − z(x)),
assuming the data can be modeled as a surface of the form

ẑ(x) =
∑

r+s≤p

brs xr ys (1)

The integer p is the order of the trend surface (and the order
of the underlying polynomial). Finding the bi coefficients is a
standard problem in multiple regression and can be computed
with standard statistical packages.

In the literature reviewed from the previous section, authors
often justify their choice of polynomial fitting by arguing the
PSF varies in a smooth manner over the image. Indeed trend
surfaces are well suited to modeling broad features in the data
with a smooth polynomial surface, commonly of order 2 or 3.

However, PSF variation patterns result from a variety of
physical effects and even though polynomials may adequately
reproduce the smoothest variations, there may exist several other
types of patterns that a low-order polynomial function cannot
capture. Polynomials are also quite poor at handling disconti-
nuities or abrupt changes in the data. This concerns particularly
sharp discontinuities across chip gaps and rapid changes often
found near the corners of the image.

An illustrative example of the shortcomings just described
was the detection of a suspicious non-zero B-mode cosmic shear
signal in the VIRMOS-DESCART survey (Van Waerbeke et al.
2001, 2002). After investigation (Hoekstra 2004; Van Waerbeke
et al. 2005), the small scale component of the signal was traced
to the PSF interpolation scheme: the second-order polynomial
function was unable to reproduce the rapid change in PSF
anisotropy at the edges of the images. In fact, one of the main
limitation of polynomials when used for interpolating PSF im-
ages in weak lensing studies lie in their inability to reproduce
variations on scales smaller than the typical inter-stellar dis-
tance on the plane of the sky (often .1 arcmin at high galactic
latitude).

Unfortunately there are no satisfactory solutions to these
shortcomings. Increasing the order of the polynomial function
does not help as it leads to oscillations while attempting to cap-
ture smaller-scale or rapidly-varying features. The z(x) values
may reach extremely (and unnaturally) small or large values near
the edge or just outside the area covered by the data. Such ex-
treme values can also create problems in calculations.

One way to alleviate such problems is to pack more
densely the interpolating points closer to the boundaries, but this
may not be easy to achieve in practice. Hoekstra (2004) and
Van Waerbeke et al. (2005) also obtained good results with an
interpolator made of a polynomial function to model large-scale
changes combined with a rational function to deal with small-
scale variations. It is not clear, however, if this scheme can be
safely applied on different data and this may require a signifi-
cant amount of fine tuning.

In addition to the issues just mentioned, local effects in one
part of the image may influence the fit of the whole regression
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Table 1. Least squares polynomial fitting/trend surface: Pros and cons.

Least squares polynomial fitting

Pros
Simple and intuitive
Fast to compute

Cons

Usually only able to capture broad features (underfitting)
Increasing the order of polynomials does not improve and
generally degrades accuracy (overfitting)
High-order polynomials generate numerical issues (round-
ing errors, overflow, etc.)
High sensitivity to outliers and fitting errors
Local changes propagate to the whole polynomial surface
No estimation of interpolation errors (deterministic)

surface, which makes trend surfaces very sensitive to outliers,
clustering effects or observable errors in the z(x). Finally, OLS
regression implicitly assumes the z(x) are normally distributed
with uncorrelated residuals. These assumptions do not hold true
when spatial dependence exists in the data.

Actually, the fact that trend surfaces tend to ignore any spa-
tial correlation or small-scale variations can turn into an advan-
tage to remove broad features of the data prior to using some
other, finer-grained interpolator. Indeed, we saw in Sect. 1 that
Jarvis & Jain (2004) took advantage of this feature in their
PCA-based interpolation scheme.

Most of the aforementioned limitations are rooted in the
use of standard polynomials. One possible way out is to aban-
don trend surfaces altogether and use piecewise polynomials
instead (especially Chebyshev polynomials), splines (de Boor
1978; Dierckx 1995; Schumaker 2007; Prenter 2008) or alter-
native schemes that do not involve polynomials. Table 1 recalls
the main advantages and disadvantages of polynomial fitting.

3.2. Toward alternative PSF interpolation methods

Having pointed out some important shortcomings of polynomial
regression, it seems legitimate to look for alternative classes of
interpolators. It is however, probably illusory to look for an ideal
interpolation scheme that can describe equally well any kind
of PSF variation structure. For instance the patterns of varia-
tion in a turbulent PSF are very different from those found in
a diffraction-limited PSF. It is therefore probably more useful to
identify which class of interpolators should be preferably used
for a particular type of PSF pattern.

It is also key to realize that one does not need to reconstruct
the entire PSF field: one only has to infer the PSF at specific
galaxy positions based on its knowledge at sample star positions.
This implies that the class of interpolation schemes applicable
to the PSF variation problem is not restricted to surface fitting
algorithms such as polynomial fitting, but also encompasses in-
terpolation algorithms acting on scattered data.

Such data may also be considered as a partial realization
of some stochastic process. In such case, it becomes possible
to quantify the uncertainty associated with interpolated values
and the corresponding interpolation method is referred to as a
method for spatial prediction. In this article we will neglect this
distinction and use the generic term “spatial interpolation”.

In fact, there are quite a few interpolation schemes that can
be applied to model PSF changes. Over the years a large num-
ber of interpolation methods have been developed in many dis-
ciplines and with various objectives in mind. Spatial interpola-
tors are usually classified according to their range (local versus
global), the amount of smoothing (exact versus approximate)

Table 2. Spatial interpolation methods reviewed in this article.

Interpolation method Scope Exactness Model

Polynomial fitting global approximate deterministic
Basis splines global approximate1 deterministic
Inverse distance weighting local exact2 deterministic
Radial basis function local exact3 deterministic
Ordinary Kriging local exact4 stochastic

Notes. (1) Can be made exact by disabling smoothing. (2) Smoothing
possible with specific algorithms. (3) Some Kriging algorithms are
approximate.

and whether they consider the data as a realization of some ran-
dom process (stochastic versus deterministic).

A global method makes use of all available observations in
the region of interest (e.g. the image of a whole portion of the
sky) to derive the estimated value at the target point whereas a lo-
cal method only considers observations found within some small
neighborhood around the target point. Thus, global methods may
be preferable to capture the general trend in the data, whereas
local methods may better capture the local or short-range vari-
ations and exploit spatial relationships in the data (Burrough
& McDonnell 1998). A trend surface is an example of global
estimator.

An interpolation methods that produces an estimate that is
the same as the observed value at a sampled point is called an
exact method. On the contrary a method is approximate if its
predicted value at the point differs from its known value: some
amount of smoothing is involved for avoiding sharp peaks or
troughs in the resulting fitted surface.

Lastly, a stochastic (also called geostatistical) interpolator
incorporates the concept of randomness and yields both an esti-
mated value (the deterministic part) and an associated error (the
stochastic part, e.g. an estimated variance). On the other hand,
a deterministic method does not provide any assessment of the
error made on the interpolated value.

Table 2 contains the list of spatial interpolation methods cov-
ered in this article along with their classification.

Nearly all methods of spatial interpolation share the follow-
ing general spatial prediction formula

ẑ(x0) =
N

∑

i=1

λi z(xi) (2)

where x0 is a target point where the value should be estimated,
the z(xi) are the locations where an observation is available and
the λi are the weights assigned to individual observations. N rep-
resents the number of points involved in the estimation (see
Fig. 2 for an illustration). Each interpolation method has its own
algorithm for estimating the weights λi. All the interpolation
methods evaluated in this article except splines, follow Eq. (2).

We now review several widely used interpolation schemes
that can be applied to the PSF interpolation problem: polynomial
splines, inverse distance weighting (IDW), radial basis functions
(RBF) and Kriging. In the remaining sections, we test these in-
terpolation methods using the GREAT10 Star Challenge simu-
lated data.

3.3. Spline interpolation

A (polynomial) univariate spline or degree p (order p+1) is made
of a set of polynomial pieces, joined together such that pieces
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Fig. 2. An illustration of local interpolation between a set of
neighboring observations Z(xi) at distances di from a target location x0.
In this example, a set of weights λi is assigned to each of the Z(xi), as
in Eq. (2).

and their derivatives at junction points (knots) are continuous up
to degree p − 1 (de Boor 1978; Dierckx 1995; Schumaker 2007;
Prenter 2008).

When it comes to modeling two-dimensional spatially
varying PSF attributes across an image, we are more specifically
interested in bivariate polynomial splines. A function s(x, y) de-
fined on a domain [a, b] × [c, d] with respective, strictly increas-
ing knot sequences λi, i = 0, 1, ..., g + 1 (λ0 = a, λg+1 = b) in the
x direction and µ j, j = 0, 1, ..., h + 1 (µ0 = c, µh+1 = d) in the
y direction is called a bivariate (tensor product) spline function
of degree k > 0 (order k + 1) in x and l > 0 (order l + 1) in y if
the following two conditions are satisfied:

1. on each subregion Di, j = [λi, λi+1] × [µ j, µ j+1], s(x, y) is
given by a polynomial of degree k in x and l in y

s(x, y) ∈ Pk ⊗ Pl i = 0, 1, ..., g; j = 0, 1, ..., h;

2. The function s(x, y) and all its partial derivatives are contin-
uous onDi, j

∂i+ js(x, y)
∂xi ∂y j

∈ C(Di, j) i = 0, 1, ..., k − 1; j = 0, 1, ..., l − 1.

We saw earlier that polynomial fitting suffers in particular from
two serious drawbacks. One of these is that individual obser-
vations can exert an influence, in unexpected ways, on different
parts of the interpolating surface. The other is the tendency of the
interpolation surface to wiggle without control as soon as one in-
creases the degree of the polynomial to try to obtain a closer fit.

