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Abstract  15 

Limit state design, incorporated into many recent geotechnical design codes, introduces the 16 

application of partial or resistance factors to selected characteristic values. Partial or 17 

resistance factors are usually set by national standard organizations, while characteristic 18 

values of geotechnical parameters are selected by engineers, often based on sparse 19 

measurement data combined with subjective engineering experience and judgment. Due to 20 

this subjective selection and individual judgment, the characteristic value derived by different 21 

engineers from the same dataset may vary greatly, especially when the test data contain 22 

significant variability. To address this issue, a new method based on Bayesian compressive 23 

sampling (BCS) is proposed in this study. BCS is able to reconstruct a high�resolution 24 

geotechnical property profile from sparse measurement data and quantify the uncertainty, e.g. 25 

confidence interval (CI) associated with the interpreted profile. The quantified uncertainty in 26 

the BCS has a clear statistical meaning: the corresponding confidence level for a CI from the 27 

BCS is the expected coverage proportion (i.e. fraction) of the complete profile that falls 28 

within the CI, if all data points along depth can be measured to provide the complete profile. 29 

This statistical meaning can be used to facilitate objective determination of characteristic 30 

values for geotechnical properties.  31 

 32 

Keywords: Reliability�based design; Bayesian compressive sampling; compressive sensing; 33 

sparse measurement data; site investigation  34 

Page 2 of 44

https://mc06.manuscriptcentral.com/cgj-pubs

Canadian Geotechnical Journal



D
raft

3 

 

Introduction 35 

Limit state design methods have been recently incorporated into many geotechnical codes of 36 

practice throughout the world, e.g. Eurocode 7 (CEN 2004), AASHTO Bridge Code 37 

(AASHTO 1998), and Canadian Highway Bridge Design Code (CHBDC 2014), among 38 

others. To achieve a specific target reliability level, the design value is determined by 39 

dividing the characteristic strength values by partial factors (e.g. Meyerhof 1995; Fenton and 40 

Naghibi 2011; Reddy and Stuedlein 2017) or multiplying the characteristic resistance values 41 

by resistance factors. Partial or resistance factors are usually set by national standard 42 

organizations and are used to achieve a target level of reliability or safety (although explicit 43 

reliability calibration may not be conducted); while the characteristic values of geotechnical 44 

parameters are selected by geotechnical engineers. In engineering practice, these 45 

characteristic values are often selected based on a limited number of test results, therefore 46 

engineering judgment and previous relevant experience are frequently used to select the 47 

characteristic values (e.g. Orr 2017).  48 

Because of this subjective selection and individual judgment, the characteristic values, 49 

derived by different geotechnical engineers from the same dataset, may vary greatly, 50 

especially when the test data are scarce or contain significant variability. For example, Bond 51 

and Harris (2008) presented three case studies in which about one hundred engineers were 52 

asked to select the characteristic values on the basis of Eurocode 7 from the same set of test 53 

data. The case studies dealt with different types of data (SPT blow counts, field vane tests and 54 

triaxial tests), different soil types (clays and gravels) and different number of data points 55 

(from 25 to above 100 points for profiles of 10 to 30m deep). The selected characteristic 56 

values varied greatly, and the maximum characteristic value obtained was about 3 to 5 times 57 

greater than the minimum one. Orr (2017) suggested that more guidance is needed to select 58 
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characteristic values in an objective manner to reduce and properly account for this broad 59 

range of interpretation.  60 

Statistical analyses of laboratory and in�situ test results to determine geotechnical 61 

parameters for reliability�based design applications have been broadly discussed and 62 

recommended in the literature (e.g. Vanmarcke 1977; Phoon and Kulhawy 1999; Baecher and 63 

Christian 2003; Fenton and Griffiths 2008; Becker 2010; Gong et al. 2014; Li et al. 2016; 64 