Polynomial splines solve these problems in two ways. First,
a spline is not made of a single “global” polynomial but of a
set of “local” polynomial pieces. This design confines the in-
fluence of individual observations within the area covered by the
enclosing polynomial piece. In most applications, a specific type
of spline is preferred, the so-called “Basis spline” (B-spline),
built from as a linear combination of basis polynomial functions

called B-splines

s(x, y) =
g

∑

i=−k

h
∑

j=−l

ci, j Ni,k+1(x) M j,l+1(y)

where Ni,k+1(x) and M j,l+1(y) are B-splines defined on the λ and
µ knot sequences respectively. B-splines are popular for their
computational efficiency, e.g. with the algorithms of Cox (Cox
1972) or de Boor (de Boor 1972). For a formal definition of the
B-spline basis see e.g. de Boor (1978); Dierckx (1995); Prenter
(2008).

The second issue is solved by the ability to control the
smoothness of the spline. The example of polynomial fitting
shows that a good fit to the data is not the one and only goal in
surface fitting; another, and conflicting, goal is to obtain an es-
timate that does not display spurious fluctuations. A successful
interpolation is, actually, a tradeoff between goodness of fit (fi-
delity to the data) and roughness (or “wiggleness”) of fit: a good
balance between these two criteria will allow the approximation
to not pick up too much noise (overfitting) while avoiding signal
loss (underfitting).

There is an extensive literature on spline interpolation and
many algorithms and variants have been developed since their
invention in the 1960s. Still, one can divide spline interpolation
algorithms into two main families: those based on the so-called
constructive approach, where the form of the spline function is
specified in advance and the estimation problem is reduced to the
determination of a discrete set of parameters; and those that fol-
low a variational approach, where the approximation function is
not known a priori, but follows from the solution of a variational
problem, which can often be interpreted as the minimization of
potential energy. We outline both approaches below.

Variational approach of spline interpolation

The variational approach (Wahba 1990; Green & Silverman
1994) consists in minimizing the functional

S ( f , α) =
N

∑

i=1

‖z(si) − f (si)‖2 + α
∫

D
{ f (m)}2dsi (3)

where the bivariate spline function f is fitted to the z(si), i =
0, ...,N set of points in the region D where the approximation
is to be made. It can be shown (e.g. Green & Silverman 1994)
that the solution is a natural spline, that is, a spline whose second
and third derivatives are zero at the boundaries. splines obtained
in such a way as known in the literature as smoothing splines.
The parameter m represents the order of the derivative of f and
α ≥ 0 is a smoothing parameter controlling the tradeoff between
fidelity to the data and roughness of the spline approximation.

1. As α −→ 0 (no smoothing), the left-hand side least squares
estimate term dominates the roughness term on the right-
hand side and the spline function attempts to match every
single observation point (oscillating as required).

2. As α −→ ∞ (infinite smoothing), the roughness penalty term
on the right-hand side becomes paramount and the estimate
converges to a least squares estimate at the risk of underfit-
ting the data.

The most popular variational spline interpolation scheme is
that based on the thin-plate spline (TPS; Duchon 1976;
Meinguet 1979; Wahba & Wendelberger 1980; Wahba 1990;
Hutchinson 1995). The TPS interpolating spline is obtained by
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minimizing an energy function of the form (3)

S ( f , α) =
N

∑

i=1

‖z(si) − f (si)‖2 + α Jm(g) dsi (4)

The most common choice of m is 2 with J2 of the form

J2(g) =
∫

D















(

∂2g

∂x2

)2

+ 2

(

∂2g

∂x ∂y

)2

+

(

∂2g

∂y2

)2














dx dy (5)

where the roughness function g(x, y) is given by

g(s) = a0 + a1x + a2y +

N
∑

1

λi φ(s − si) (6)

φ being the RBF: Φ(x, y) = d2
i

ln(di) with Euclidean distance

di =
√

(x − xi)2 + (y − yi)2. The λi are weighting factors.

Constructive approach of spline interpolation

Interpolating splines obtained through such a scheme are often
referred to as least squares splines (Dierckx 1980, 1995; Hayes
& Halliday 1994). For such splines, goodness of fit is measured
through a least squares criterion, as in the variational approach,
but smoothing is implemented in a different way: in the varia-
tional solution, the number and positions of knots are not varied,
and the approximating spline is obtained by minimizing an en-
ergy function. On the other hand, in the constructive approach,
one still tries to find the smoothest spline that is also closest to
the observation points. But this is achieved by optimizing the
number and placement of the knots and finding the correspond-
ing coefficients c in the B-Spline basis. This is measured by a
so-called smoothing norm G(c). Thus, the approximating spline
arises as the minimization of

S ( f , α) =
N

∑

i=1

‖z(si) − f (si)‖2 + αG(c) (7)

using the same notation as in (3). An example of knot placement
strategy is to increase the number of knots (i.e. reduce the inter-
knot distance) in areas where the surface to fit varies faster or
more abruptly. By the way, we note that minimization is not ob-
tained by increasing the degree of the spline (which is kept low,
typically 3).

Whatever the approach followed for obtaining a suitable in-
terpolating spline, spline interpolation is essentially global, ap-
proximate and deterministic, as it involves all available observa-
tions points, makes use of smoothing and does not provide any
estimation on interpolation errors. The interpolation can how-
ever be made exact by setting the smoothing coefficient to zero.
Also, for smoothing splines (variational approach) a technique
called generalized cross-validation (GCV; Craven & Wahba
1978; Wahba 1990; Hutchinson & Gessler 1994) allows to au-
tomatically choose, in expression (4), suitable parameters for α
and m for minimizing cross-validation residuals. Otherwise, one
can always use standard cross-validation or Jackknifing to opti-
mize the choice of input parameters (see Sect. 4.3).

The most frequently used splines for interpolation are cubic
splines, which are made of polynomials pieces of degree at
most 3 that are twice continuously differentiable. Experience has
shown that in most applications, using splines of higher degree
seldom yields any advantage. As we saw earlier, splines avoid
the pitfalls of polynomial fitting while being much more flexible,

Table 3. Spline interpolation: Pros and cons.

Spline interpolation

Pros
Able to capture both broad and detailed features
The tradeoff between goodness and roughness of fit can be
adjusted through smoothing

Cons

Overall smoothness may still be too high
Keep a tendency to oscillate
No estimation of interpolation errors in most algorithms
Potentially less efficient to compute than local interpolation
algorithms

which allows them, despite their low degree, to capture finer-
grained details. The method assumes the existence of measure-
ment errors in the data and those can be handled by adjusting the
amount of smoothing.

On the minus side, cubic or higher degree splines are some-
times criticized for producing an interpolation that is “too
smooth”. They also keep a tendency to oscillate (although this
can be controlled unlike with standard polynomials). In addition,
the final spline estimate is influenced by the number and place-
ment of knots, which confers some arbitrariness to the method,
depending on the approach and algorithm used. This can be a
problem since there is, in general, no built-in mechanism for
quantifying interpolation errors. Lastly, spline interpolation is a
global method and performance may suffer on large datasets. A
summary of the main strengths and weaknesses of spline inter-
polation is given in Table 3.

3.4. Inverse distance weighting

Inverse distance weighting (IDW; Shepard 1968) is one of the
oldest spatial interpolation method but also one of the most com-
monly used. The estimated value ẑ(x0) at a target point x is given
by Eq. (2) where the weights λi are of the form:

λi =
1

d β(x0, xi)
/

N
∑

i=1

1
d β(x0, xi)

β ≥ 0
N

∑

i=1

λi = 1. (8)

In the above expression, d(x0, xi) is the distance between
points x0 and xi, β is a power parameter and N is the number of
points found in some neighborhood around the target point x0.
Scaling the weights λi so that they sum to unity ensures the esti-
mation is unbiased.

The rationale behind this formula is that data points near the
target points carry a larger weight than those further away. The
weighting power β determines how fast the weights tend to zero
as the distance d(x0, xi) increases. That is, as β is increased, the
predictions become more similar to the closest observations and
peaks in the interpolation surface becomes sharper. In this sense,
the β parameter controls the degree of smoothing desired in the
interpolation.

Power parameters between 1 and 4 are typically chosen and
the most popular choice is β = 2, which gives the inverse-
distance-squared interpolator. IDW is referred to as “moving av-
erage” when β = 0 and “linear interpolation” when β = 1.

For a more detailed discussion on the effect of the power pa-
rameter β, see e.g. Laslett et al. (1987); Burrough (1988); Brus
et al. (1996); Collins & Bolstad (1996). Another way to con-
trol the smoothness of the interpolation is to vary the size of the
neighborhood: increasing N yields greater smoothing.

A1, page 6 of 20



M. Gentile et al.: Point spread function interpolation

Table 4. Inverse distance weighting: Pros and cons.

Inverse distance weighting

Pros
Simple and intuitive
Fast to compute

Cons

Choice of interpolation parameters empirical
The interpolation is always exact (no smoothing)
Sensitivity to outliers and sampling configuration (clustered
and isolated points)
No estimation of interpolation errors (deterministic)

IDW is a local interpolation technique because the esti-
mation at x0 is based solely on observations points located in
the neighboring region around x0 and because the influence of
points further away decreases rapidly for β > 0. It is also forced
to be exact by design since the expression for λi in Eq. (8)
reaches the indeterminate form ∞/∞ when the estimation takes
place at the point x0 itself. IDW is further labeled as determin-
istic because the estimation algorithm relies purely on geometry
(distances) and does not provide any estimate on the error made.

IDW is popular for its simplicity, computational speed and
ability to work on scattered data. The method also has a number
of drawbacks. One is that the choice of the β parameter and the
neighborhood size and shape are arbitrary, although techniques
such as cross-validation or jackknifing can provide hints for tun-
ing these parameters (see Sect. 4.3). Another is that there exists
no underlying statistical model for measuring uncertainty in the
predictions. Further, the results of the method method are sen-
sitive to outliers and influenced by the way observations have
been sampled. In particular, the presence of clustering can bias
the estimation since in such cases clustered points and isolated
points at similar but opposite distances will carry about the same
weights. A common feature of IDW-generated interpolation sur-
faces is the presence of spikes or pits around observation points
since isolated points have a marked influence on the prediction
in their vicinity.

The original Shepard algorithm has been enhanced by sev-
eral authors to address some of the shortcomings listed above.
See in particular Renka (1988), Tomczak (1998) and Lukaszyk
(2004). One frequent extension consists in explicitly introducing
a smoothing factor s into Eq. (8), which then becomes

λi =
1

(

d(x0, xi) + s
) β

/ N
∑

i=1

1
(

d(x0, xi) + s
) β

(9)

with values of s typically chosen between 1 and 5. Table 4 sum-
marizes the main pros and cons of inverse distance weighting.

3.5. Interpolation with radial basis functions

We just described IDW, a simple form of interpolation on scat-
tered data where the weighting power ascribed to a set neigh-
boring point xi from some point x only depends on an inverse
squared distance function.

We now describe a similar, but more versatile form of in-
terpolation where the distance function is more general and ex-
pressed in terms of a RBF (Buhmann 2003; Press et al. 2007).
A RBF function, or kernel φ is a real-valued function where the
value evaluated at some point x0 only depends on the radial dis-
tance between x0 and a set of points xi, so that φ(x0 − xi) =
φ(‖x0− xi‖). The norm usually represents the Euclidean distance
but other types of distance functions are also possible.

Table 5. Most popular RBF kernels.

RBF kernel φ(r) Expression

Multiquadric
√

1 + (ǫ r)2

Inverse multiquadric 1/[1 + (ǫ r)2]
Gaussian exp[−(ǫ r)2]
Thin-plate r2 ln(r)
Linear r

Cubic r3

The idea behind RBF interpolation is to consider that the in-
fluence of each observation on its surrounding is the same in all
direction and well described by a RBF kernel. The interpolated
value at a point x0 is a weighted linear combination of RBF eval-
uated on points located within a given neighborhood of size N
according to the expression

ẑ(x0) =
N

∑

i=1

λi z(xi) =
N

∑

i=1

λi φ(‖(x0 − xi‖). (10)

The weights are determined by imposing that the interpolation
be exact at all neighboring points xi, which entails the resolution
of a linear system of N equations with N unknown weighting
factors λi. In some cases, it is necessary to add a low-degree
polynomial Pk(x) of degree k to account for a trend in z(x) and
ensure positive-definiteness of the solution. Expression (10) is
then transformed into

ẑ(x0) = Pk(x0) +
N

∑

i=1

λi φ(‖(x0 − xi‖). (11)

Sometimes, an interpolation scheme based on a normalized RBF
(NRBF) of the form

ẑ(x0) =
N

∑

i=1

λi φ(‖(x0 − xi‖)
/ N
∑

i=1

φ(‖(x0 − xi‖) (12)

is preferred to (10), although no significant evidence for superior
performance has been found.

The actual behavior and accuracy of RBF interpolation
closely depends on how well the φ kernel matches the spatial
distribution of the data. The most frequently used RBF kernels
are listed in Table 5, where r = ‖x − xi‖ and the quantity ǫ is the
so-called shape parameter. The required conditions for φ to be
a suitable RBF kernel have been given by Micchelli (1986) but
the choice of the most adequate kernel for a problem at hand is
often empirical.

The shape parameter ǫ contained in the multiquadric, inverse
multiquadric and Gaussian kernels influences the shape of the
kernel function and controls the tradeoff between fitting accu-
racy and numerical stability. A small shape parameter produces
the most accurate results, but is always associated with a poorly
conditioned interpolation matrix. Despite the research work of
e.g. Hardy (1990), Foley (1994) and Rippa (1999), finding the
most suitable shape parameter is often a matter of trial and error.
A rule of thumb is to set ǫ to approximately the mean distance
to the nearest neighbor.

RBF interpolation based on the multiquadric (MQ) kernel
√

1 + (ǫ r)2 is the most common. It was first introduced by Hardy
(1971) as a “superpositioning of quadric surfaces” for solving a
problem in cartography. In its review of interpolation methods on
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Table 6. Radial basis functions for interpolation: Pros and cons.

Radial basis functions

Pros
Flexibility, thanks to various choice of kernel functions
Relatively fast (local method), but computational speed de-
pends on the kernel function

Cons

Choice of kernel functions and interpolation parameters
empirical
The interpolation is always exact (no smoothing)
Sensitivity to outliers and sampling configuration (clus-
tered and isolated points)
No estimation of interpolation errors (deterministic)

scattered data, Franke (1982) highlighted the good performance
of the MQ kernel, which has, since then proven highly successful
in many disciplines (Hardy 1990).

RBF interpolation is fundamentally a local, exact and deter-
ministic method. There are, however, algorithms that allow to
introduce smoothing to better handle noise and measurement er-
rors in the data. The method can prove highly accurate but this
really depends on the affinity between the data and the kernel
function used. Also, because predictions are exact, RBF func-
tions can be locally sensitive to outliers. As for other determinis-
tic methods like splines or IDW, the optimal set of parameters are
most often determined by cross-validation or Jackknifing (see
Sect. 4.3). Table 6 recapitulates the favorable and less favorable
aspects of interpolation based on RBFs.

3.6. Kriging

Kriging is a spatial prediction technique initially created in the
early 1950’s by mining engineer Daniel G. Krige (Krige 1951)
with the intent of improving ore reserve estimation in South
Africa. But it was essentially the mathematician and geologist
Georges Matheron who put Krige’s work a firm theoretical basis
and developed most of the modern Kriging formalism (Matheron
1962, 1963).

Following Matheron’s work, the method has spread from
mining to disciplines such as hydrology, meteorology or
medicine, which triggered the creation of several Kriging
variants. It is thus more accurate to refer to Kriging as a fam-
ily of spatial prediction techniques instead of a single method.
It is also essential to understand that Kriging constitutes a gen-
eral method of interpolation that is in principle applicable to any
discipline, such as astronomy.

The following textbooks provide a good introduction to
the subject: Journel & Huijbregts (1978); Isaaks & Srivastava
(1989); Cressie (1991); Deutsch & Journel (1997); Goovaerts
(1997); Chilès & Delfiner (1999); Wackernagel (2003); Waller
& Gotway (2004); Webster & Oliver (2007).

Like most of the local interpolation methods described so
far in this article, Kriging makes use of the weighted sum
(2) to estimate the value at a given location based on nearby
observations. But instead of computing weights based on ge-
ometrical distances only, Kriging also takes into account the
spatial correlation existing in the data. It does so by treating ob-
served values z(x) as random variables Z(x) varying according
to a spatial random process1. In fact, Kriging assumes the un-
derlying process has a form of second-order stationarity called

1 Also called random function or stochastic process.
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Fig. 3. a) Typical variogram γ(h) and its equivalent covariance func-
tion C(h): if the data has some sort of spatial autocorrelation, nearby
(small h) Z(x) observed values will be more similar than more distant
Z(x) values (larger h); b) as the separation distance h grows, the quan-
tity Z(x + h) − Z(x) in expression (16) will tend to increase on average,
but less and less as the influence of Z(h) on Z(x + h) weakens; at some
threshold distance h, called the range, the increase in variance becomes
negligible and the asymptotical variance value is known as the sill

intrinsic stationarity. Second-order stationarity is traditionally
defined as follows:

1. The mathematical expectation E(Z(x)) exists and does not
depend on x

E
[

Z(x)
]

= m, ∀ x. (13)

2. For each pair of random variable
{

Z(x),Z(x + h)
}

, the co-
variance exists and only depends on the separation vector
h = x j − xi,

C(h) = E
{[

Z(x + h) − m
] [

Z(x) − m
]}

, ∀ x. (14)

Kriging’s intrinsic stationarity (Matheron 1963, 1965) is a
slightly weaker form of second-order stationarity where the dif-
ference Z(x+h)−Z(x) is treated as the stationary variable instead
of Z(x):

1. E
[

Z(x + h) − Z(x)
]

= 0, ∀ x (15)

2. Var
[

Z(x + h) − Z(x)
]

= E
{[

Z(x + h) − Z(x)
]2}
= 2γ(h).

(16)

The function γ(h) is called semivariance and its graph semivar-
iogram or simply variogram.

One reason for preferring intrinsic stationarity over sec-
ondary stationarity is that semivariance remains valid under a
wider range of circumstances. When covariance exists, both sta-
tionarities are related through

γ(h) = C(0) −C(h), C(0) = Var
[

Z(x)
]

, (17)

Figure 3 shows a typical variogram along with its equivalent co-
variance function.

Over the years about a dozen Kriging variants have been de-
veloped. We will concentrate here on ordinary Kriging (OK),
which is, by far, the most widely used. The description of other
forms of Kriging can be found in the literature given at the be-
ginning of this section.

ordinary Kriging is a local, exact and stochastic method. The
set of Z(x) is assumed to be an intrinsically stationary random
process of the form

Z(x) = m + ǫ (x). (18)

The quantity ǫ(x) is a random component drawn from a prob-
ability distribution with mean zero and variogram γ(h) given
by (16). The mean m = E[Z(x)] is assumed constant because
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Table 7. Authorized Kriging theoretical variogram models.