Phoon et al. 2016). Although statistical methods are explicitly recommended in some design 65 

guides (e.g. Det Norske Veritas 2010), currently the use of such analyses has not been 66 

included in some existing design codes, such as Eurocode 7, partially because of the limited 67 

number of site specific measurement data and the inherent variability encountered in natural 68 

soil deposits (Orr 2017). Furthermore, most of the available statistically based methods for 69 

determining the characteristic values of geotechnical parameters focus on point statistics (e.g. 70 

mean and coefficient of variation for a previously defined homogeneous soil layer) and hence 71 

ignore the spatially varying pattern of soil properties (e.g. Cao and Wang 2014; Wang et al. 72 

2016a; Wang and Aladejare 2016; Wang and Cao 2013). 73 

This paper aims to address these two issues, limited data and inherent spatial 74 

variability, and to provide a statistical procedure for an objective determination of 75 

characteristic value from spatially varying but sparsely measured data. It uses compressive 76 

sampling theory to reconstruct the best estimate of a soil property profile from sparse 77 

measurement data points (Wang and Zhao 2016) and Bayesian theory to estimate the 78 

statistical uncertainty associated with the interpreted profile (Wang and Zhao 2017). The use 79 

of the Bayesian framework acknowledges the critical role of engineering judgment but 80 

reduces the subjective interpretation uncertainty by quantitatively representing it as prior 81 

knowledge (e.g. Cao, Wang and Li 2016; Vick 2002; Wang and Aladejare 2015; Wang et al. 82 

2016b). 83 
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This paper first presents an interpretation of the statistical meaning of the confidence 84 

interval for random field data. Then it reviews the formulation of BCS and uses it to provide 85 

average and confidence interval profiles, given only sparsely measured but spatially varying 86 

geotechnical data. Note that the measurement data of soil properties obtained in geotechnical 87 

engineering are usually sparse and limited, particularly for small or medium sized projects. 88 

An important question when interpreting sparse data in geotechnical practice is: how does the 89 

profile interpreted from sparse data compare with the measured profile, if it is possible to 90 

measure the geotechnical data with a small interval and a high resolution? This paper shows 91 

that the confidence interval (CI) profile quantified in BCS has a clear statistical meaning, 92 

which may be used to address this question and to facilitate determination of characteristic 93 

values in engineering practice. For illustration, the proposed BCS procedure is applied to a 94 

real case of CPT data and the selection of the characteristic value of effective friction angle.  95 

This paper addresses the characteristic value only from a purely statistical perspective, 96 

although characteristic value may be related to the extent of failure zone governing the 97 

behavior of the structure at the limit state. For example, some researchers have argued that 98 

the characteristic value is related to the concept of a mobilized strength along the critical slip 99 

surface (Ching and Phoon 2013a, 2013b; Ching et al. 2014, 2016a) or a mobilized modulus 100 

over a domain influenced by the structure at the limit state (Ching et al. 2016b). As the limit 101 

state of a geo�structure is problem dependent, and a realistic assessment of the characteristic 102 

value in the context of spatial variability where non�classical failure mechanisms can emerge 103 

is less straightforward, the extent of failure zone governing the behavior of the structure at the 104 

limit state is not considered in this paper. 105 

 106 

Coverage proportion of confidence interval profiles 107 
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The confidence interval (CI), which may be used to quantify uncertainty, is more informative 108 

than simply reporting a point estimate (e.g. Phoon and Ching 2014). CI is an interval 109 

estimation of a parameter of interest which gives a confidence level that the true parameter 110 

falls within the estimated CI. To evaluate the confidence interval, analytical equations can be 111 

used when the distribution of the data is known. For example, for normally distributed data 112 

with a known mean (µ) and standard deviation (σ), the CI for a confidence level α, denoted as 113 

CIα, is expressed as:  114 

 115 

 CI� = 	μ ± �(
��) ⁄ � (1) 