Model Expression

Pure nugget
γ(h) = 0 h = 0
γ(h) = c0 c0 ≥ 0 h > 0

Spherical γ(h) = c0 + c
{ 3h

2a
− 1

2

( h
a

)3}
h ≤ a

γ(h) = c0 + c h > a

Exponential γ(h) = c0 + c
{

1 − exp
(

− h
a

)}

Gaussian γ(h) = c0 + c
{

1 − exp
(

− h2

a2

)}

Power γ(h) = c0 + b h p b ≥ 0, 0 ≤ p < 2

Notes. The models in this table correspond to purely isotropic Kriging.
More elaborate formulas exist for correcting geometrical anisotropy
through the rescaling or rotation of coordinate axes along the direction
of major spatial continuity. In the above expressions, c0 = limh→0 γ(h)
is the so-called nugget constant that represents measurement errors or
indicates a spatially discontinuous process. The quantities (c0 + c) and
a respectively represent the variogram sill and range. The pure nugget
model corresponds to absence of spatial correlation.

of (15), but remains unknown. The ordinary Kriging predictor is
given by the weighted sum

Ẑ(x0) =
N

∑

i=1

λi Z(xi) (19)

where the weights λi are obtained by minimizing the so-called
Kriging variance

σ2(x0) = Var
[

Ẑ(x0) − Z(x0)
]

= E

{

[

Ẑ(x0) − Z(x0)
]2
}

(20)

subject to the unbiaseness condition

E
[

Ẑ(x0) − Z(x0)
]

= 0 =
N

∑

i=1

λi E
[

z(xi)
]

− m. (21)

The resulting system of N + 1 equations in N + 1 unknowns λi is
known as the ordinary Kriging equations. It is often expressed
in matrix form as Aλ = b with

A =









































γ(x1, x1) γ(x1, x2) · · · γ(x1, xN) 1
γ(x2, x1) γ(x2, x2) · · · γ(x2, xN) 1
...

...
...

...
γ(xN , x1) γ(xN , x2) · · · γ(xN , xN) 1

1 1 · · · 1 0









































(22)

λ
T =

[

λ1 λ2 · · · λN µ
]

N
∑

i=1

λi = 1

b
T =

[

γ(x1, x0) γ(x2, x0) · · · γ(xN , x0) 1
]

.

The weights λi, along with the Lagrange multiplier µ, are ob-
tained by inversing the A matrix

λ = A
−1

b. (23)

The main interpolation steps with ordinary Kriging can now be
articulated:

1. Construct an experimental variogram by computing the ex-
perimental semivariance γ̂(h) for a range of separation dis-
tances ‖h‖.

Table 8. Kriging interpolation: Pros and cons.

Kriging

Pros

Predictions based on a spatial statistical analysis of the data
Best linear unbiased estimator (BLUE)
Many forms of Kriging available, applicable to various
data configurations
Automatically accounts for clustering and screening ef-
fects; remains efficient in conditions of sparse data
Can take into account variation bias toward specific direc-
tions (anisotropy)
Able to quantify interpolation errors (Kriging variance)

Cons

Overall complexity
Requires care when modeling spatial correlation structures
Assumptions of intrinsic stationarity may not be valid
(drift) and be handled though an appropriate Kriging vari-
ant
Most Kriging variants are exact (no smoothing)
Kriging is more computationally intensive than other local
methods

2. Fit the experimental variogram against an authorized vari-
ogram model. The mathematical expressions for the most
common authorized theoretical variogram models are sum-
marized in Table 7. After completion of this step, the
γ(xi, x j) value at any separation vector h = x j − xi can be
calculated and used to compute the A matrix (22).

3. Calculate interpolated values: derive the Kriging weights λi

for each point of interest x0 by solving Eq. (23) and obtain
the Kriging estimate at x0 by substituting in (19).

Most of the strengths of Kriging interpolation stem from the use
of semivariance instead of pure geometrical distances. This fea-
ture allows Kriging to remain efficient in condition of sparse data
and to be less affected by clustering and screening effects than
other methods.

In addition, as a true stochastic method, Kriging interpola-
tion provides a way of directly quantifying the uncertainty in
its predictions in the form of the Kriging variance specified in
Eq. (20).

The sophistication of Kriging, on the other hand, may also be
considered as one of its disadvantages. A thorough preliminary
analysis of the data is required or at least strongly recommended
prior to applying the technique (e.g. Tukey 1977). This can prove
complex and time consuming.

One should also bear in mind that Kriging is more computa-
tionally intensive than the other local interpolation methods de-
scribed in this article. The strong and weaker points of Kriging
interpolation are highlighted in Table 8.

4. Applying spatial interpolation schemes

on the GREAT10 Star Challenge data

In 2011, we participated in the GREAT10 Star Challenge com-
petition (Kitching et al., in prep.), which allowed us to evaluate
the performance of the interpolation schemes described above:
those based on splines, IDW, RBF and ordinary Kriging. To our
knowledge, the only reference to a similar work in the field of
astronomy is that of Bergé et al. (2012).

The GREAT10 Star Challenge ran from December 2010
to September 2011 as an open, blind competition. As illus-
trated in Fig. 4, the data consisted in 26 datasets of 50 PSF
fields, each field containing between 500 and 2000 simulated
star images and featuring specific patterns of variation. The stars
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with 500-2000 Stars each

Fig. 4. Star Challenge simulated data.

images were supplied as non-overlapping, randomly-scattered
48 × 48 pixels postage stamps, altered by Gaussian noise.

After completion of the challenge, it was revealed the stars
had either a Moffat (Moffat 1969) or pseudo-Airy (Born &
Wolf 1999; Kuijken 2008) profile, with a telescope component
model from Jarvis et al. (2008). Depending on the sets, specific
additional effects, such as Kolmogorov turbulence, were also
incorporated.

The challenge itself was to predict the PSF at 1000 requested
positions in each of the 1300 PSF fields (see Fig. 1).

4.1. Which model for the PSF?

The first important step to make was to choose an appropriate
model for the PSF. Indeed, before selecting a particular PSF in-
terpolator, one has to decide on which type of data that interpo-
lator will operate.

Essentially three PSF modeling approaches have been ex-
plored in the literature:

1. PSF as a combination of basis functions;
2. PSF left in pixel form;
3. PSF expressed in functional form.

To help choosing the right model for the data at hand, useful
guidance is provided by the notions of complexity and sparsity,
recently put forward by (Paulin-Henriksson et al. 2008, 2009).
The complexity of a model is characterized by the amount of
information required to represent the underlying PSF image,
which can be expressed as the number of degrees of freedom
(DoF) present in the model. The more sophisticated the model
the greater the number of its DoF. Sparsity, on the other hand,
is meant to describe how efficiently a model can represent the
actual PSF with a limited number of DoF, that is, with a simple
model.

The simulated star images looked relatively simple and we
decided that the right level of sparsity could be achieved with
PSF in functional form (the third option). We then assumed that
the most likely PSF profile used to create the stars was either
Airy or Moffat. We opted for an elliptically symmetric Moffat
function for its simplicity and because the stars did not show
significant diffraction spikes. Each star was thus assumed to have
a light intensity distribution of the form:

I(ξ) = I0

[

1 +
(

ξ

α

)2]−β

, ξ =

√

(x′ − xc)2 +
(y′ − yc)2

q2
·

In the above expression, I0 is the flux intensity at ξ = 0, ξ being
the radius distance from the centroid (xc, yc) of the PSF to a

Prediction

Fitting

Reconstruction

Input PSF field

- Fit against elliptical Moffat PSF model

- Validation: residual, plots, simulated data...

- Spatial analysis: neighbors, separation distances…
- Spatial prediction: splines, IDW, RBF, Kriging…
- Validation: cross-validation, Jackknifing...

- Reconstruction from predicted parameters

- Validation: visual inspection, quadrupole moments

Reconstructed PSF field
at requested non-star positions

Fig. 5. The three-stage PSF prediction pipeline we used to compete in
the Star Challenge. Elliptical Moffat profiles are fitted to the stars con-
tained in the input Star Challenge PSF field; the model resulting pa-
rameters are then individually interpolated across the field at requested
locations, using one of our PSF spatial interpolator. Lastly, the star im-
ages are reconstructed from the set of Moffat parameters predicted in
the previous stage.

spatial coordinate

[

x′ − xc
y′ − yc

]

=

[

cos φ sin φ
− sin φ cos φ

] [

x − xc
y − yc

]

, (24)

obtained after counterclockwise rotation through an angle φwith
respect to the (0, x) axis. The quantity α = FWHM [21/β − 1]

−1/2

is the Moffat scale factor expressed in terms of the full width at
half maximum (FWHM) of the PSF and the Moffat shape pa-
rameter β. Lastly, q is the ratio of the semi-minor axis b to the
semi-major axis a of the isophote ellipse, given by q = b/a =

(1 − |e|)/(1 + |e|), with |e| =
√

e1
2 + e2

2, e1 = |e| cos 2φ and
e2 = |e| sin 2φ.

4.2. Our PSF prediction pipeline

The three-stage PSF prediction pipeline we used in the Star
Challenge is sketched in Fig. 5. The purpose of the fitting stage
is to produce a catalog of estimated FWHM and ellipticity val-
ues of the stars found at known spatial positions within the input
Star Challenge PSF image.

In the prediction stage, that catalog is processed by an in-
terpolation algorithm and a catalog is produced with estimated
FWHM and ellipticities at new positions in the same image.
Competitors were required to submit their results in the form of
FITS Cube images (Kitching et al. 2011). In the Reconstruction
stage, each star in a PSF field is thus reconstructed using that
format from the interpolated quantities predicted in the predic-
tion stage. A more detailed description of the pipeline is given
in Appendix A.

4.3. Cross-validation and Jackknifing

The Star Challenge was a blind competition. The true answers
being unknown, it was essential to find ways to evaluate how
far the actual results were from the truth. To assess the fitting
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Table 9. Common diagnostic statistics for use with cross-validation and
Jackknifing.

Statistics Expression

Mean error ME = 1
n

∑n
i=1

[

Z(xi) − Z(x[i])
]

Mean squared error MS E = 1
n

∑n
i=1

[

Z(xi) − Z(x[i])
]2

Mean absolute error MAE = 1
n

∑n
i=1

w

w

w

wZ(xi) − Z(x[i])
w

w

w

w

Mean squared deviation
ratio

MS DR = 1
n

∑n
i=1

{[

Z(xi) − Z(x[i])
]2
/σ2

[i]

}

accuracy in the first stage of the pipeline we could rely some-
what on the analysis of the residuals between observed and fit-
ted star images. But when it came to evaluate prediction results,
we had no such residuals to help us appraise the accuracy of the
interpolation algorithm: we could only rely on the fitted observa-
tions Z(xi). The use of cross-validation and Jackknifing provided
a satisfactory solution to this problem.

Cross-validation

Cross-validation (CV) is a resampling technique frequently used
in the fields of machine learning and data mining to evaluate
and compare the performance of predictive models (Stone 1974;
Geisser 1975; Isaaks & Srivastava 1989; Browne 2000).

In the context of the Star Challenge, we used CV to both
evaluate the performance of an interpolation method and tune
the free parameters of the underlying interpolation models.

As explained earlier, the deterministic interpolation meth-
ods (IDW, RBF, splines) we tested in the competition did not
provide any quantification of residual errors. The first three di-
agnostic statistics mentioned in Table 9 provided a good indica-
tion of the level of accuracy reached. This technique was use-
ful for Kriging as well because we could directly compare the
mean error (ME) and mean squared error (MSE) provided by
CV: Kriging being an unbiased estimator, we expected ME to be
nearly zero, the MSE to be close to the Kriging variance pro-
vided by Eq. (20) and the mean squared deviation ratio (MSDR)
to be around unity.

CV also proved useful for tuning the free parameters of
the models behind the interpolation schemes, as mentioned in
Appendix A.2. For instance, for RBF interpolation, we could
rapidly try and discard the cubic, quintic, Gaussian and inverse
multiquadric kernel functions. Another example was the ability
to find the best search neighborhood size for local distance-based
interpolation methods.

Jackknifing

The Jackknifing resampling technique was first proposed by
Quenouille (1956) and further developed by Tukey (1958). A
classical review on that subject is that of Miller (1974). See also
Efron (1982); Efron & Gong (1983); Davis (1987); Tomczak
(1998) for more general discussions on the use of CV in con-
nection to Jackknifing.

To Jackknife a Star Challenge PSF field image, we would
typically split the set of input coordinates into two equally-sized
sets of star locations, i.e. 1000 randomly-selected star centroid
positions from a set of 2000, one used for input and one used for
prediction. We would then interpolate the PSF of the prediction
set based on the PSF of the input set.

Table 10. Final results obtained by the B-SPLINE, IDW, Kriging and
RBF methods in the Star Challenge, sorted by decreasing P-factors.

Rank PSF interpolation method P σ2
sys

1 Basis spline (B-splines) 13.29 7.53 × 10−5

2 Inverse distance weighting (IDW) 13.17 7.59 × 10−5

3 Radial basis function (RBF) 12.72 7.86 × 10−5

4 Radial basis function (RBF thin) 12.61 7.93 × 10−5

5 Ordinary Kriging (OK) 7.23 1.38 × 10−4

Notes. The B-splines method obtained the highest P-factor of the com-
petition while the remaining four achieved the next highest scores.

5. Analyzing our GREAT10 Star Challenge results

5.1. Results on the Star Challenge data

The results obtained in the Star Challenge by the B-splines,
IDW, Kriging, RBF and RBF-thin PSF interpolation schemes are
shown in Table 10.

The B-splines method won the Star Challenge while the re-
maining four achieved the next highest scores of the competition.

The quantity P refers to the so-called P-factor, specified in
Kitching et al. (in prep.). That P-factor is defined so as to mea-
sure the average variance over all images between the estimated
and true values of two key PSF attributes: its size R and ellip-
ticity modulus e = |e|, estimated using second brightness mo-
ments computed over the reconstructed PSF images. Since the
GREAT10 simulated star images have either Moffat or Airy pro-
files, R is actually an estimator of the FWHM of the stars.

The σ2
sys quantity is related to the P-factor by σ2

sys = 10−3/P
and represents a total residual variance in the measurement of
the PSF. It approximates the corresponding metric specified
in Amara & Réfrégier (2008); Paulin-Henriksson et al. (2008,
2009).

5.2. Performance metrics

In this article, we do not rely on the P-factor as a metric for
assessing the performance of our methods, for the following rea-
sons. Firstly, the P-factor is specific to the Star Challenge and is
not mentioned anywhere else in the literature on PSF interpo-
lation. Secondly, we are really interested in knowing the indi-
vidual accuracy of ellipticity and size but P only appraises the
combined performance of these quantities.

To assess the performance of an interpolator, we calculate
instead the root mean squared error (RMSE) and standard error
on the mean (SEM) of the residuals between true and calculated
values of PSF ellipticity and size. As in Paulin-Henriksson et al.
(2008); Kitching et al. (in prep.), we adopt the ellipticity modu-
lus e = (e2

1 + e2
2)

1/2
and size squared R2 as respective measures

of ellipticity and size, and define the corresponding residuals as

δ(e) = ecalc − etrue, δ(R2) = R2
calc − R2

true.

As regards PSF ellipticity, we adopt as performance metrics

E(e) = RMSE(δ(e)/2), σ(e) = SEM(δ(e)/2)

while for PSF size, we evaluate

E(R2) = RMSE(δ(R2))/〈R2
true〉, σ(R2) = SEM(δ(R2))/〈R2

true〉

A1, page 11 of 20



A&A 549, A1 (2013)

Table 11. Average values of the performance metrics E and σ (see
Sect. 5.2) over all sets, obtained by the B-SPLINE, IDW, Kriging and
RBF methods in the Star Challenge.

Method E(e) σ(e) E(R2) σ(R2)

B-splines 2.03 × 10−2 8.57 × 10−4 1.90 × 10−1 8.25 × 10−4

IDW 2.04 × 10−2 8.69 × 10−4 1.92 × 10−1 1.07 × 10−3

RBF 2.26 × 10−2 9.73 × 10−4 1.98 × 10−1 1.39 × 10−3

Kriging 3.17 × 10−2 1.26 × 10−3 2.22 × 10−1 2.18 × 10−3

Table 12. Performance metrics used in this article.

PSF attribute Metrics

PSF ellipticity
E(e) =

√

〈

(ecalc − etrue)2
〉

/2

σ(e) = stdev (ecalc − etrue)/
√

2/
√

N

PSF size
E(R2) =

√

〈

(R2
calc − R2

true)
2〉/〈R2

true〉
σ(R2) = stdev (R2

calc − R2
true)/〈R2

true〉/
√

N

Notes. The angle brackets 〈 and 〉 denote averages and “stdev” the stan-
dard deviation. These statistics are calculated over the N = 1000 stars
in each of the 50 images of each set.

where the angle brackets 〈 and 〉 denote averaging. The fac-
tor 2 in the expressions of E(e) and σ(e) arises because ellip-
ticity has two components. We calculate these metrics over the
N = 1000 stars in each of the 50 images of each set.

The quantity E provides a measure of the global accuracy of
the interpolator (bias and precision combined) while σ provides
insights into the variance of the residuals. The exact expressions
for these performance metrics are given in Table 12.

5.3. Analysis of the star challenge results

The performance metrics of B-splines, IDW, RBF and Kriging
are given in Table 11. The results of RBF and RBF-thin being
very close, we no longer distinguish these two interpolators in
the reminder of this paper and only mention them collectively as
RBF.

Since a detailed analysis of the Star Challenge results of
B-splines, IDW, RBF and Kriging as already been performed in
Kitching et al. (in prep.), a similar analysis would be redundant
here. We do have, however, a couple of observations to make,
based on the metrics in Tables 10 and 11.

We observe that the global σ2
sys variance of the most suc-

cessful interpolation method is on the order of 10−4. As demon-
strated in Amara & Réfrégier (2008); Paulin-Henriksson et al.
(2008) and confirmed by Kitching et al. (2009), future large sur-
veys will need to constrain the total variance in the systematic
errors to σ2

sys < 10−7, which corresponds to E(e) . 10−3 and
E(R2) . 10−3. The Star Challenge results thus tend to suggest
that a ∼10 improvement in E(e) and a ∼100 improvement in
E(R2) are still required for achieving that goal.

Secondly, since we have been using a three-stage pipeline
as described in Sect. 4.2, each stage, fitting, interpolation and
reconstruction, can potentially contribute to the final error in
size and ellipticity. Investigations following the publication of
the true size and ellipticity values after the end of the Star
Challenge, have led us to conclude fitting was actually the main

Table 13. Average values of the performance metrics E and σ (see
Sect. 5.2) over all sets, based on the true input ellipticities and sizes.