 116 

where �(
��) ⁄ = −Φ�
[(1 − α)/2)] and Φ
�1

(I) is the inverse standard normal cumulative 117 

distribution function. Note that the lower bound of Equation (1) or its variants (i.e. µ minus a 118 

factored σ) has been proposed in literature, e.g. Schneider and Schneider (2013) and Orr 119 

(2017) as characteristic value at a given depth or for a homogeneous soil layer in Eurocode 7. 120 

For spatially varying data, such as random field samples (RFSs), the values vary along a 121 

spatial dimension (e.g. depth), hence the mean and CIα also vary along this spatial dimension, 122 

e.g. profiles varying with depth. For a given random field with known µ and σ, CIα profiles 123 

(i.e. variations of CIα with depth) can be generated analytically by applying Equation (1) to 124 

different depths. For example, the CI90% profiles can be obtained by substituting α=90% to 125 

Equation (1) for different depths of interest.  126 

 127 

CPα of CIα profiles for random field data 128 
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The coverage proportion (CPα) of a soil property profile �, e.g. a RFS, that falls within a CIα 129 

profile with a confidence level (α) is defined as (e.g. Marra and Wood 2012; Nychka 1988; 130 

Wahba 1983): 131 

 132 

 CP� = 	 1N�[I(�� ∈ CI�)]
 

�!

 (2) 

 133 

where N is the total number of data points in the soil property profile �, and I(∙) is the 134 

indicator function. I(∙) equals to unity if a data point �� (k = 1, 2, …, N) is within the upper 135 

and lower bounds of CIα, and otherwise, it is zero. Note that the expected value of CPα is 136 

equal to α (Wahba 1983). For example, CI95% implies that 95% of all data points are expected 137 

to fall within the upper and lower bounds given by CI95%, i.e. CP95% = 95%. The coverage 138 

proportion has been evaluated for CIα profiles obtained from smoothing functions (e.g. 139 

Nychka 1988; Wahba 1983) and generalized additive models (e.g. Marra and Wood 2012). In 140 

this section, the procedure to evaluate the CPα of a RFS that falls within a CIα profile is firstly 141 

explained. Then the procedure is illustrated with simulated random field data. This section is 142 

meant to explain the definition and evaluation of CPα, and it paves the way for the next 143 

section where CPα will be evaluated for the CIα profiles obtained from the BCS method with 144 

a limited number of measurement data as input. 145 

Note that if the random field has no correlation (i.e. the data points over the depth are 146 

independent), the probability distribution of CPα follows a binomial distribution because of 147 

the indicator function in Equation (2) (e.g. De Veaux et al. 2014; Efron and Tibshirani 1993). 148 

Hence, the average CPα is equal to α, and the variance is equal to #(1 − #) N⁄ . The shape of 149 

the distribution of CPα is symmetric (i.e. zero skewness) for α=0.5 and it is negatively skewed 150 
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as α approaches 1 (De Veaux et al. 2014). The distribution of CPα tends to the normal 151 

distribution as N increases and α approaches 0.5. De Veaux et al. (2014) suggest that a 152 

normal distribution gives a good approximation of the binomial distribution if N# ≥ 10 and 153 

N(1 − #) ≥ 10.  154 

 155 

Simulation of random field examples 156 

For illustration, a 1D stationary Gaussian random field is used to represent a soil property X 157 

profile. Random field samples (RFSs) are generated using a truncated Karhunen�Loève (KL) 158 

expansion. Truncated KL expansion has been increasingly studied and used in simulating 1D 159 

random processes in recent years (e.g. Zhang and Ellingwood 1994; Phoon et al. 2002; Phoon 160 

et al. 2005; Li et al. 2014). The following parameters were used: mean μ& = 30, standard 161 

deviation �& = 2  and an exponential correlation function, i.e.  (),+ = exp,− -./0�./1-
23 4 , 162 

where 5&0 and 5&1  are the depths of two X data points Xi and Xj, respectively, and 67 is the 163 

correlation length taken as 2m in this example. The soil layer thickness (h) is taken as 20.44m 164 

and the profile has a resolution of 0.04m. Hence there are N = 512 points for each RFS. Note 165 

that only one homogeneous soil layer (rather than several soil layers) with a thickness of 166 