Method E(e) σ(e) E(R2) σ(R2)

RBF 1.73 × 10−2 7.18 × 10−4 4.58 × 10−3 1.44 × 10−4

IDW 1.78 × 10−2 7.24 × 10−4 9.25 × 10−3 2.91 × 10−4

Kriging 1.82 × 10−2 7.09 × 10−4 6.47 × 10−3 2.03 × 10−4

Polyfit 2.29 × 10−2 7.52 × 10−4 5.16 × 10−3 1.62 × 10−4

B-splines 2.33 × 10−2 7.39 × 10−4 6.45 × 10−3 2.04 × 10−4

performance limiting factor, not the interpolation or reconstruc-
tion process.

Also, the comparatively lower performance of Kriging is not
related to the interpolation algorithm itself, but is actually due
to an inadequate fitting setup, that was subsequently fixed for
B-splines, IDW and RBF submissions.

As the main goal of this article is to assess the respective
merits of the interpolation methods, we wish to eliminate all in-
accuracies related to fitting. To achieve this, we use instead of
our fitted ellipticity and FWHM estimates at known positions,
the true input values, kindly supplied to us by the GREAT10
team. We interpolate these true input values at the expected tar-
get positions and then measure the error made by the interpo-
lators. We present and analyze the corresponding results in the
next section.

6. Comparing PSF spatial interpolation schemes

The results presented in this section are based on true FWHM
and ellipticity values at known positions in the Star Challenge
PSF images. We are thus confident that error statistics we ob-
tained truly reflect the performance of the PSF interpolation
methods and are not influenced in any way by inaccuracies due
to the fitting of our PSF model or to the image reconstruction
processes.

We compare below the respective performance of five PSF
spatial interpolation schemes:

– The four interpolation schemes introduced in Sect. 3 that
competed in the Star Challenge: B-splines, IDW, RBF and
ordinary Kriging.

– An additional scheme, labeled Polyfit, which corresponds to
a least-squares bivariate polynomial fit of the PSF, similar to
that typically used in weak lensing studies (see Sect. 3.1).

The metric values reflecting the average accuracy E and error
on the mean σ for these five interpolation schemes are given in
Table 13.

6.1. Overall performance

The E and σ metrics on ellipticity and size after interpolation
with all five methods are given in Table 13. These results lead to
the following observations:

– If we compare Tables 13 and 12 we observe a ∼100-fold de-
crease of E(R2) for all interpolators. This confirms that the
fitting of PSF sizes was the main limitation that prevented us
from reaching better results in the Star Challenge. In com-
parison, the fitting of ellipticities was quite good.

– If we now concentrate on Table 13, we find that the RBF in-
terpolation scheme based on the use of radial basis functions,
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has the highest accuracy and smallest error of the mean, both
on size and ellipticity. We also observe that E(e) ∼ 10−2

whereas E(R2) ∼ 10−3. This is because these statistics are av-
erages over 26 image sets with different characteristics (see
Sect. 6.2). In reality, E(e) varies between ∼10−2 and ∼10−4,
whereas E(R2) ∼ 10−3 regardless of the sets.

– If we consider E(e) in particular, two groups emerge.
The first one contains RBF, IDW and Kriging, with
E(e) . 1.8 × 10−2. The interpolators of the second group,
B-splines and Polyfit with E(e) & 2.3 × 10−2. We will see
below that this is essentially due to the better accuracy of
local interpolators on turbulent sets as regards ellipticity. If
we focus on E(R2), the distinction between local and global
interpolation schemes disappears. RBF and Polyfit stand out
from the others with E(R2) ≃ 5 × 10−3. We also note that
the accuracy of IDW on size is worse by several order of
magnitude.

– The errors on the mean σ(e) and σ(R2) are on the order
of 10−4 for all five schemes. As was observed for E(e), we
find that the local interpolators RBF, IDW and Kriging reach
better σ(e) values compared to global ones, B-splines and
Polyfit. As for σ(R2), the best values are reached by RBF
and Polyfit, similarly to what was found for E(R2).

6.2. Influence of PSF features simulated in the images

As explained in the Star Challenge result paper (Kitching et al.,
in prep.), the image sets were designed to simulate typical PSF
features found in real astronomical images. Each set implements
a unique combination of characteristics against which a method
can be evaluated. All 50 images within a set share the same broad
features, but differ in the way star positions, sizes and ellipticities
are spatially distributed across the field.

The various PSF features tracked in the images are outlined
below:

– PSF model: the fiducial PSF model includes a static and a
dynamic component. The static component is based on a
pseudo-Airy (Born & Wolf 1999; Kuijken 2008) or Moffat
(Moffat 1969) functional form, depending on the set. The dy-
namic component made the ellipticity and size of individual
stars vary spatially across the image of the PSF field.

– Star size: the images from most of the sets share the same
“fiducial” 3-pixel FWHM, except sets 6, 14, 26 and sets 7,
15 whose images have respectively a FWHM of 1.5 and
6 pixels.

– Masking: sets 2, 10, 22 have a 4-fold symmetric mask de-
noted as “+” and sets 3, 11, 23 have a 6-fold mask symbol-
ized by a “∗”. Images from all other sets are unmasked.

– Number of stars: the majority of images contain 1000 stars.
Sets 4, 12, 24 are denser, with 2000 stars, whereas sets 5, 13,
25 are sparser, with only 1500 stars.

– Kolmogorov turbulence (KM): an attempt was made on sets 9
to 15, 17, 19 and 21 to simulate the effect of atmospheric
turbulence by including a Kolmogorov spectrum in PSF el-
lipticity. See Heymans et al. (2012); Kitching et al. (in prep.)
for the details. Figure 6 shows side by side a non-turbulent
and a turbulent PSF.

– Telescope effect: a deterministic component was included
in sets 17, 19 and 21 to reproduce effects from the
telescope optics on the PSF ellipticity and size, essentially
primary astigmatism, primary defocus and coma (Born &
Wolf 1999), based on the model of Jarvis & Jain (2004).

Fig. 6. A Star Challenge non-turbulent PSF (left) compared with a tur-
bulent PSF (right). Each “whisker” represents the amplitude |e| of the
ellipticity of stars. The largest whisker in the left hand side image cor-
responds to an ellipticity of 0.16. The right hand side image has a
maximum ellipticity of 0.37. The ellipticity plots have respectively been
made from the first PSF field image of sets 8 and 14.

In order to determine how interpolation schemes are affected by
the aforementioned PSF characteristics, we have computed for
each of them the performance metrics per individual image sets.
We have plotted the metrics E(e) and E(R2) in Figs. 7 and 8. We
analyze the results below.

– Influence of turbulence: the PSF feature that affects the inter-
polation methods the most is the presence of a Kolmogorov
(KM) turbulence in ellipticity. Figure 6 illustrates how er-
ratic the spatial variation pattern of ellipticity can become in
the presence of KM turbulence. It is clear that a prediction
algorithm faces a much more challenging task on turbulent
images than on images with more regular PSF patterns. To
highlight this, we have averaged in Tables 14 and 15 the
metrics E and σ separately over turbulent and non-turbulent
sets. Comparing these two tables shows that E(e) ∼ 10−4 and
σ(e) ∼ 10−5 on non-turbulent sets, whereas E(e) ∼ 10−2 and
σ(e) ∼ 10−3 on turbulent sets. This represents a ∼100-fold
decrease in accuracy and error on the mean. This effect can
also be seen on the plots of E(e) in Figs. 7 for and 8.
We also observe that, on sets without a KM spec-
trum, all interpolators evaluated in this paper typically
reach σ2

sys ∼ 10−8 already beyond the ∼10−7 goal of next-
generation space-based weak lensing surveys. In contrast,
sets with turbulent PSF do not match that requirement, with
σ2

sys ∼ 10−6.
The similarities between E(e) and σ(e) values for RBF, IDW
and Kriging in Table 15 suggest these methods behave more
or less the same when confronted with turbulent elliptici-
ties. To check this, we have have compiled in Fig. 9 the
true ellipticity pattern of turbulent set 9 along with the ac-
tual predictions of the same pattern by all five interpolators.
The same metrics for Polyfit and B-splines show that these
global methods are even more handicapped by the presence
of a KM spectrum.
Turbulence also makes the spatial distribution of the FWHM
less predictable and the methods are affected to various de-
grees: RBF, IDW, Polyfit and B-Spline are little influenced
with similar E(R2) and σ(R2) values in Tables 14 and 15 and
on the corresponding plots in Figs. 7 and 8. The only one
really impacted is Kriging.

– Influence of star density: following the discussion of
Sect. 3.2, we expect the local interpolation methods to be
more accurate than global ones on images with higher star
density but see their performance degrade on sparser star
fields. Such local interpolators base their predictions on
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Fig. 7. Accuracy per set for the RBF and IDW interpolation methods. Sets with pseudo-Airy and Moffat are respectively colored in different shades
of blue and orange, as specified in the legend at the bottom left of the figure. The various patterns contained in the left hand-side legend indicate
the types of physical PSF features simulated in the images. The values on the bars correspond to log10(1/E(e)) and log10(1/E(R2)) depending on
the quantity plotted, so the taller the bar the greater the corresponding accuracy.

observations found in local neighborhoods and should there-
fore be in position to take advantage of any additional avail-
able. On the other hand, they should suffer comparatively
more from insufficient sampling when the data is too sparse.
This is indeed what we observe in the IDW plot Fig. 7, but
the conclusion is less clear regarding RBF and Kriging: these
schemes are indeed more accurate on denser sets when it
comes to estimate the FWHM but the reverse is seen con-
cerning ellipticities (plots Figs. 7 and 8). This is mostly no-
ticeable on non-turbulent sets and may be caused by some
overfitting taking place on denser ellipticity fields. This
phenomenon does not occur on FWHM possibly because the

FWHM spatial distribution is generally smoother than that of
ellipticities in the Star Challenge dataset.
We also expect the global interpolators B-splines and Polyfit
to be little affected by difference in star density, since such
schemes attempt to find a regression surface that takes all
available data into account but at the same time minimize
the overall bias through the least squares criterion. Such a
surface tends to smooth out small-scale variations, mostly
capturing broad features in the image. The corresponding
predictions may become less accurate but, on the other hand,
remain little influenced by sampling differences. This is ex-
actly what we find in the plots of Polyfit and B-splines Fig. 8.
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Fig. 8. Accuracy per set for Kriging, polynomial fitting and B-splines. The legend is the same as that used in Fig. 7. The values on the bars
correspond to log10(1/E(e)) and log10(1/E(R2)) depending on the quantity plotted, so the taller the bar the greater the corresponding accuracy.

The smoothness of the prediction surfaces of Polyfit and
B-splines compared to that of local interpolators is clearly
noticeable in Fig. 9.

– Influence of the PSF model and size, masking and telescope
effects: although some interpolators do better than others

on a particular PSF models, each individual scheme per-
form equally well on Moffat and Airy images. This can be
seen, for example, on fiducial sets 1 and 8 where the er-
ror statistics on Moffat or Airy sets are almost identical
for a given method. The same can be said of the influence
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True PSF – Set 09 – Image 01 Polyfit – Set 09 – Image 01 B-Splines – Set 09 – Image 01

IDW – Set 09 – Image 01 RBF – Set 09 – Image 01 Ordinary Kriging – Set 09 – Image 01

Fig. 9. An illustration of how the various interpolation methods studied in this article handled a turbulent PSF, which in this case is the first image
of set 9. The true ellipticities are plotted on the upper-left corner of the figure and the remaining plots show the predictions of each methods. The
largest whisker in the upper-left corner plot corresponds to an ellipticity of 0.38.

Table 14. Non-turbulent sets: average values of E and σ.

Method E(e) σ(e) E(R2) σ(R2)

RBF 8.26 × 10−4 3.60 × 10−5 4.59 × 10−3 1.45 × 10−4

IDW 1.28 × 10−3 5.67 × 10−5 9.37 × 10−3 2.95 × 10−4

Kriging 7.06 × 10−4 3.16 × 10−5 3.57 × 10−3 1.13 × 10−4

Polyfit 8.37 × 10−4 3.73 × 10−5 5.23 × 10−3 1.64 × 10−4

B-splines 6.28 × 10−4 2.80 × 10−5 6.53 × 10−3 2.06 × 10−4

of FWHM, masking and telescope effects. We also observe
star size to have a negligible impact on E(e) for all meth-
ods, but we clearly see that E(R2) significantly increases
(resp. decreases) for star fields with smaller (resp. larger)
FWHM. Finally, all methods reach a slightly higher accu-
racy on masked images, especially with 6-fold masks.

6.3. Results from individual interpolation methods

– Interpolation with radial basis functions (RBF): as shown in
our previous discussion, the RBF interpolation scheme is the
overall winner of our evaluation. According to our bench-
marks, ellipticity patterns were best estimated by a linear
kernel function, whereas a thin-plate kernel was more effec-
tive on FWHM values. A neighborhood size between 30 and

Table 15. Turbulent sets: average values of E and σ.

Method E(e) σ(e) E(R2) σ(R2)

RBF 4.36 × 10−2 1.81 × 10−3 4.57 × 10−3 1.44 × 10−4

IDW 4.42 × 10−2 1.79 × 10−3 9.05 × 10−3 2.85 × 10−4

Kriging 4.61 × 10−2 1.79 × 10−3 1.11 × 10−2 3.49 × 10−4

Polyfit 5.82 × 10−2 1.89 × 10−3 5.04 × 10−3 1.58 × 10−4

B-splines 5.97 × 10−2 1.88 × 10−3 6.31 × 10−3 1.99 × 10−4

40 stars was used. Refer to Sect. 3.5 and Table 5 for a de-
scription of RBF interpolation and the definitions of these
kernels. That combination of linear and thin-plate kernels
yields very competitive error statistics on both turbulent and
non-turbulent sets: Tables 14 and 15 as well as plots Fig. 7
show RBF is the most accurate on turbulent sets whereas its
results on non-turbulent sets are the second best behind ordi-
nary Kriging. The possibility of selecting the most suitable
kernel for a given PSF patterns is a very attractive feature of
RBF interpolation.

– Inverse distance weighted interpolation (IDW): the IDW
methods (see Sect. 3.4) obtains the second best average E(e)
behind RBF over all sets as seen in Table 13. It does so
thanks to very competitive E(e) results on turbulent sets, just
behind RBF (Table 15). But IDW’s estimates of the FWHM
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on non-turbulent sets are by far the worst of all five interpo-
lation algorithms, both on ellipticity and size (Table 14). As
found in Sect. 6.2, IDW looks quite sensitive to variations in
star density. In fact, we observe that IDW underperforms on
star fields with low-density and smaller FWHM (sets 5, 6,
13, 14, 25, 26). We were unable to find a setup that signif-
icantly improves that level of accuracy, which suggests the
method has difficulty coping with such constraints in density
and size. All in all, IDW performs quite well overall, know-
ing it is based on a very simple interpolation algorithm, with
fewer adjustable parameters than RBF or ordinary Kriging
(see Sect. 3.4).

– Interpolation with ordinary Kriging (OK): despite its reputa-
tion of best interpolator on spatially-scattered data, ordinary
Kriging, introduced in Sect. 3.6, arrives only third behind
RBF and IDW when considering error statistics in Table 13.
As see in shown in Table 14 and plots Fig. 8, Kriging’s esti-
mates on non-perturbed sets are the best of all five methods.
But this cannot compensate for its relatively poor perfor-
mance on estimating the FWHM on turbulent sets, as shown
in the value of E(R2) in Table 15. The reason for this is prob-
ably related to the significant spatial drift of the FWHM val-
ues across the image. The condition of intrinsic stationarity
required by ordinary Kriging is no longer fulfilled in some
areas, especially near the edges of the image. As a result, we
were forced to reduce the size of the search neighborhood
over which the Kriging weights are calculated, which leads
to a loss in accuracy in the corresponding regions. Kriging
variants with ability to correct such a drift, like Universal
Kriging, would probably achieve better results. Also, our
implementation of Kriging for the Star Challenge assumes
spatial isotropy, even though experimental variograms for
ellipticity on non-turbulent sets also show evidence of ge-
ometric anisotropy, A more sophisticated implementation
could have corrected these effects by rescaling and rotat-
ing coordinate axes along the direction of maximum spatial
continuity.

– Polynomial fitting (Polyfit): the results of Polyfit are of partic-
ular interest since polynomial fitting is currently the method
of choice for modeling spatial variations of a PSF in lens-
ing studies (see Sects. 2 and 3.1). polynomial fitting per-
forms relatively well on non-turbulent sets with E(e) and
E(R2) statistics fairly close to those of RBF (Table 14).
However, the corresponding statistics on turbulent sets are
significantly worse that those achieved by local methods, as
seen in Table 15. This confirms the conclusion of Sect. 3.1
whereby polynomials have difficulty coping with small or
rapid variations found in a PSF pattern. Low-degree poly-
nomials generally produce satisfactory result but tend to un-
derfit the data, which leads to suboptimal accuracy. The re-
sulting interpolation surfaces are characteristically smooth,
as clearly observed in the Polyfit plot of Fig. 9. The Star
Challenge images without KM power spectrum are smooth
enough for Polyfit to approach the accuracy of RBF and ordi-
nary Kriging. These results were obtained with a fifth-degree
polynomial, higher degrees degrading the fit.

– Interpolation with basis splines (B-splines): polynomial
splines are generally considered superior for interpolation
than simple polynomials as explained in Sect. 3.3, and we
would have expected B-splines to achieve better results than
Polyfit on the Star Challenge data. But this is not reflected
in the averaged results from Tables 13. The level of accu-
racy reached by both interpolators is nevertheless of the same
order.

As seen in Table 14 and plots Fig. 8, the ellipticity esti-
mates from B-splines are superior to those of Polyfit on
non-turbulent sets and of similar accuracy on turbulent ones.
This tends to confirm the better ability of splines to capture
small-scale and rapid variations in the data than polynomi-
als. The results show, however, errors E(R2) on the FWHM
much larger for B-splines than for Polyfit, which explains
the relative lower performance compared to Polyfit. The
FWHM spatial distribution being overall quite smooth in the
Star Challenge images, this result suggests polynomials may
be better suited than splines for modeling smoothly-varying
patterns of variation. Combining both schemes may also be
worth investigating.

7. Conclusions

The GREAT10 Star Challenge gave us the opportunity to eval-
uate several interpolation methods on spatially-varying PSF
fields:

– Two global, approximate and deterministic spatial interpola-
tion schemes: polynomial fitting (Polyfit) and basis splines
(B-splines).

– Two local, exact and deterministic techniques relying on
inverse distance weighting (IDW) and radial basis functions
(RBF).

– An implementation of ordinary Kriging, a local, exact and
stochastic spatial prediction method, frequently used in
Geostatistics and environmental sciences.

We used a three-stage PSF estimation pipeline, which we de-
scribed in Sect. 4.2 and Appendix A. Elliptical Moffat profiles
were fitted to the stars contained in each Star Challenge image
and then estimated and reconstructed at new positions in the
same image using one of the five interpolation schemes listed
above.