20.44m is considered in this illustrative example. Stratification therefore is not needed in this 167 

example. For the truncated KL expansion, 200 KL terms are used. Note that 200 terms are 168 

able to preserve 98.2% of the total variance of the random field in terms of the sum of 200 169 

eigenvalues and the sum of all eigenvalues in this example. Therefore, it accurately 170 

represents the prescribed random field (e.g. Phoon et al. 2002). The number of RFS (Ns) 171 

generated is 1000. All RFSs generated are shown in Figure 1 in light gray. Additionally, the 172 

profile of the mean values, evaluated as the average of all Ns values at each depth, is also 173 

shown. 174 
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 175 

Probability distribution of CPα for CIα profiles 176 

The CIα profiles over depth are constructed using Equation (1) with a given confidence level 177 

α. For example, given α=95%, the CI95% profiles are obtained with the 2.5
th

 and 97.5
th

 178 

percentiles from Equation (1) and are shown in Figure 1 by two dotted lines. In each subplot 179 

of this figure, one RFS is shown in black solid line to illustrate the evaluation of CP95%. For 180 

each one of these samples, the coverage proportion of the RFS profile that is within the CI95% 181 

profiles (i.e. between the two dotted lines in Figure 1) is evaluated. The CP95% values for the 182 

three RFSs presented in Figure 1 are 94.5%, 94.9% and 96.1%, respectively. 183 

The CPα values are evaluated for all Ns = 1000 RFSs and for different α values ranging 184 

from 50% to 95%. Statistical analysis is performed for the CPα values obtained, and the 185 

results are shown as box�and�whiskers plots for different α values in Figure 2b. The box is 186 

constructed with the inter�quartile range, IQR = 25% � 75% percentiles, and the whiskers 187 

show the minimum and maximum values within 1.5IQR. The maximum and minimum CPα 188 

values among all Ns RFSs are shown by crosses in Figure 2, and the mean CPα values are 189 

shown with circles. Figure 2 also includes a 1:1 line in each subplot. The mean CPα values for 190 

the α value varying from 50% to 95% all plot along the 1:1 line, and the average CPα is equal 191 

to α. The CIα profiles can be statistically interpreted as the upper and lower bounds of an 192 

interval where the expected coverage proportion (i.e. fraction) of a RFS (i.e. a spatially 193 

variable soil property X profile) that falls within the interval is α.  194 

Note that, although the expectation of CPα is α, the CPα value for each RFS may vary 195 

significantly, as shown in Figure 2. When the CPα values are greater than the α values, a 196 

relatively large proportion of the RFS fall within the interval. In contrast, when the CPα 197 

values are smaller than the α values, a relatively large proportion of the RFS fall outside the 198 
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CIα profiles. For example, for the worst case in Figure 2b, the smallest CP50% value is close to 199 

20%. This means that, besides the 50% expected, an additional 30% of the RFS falls outside 200 

the CI50% profiles. For all Ns = 1000 RFSs, less than 3% of RFSs present a CP95% lower than 201 

85.5% (i.e. a relative difference of 10% on the expected value). In contrast, for CP50%, about 202 