That approach proved quite successful since it allowed us
to win the GREAT10 Star Challenge. We were, however, disap-
pointed by the relatively high σ2

sys values reached, on the order
of 10−4, i.e., still far from the σ2

sys . 10−7 target demanded by
future large weak lensing surveys. The lack of accuracy could
be traced to the suboptimal fitting of Airy PSF profiles by our
pipeline and not to a deficiency in the PSF interpolation meth-
ods. However, this issue made it difficult to unambiguously con-
clude on the level of accuracy of individual interpolation algo-
rithms, which is the main objective of this article.

In order to measure errors purely due to interpolation and
only these, we used the true input ellipticity and FWHM cat-
alog for the input Star Challenge images instead of our fitted
estimates for these quantities. We also chose new metrics, bet-
ter suited than the P-factor for assessing estimates on ellipticity
and size. The results are summarized in Tables 13–15 along with
the corresponding plots in Figs. 7 and 8. We highlight our main
conclusions below.

– Table 13 shows the overall E(e) and E(R2) errors to be on
the order of 10−2 and 10−3 respectively. Figure 14, however
indicates that E(e) ∼ 10−4 and E(R2) ∼ 10−3 on images de-
void of Kolmogorov turbulence, to be compared with the
E(e) . 10−3 and E(R2) . 10−3 estimated requirements of
future next-generation surveys. Although the Star Challenge
PSF fields lack realism in certain aspects, this suggests that
the best methods, RBF, IDW and OK, may already be suit-
able for space-based surveys where turbulence is absent.
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– All interpolation methods see their accuracy drastically de-
graded in images where atmospheric turbulence effects have
been simulated, with E(e) and E(R2) errors increased by a
factor of ∼100. The better performance on turbulent images
of RBF, IDW and OK compared to Polyfit and B-splines in
the GREAT10 Star Challenge, suggests local methods may
be able to better cope with turbulence than global ones. We
note, however, that these results are only valid for the specific
turbulence model used in the simulations and would have to
be confirmed on real data.

– After turbulence, the factors influencing results the most are
the density of stars and their size. As far as density is con-
cerned, local methods are more impacted than global ones
and generally improve their estimates on denser sets much
more than global methods. A similar conclusion is reached
concerning local methods as far as PSF size is concerned.
However, the results suggest both global and local methods
have difficulty coping with objects smaller than the fiducial
FWHM of 3 pixels. Among all methods, IDW suffered the
most from sparse star fields with small FWHM.

– The RBF interpolator proved the most accurate, reaching the
best results on both turbulent and non-turbulent sets. The use
of kernel functions brings additional versatility compared to
a simpler interpolator like IDW, while avoiding the complex-
ity of Kriging. The selection of the most suitable kernel func-
tion and associated parameters can be greatly simplified by
the use of cross-validation or Jackknifing. These techniques,
as shown in Sect. 4.3, can prove very helpful to tune the run-
time parameters of an interpolation schemes and evaluate the
accuracy of its results.

– Despite its simplicity, the IDW interpolation method ob-
tained better than expected results, outperforming polyno-
mials and splines in the simulations. Fast and easy to tune, it
could potentially constitute a simple alternative/complement
to polynomials before trying more elaborate interpolation
schemes such as Kriging or RBF.

– Ordinary Kriging is, in our opinion, potentially the most ac-
curate method as shown especially by its results on non-
turbulent images. However, the FWHM spatial distributions
in the Star Challenge have a significant spatial drift that the
standard ordinary Kriging algorithm is unable to correct.
Another Kriging variant such as Universal Kriging would
possibly have proved more accurate. It remains that Kriging,
because of its sophistication, is more difficult and time con-
suming to operate than the other interpolators we evaluated.

– Overall, our analysis of the Star Challenge results suggests
local interpolators should be preferred over global ones
based on splines and polynomials. However, one should
bear in mind that (1) these results are based on simu-
lated data where star images are isolated, bright enough
and well sampled; (2) the spatial variation of the PSF as
simulated in GREAT10 may tend to favor local interpo-
lators over global ones. We strongly believe, nevertheless,
that local interpolation schemes for PSF interpolation have
the potential to improve the accuracy of existing and future
ground-based lensing surveys and deserve to be investigated
further.
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Appendix A: Our PSF prediction pipeline (PSFPP)

A.1. Overview

The PSF prediction pipeline used in the Star Challenge is out-
lined in Fig. 5. A PSF field is fed into the pipeline and goes
through three processing stages:

1. Fitting stage: the Moffat PSF model described in Sect. 4.1 is
fitted to each star at known position (xc, yc) in the PSF field
image. A catalog is produced, containing a set of fitted pa-
rameters

{

(xc, yc); (e1, e2); φ, (α, β)
}

for each star. Instead of
an out-the-box minimizer, we employ a custom minimizer
we developed at the EPFL Laboratory of astrophysics and
well suited to fitting faint and noisy images like those fre-
quently found in weak lensing. The minimizer uses an “adap-
tive cyclic coordinate descent algorithm” that find a local
minimum with the lowest χ2 of the residuals. That same min-
imizer has also been used in the version of the gfit shear mea-
surement method that competed in the GREAT10 Galaxy
Challenge (Kitching et al. 2012). The star images processed
by the minimizer are 16 × 16-pixel cutouts instead of the
original 48 × 48-pixel postage stamps.

2. Prediction stage:
– First, an analysis of the spatial distribution of each pa-

rameter across the image is performed. In particular, all
separation distances between stars are recorded in the
form of KD-trees (Bentley 1975) for efficiently finding
the nearest neighboring stars located within a given sep-
aration distance ‖h‖.

– Second, a spatial prediction scheme is applied to estimate
the values Z′p(x′

i
, y′

i
) of the parameter p at asked loca-

tions (x′
i
, y′

i
), given the fitted parameter values Zp(xi, yi)

obtained in the previous stage. One of the four methods
described in Sect. 3 is applied here.

3. Reconstruction stage: All stars in a PSF field are recon-
structed based on the elliptical Moffat model described in
Sect. 4.1, but using the parameters predicted for that star dur-
ing the Prediction stage.

A.2. Pipeline implementation and configuration

The pipeline code is written in Python, a programming language
known for its power, flexibility and short development cycle. The
usual standard Python libraries are used, notably: NumPy, SciPy,
PyFITS and matplotlib. SciPy is the standard scientific library
for Python. Most of its functions are thin Python wrappers on
top of fortran, C and C++ functions. SciPy takes advantage of
installed optimized libraries such as LAPACK (Linear Algebra
PACKage) library (Anderson et al. 1990). We employ the cross-
validation and Jackknifing resampling techniques (see Sect. 4.3)
to tune the run-time parameters for the interpolation schemes
and evaluate the accuracy of the results. We highlight below a
few aspects related to the implementation of the methods.

– IDW: the code for Inverse Distance Weighted interpolation
is written in Python, based on Eq. (2) with weighting factors
specified by (8). The free parameters are the power factor β
and the neighborhood size N (see Sect. 3.4). A configuration
with β = 2, with 5 ≤ N ≤ 15 depending on the density of
stars in images gives the best results according to our tests.

– RBF: we use the rbf() interpolation function available in
the SciPy interpolate module. The number of parameters to
tune is greater compared to IDW: a kernel function chosen
among those listed in Table 5; the neighborhood search size
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N; a shape parameter ǫ for the multiquadric, inverse multi-
quadric and Gaussian kernels; and a last parameter for con-
trolling the smoothness of the interpolation (see Sect. 3.5).
Only the linear, thin-plate and multiquadric kernels gave
stable enough predictions. Choosing 25 ≤ N ≤ 30 and dis-
abling smoothing (i.e. use exact interpolation) yielded the
best cross-validation and Jackknifing results for the chosen
kernels.

– splines: we have selected the bisplrep() and bisplev()
bivariate B-spline interpolation functions provided by the
SciPy interpolate module. These functions are Python wrap-
pers on top of the fortran FITPACK package (Dierckx 1995).
The underlying algorithms follow the constructive approach
for spline interpolation described in Sect. 3.3 and are spec-
ified in Dierckx (1980). The main parameters affecting the
interpolation are the degree p of the spline, the number of
knots N and a smoothing factor s. We have fixed p to 3 but
let the algorithm automatically set N and s.

– Kriging: we have used our own custom-developed Python
code of ordinary Kriging (see Sect. 3.6). The Kriging used in
the Star Challenge and in this article is isotropic and does not
implement any spatial anisotropy or drift correction scheme.
The accuracy of the ordinary Kriging interpolation scheme
was influenced by the following set of parameters:
– The interpolation range, i.e. the range in pixels used for

interpolation. Depending on the images, we chose a cir-
cular area with a radius between 700 and 1000 pixels
from the center of the 4800 × 4800 PSF field.

– Lag distance h in pixels. We used values in the range
100 ≤ h ≤ 300 depending on the image and the PSF
model parameter to estimate.

– The number of observations N in Eq. (19) to include in
the neighborhood: we used 5 ≤ N ≤ 20 depending on the
image star density.

– Tolerance distance ∆h (pixels) and angle ∆θ considered
when locating neighboring observations. As a rule of
thumb, we selected ∆h ≈ h/2 and ∆θ = 22.5◦.

– A theoretical variogram model such as those listed in
Table 7. The experimental variograms were fitted using
the Levenberg-Marquardt least-squares leastsq routine
from the SciPy optimize module. The program dynami-
cally selected the theoretical variogram models and pa-
rameters that produced the best fit.

– The Polyfit code is based on the leastsq() function from
the SciPy optimize Python module. A least-squares fit to a
bivariate polynomial of degree 5 gave the best estimates.
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