30% of RFSs are below 45% (i.e. the same 10% difference). As the confidence level 203 

increases, the variability of the CP values decreases, as shown by the decreasing size of the 204 

box and whiskers as the α value approaches unity. In addition, the mean and median CPα 205 

values (shown with a line inside the box in Figure 2) are similar for α equal 50%, but the 206 

median CPα value is slightly larger than the mean CPα value for high α values. In other 207 

words, the CPα results are symmetric, i.e. present zero skewness, for α close to 0.5, but 208 

develop a negative or left skewness as α approaches unity. This is similar to the effect of 209 

small N values when the random field has no correlation and the CPα values follow a 210 

binomial distribution (De Veaux et al. 2014). 211 

 212 

Effect of different correlation length in random field 213 

The same procedure as described previously was used for generating RFSs with various 67 214 

values. Figures 2a and 2c show the box�and�whiskers plots of the corresponding CPα results 215 

for 67 = 0.5m and 5m, respectively. For all the cases, the mean CPα is equal to α, although the 216 

results present more variability for the case of 67 = 5m. The variability of CPα increases as 217 

the correlation length increases, as shown by the size of the box and the length of the 218 

whiskers in Figure 2. Compared to the case of 67=2m, the CPα results for the case of 67 = 219 

0.5m are more concentrated around α. The decrease in the CPα variability as α increases is 220 

less visible for the case of 67 = 0.5m. Also, for the case of 67 = 0.5m, the median CPα is also 221 

equal to α, and all CPα distributions appear to be symmetric. In contrast, for the case of 67 = 222 
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5m shown in Figure 2c, the variability of CPα increases, and distributions are markedly 223 

skewed for high α values. It can be seen that, for α greater than 0.7, the median CPα values 224 

are greater than α. Thus more than 50% of RFSs have a CPα equal to or greater than α.  225 

A total of eight different 67 values were tested ranging from 0.1 to 10m. This range of 226 

correlation length is consistent with those of geotechnical properties reported in literature 227 

(e.g. Phoon and Kulhawy 1999). The box plots of the CPα results are shown in Figure 3a for 228 

three α values: 50%, 80% and 95%. For all results, the CPα mean values are equal to the 229 

corresponding α values, independent of either 67  or α. However, the median values are 230 

greater than the mean values for high confidence levels, and the difference between mean and 231 

median values increases with the correlation length. Furthermore, the size of the boxes in 232 

Figure 3a increases with 67, suggesting that the variability of the CPα results increases with 233 

67. 234 

To visualize the effect of the correlation length and the confidence level on the 235 

variation of CPα results, Figure 3b shows the standard deviation evaluated for CPα (σCPα) as a 236 

function of α. When there is no correlation in the random field, the standard deviation is 237 

evaluated as σCPα= 8#(1 − #) N⁄ , as for the binomial distribution, and shown by a solid line 238 

in Figure 3b. A random field with no correlation was tested and the results obtained for σCPα 239 

agree well with the analytical solution. When there is no correlation, the σCPα reaches its 240 

maximum for α = 0.5. However, as 67  increases, the maximum value of σCPα occurs at a 241 

relatively large α value. For 67 equal to 10m, a maximum σCPα of about 0.18 is found at α = 242 

0.65. In general, the σCPα increases as 67  value increases. But this increase is more 243 

pronounced for relatively small α values. For α = 0.95, the σCPα is quite small, even for high 244 

correlation lengths because the upper bound of CP95% = 1 is reached in many cases.  245 

It is worth noting that the aforementioned CIα profiles are obtained from a prescribed 246 
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random field with known parameters. In geotechnical engineering practice, if a soil property 247 

profile is represented by a random field, its random field parameters, such as mean, standard 248 

deviation and correlation function, are often difficult to estimate from measurement data, 249 

especially the last two parameters. This is in part because the measurement data of soil 250 

properties are usually limited and sparse. To address this difficulty, a Bayesian compressive 251 

sampling method has been recently developed to statistically interpret the sparse 252 

measurement data points for providing the best estimate and CIα profiles of the soil properties 253 

(Wang and Zhao 2017), as briefly reviewed in the next section.  254 

 255 

Review of Bayesian compressive sampling (BCS) 256 

Bayesian compressive sampling (BCS) is a coupling of compressive sampling or sensing 257 

(CS) and the Bayesian method to reconstruct the average and standard deviation profiles of a 258 

soil property profile from only partial information of the profile, i.e. sparse measurement data 259 

points (e.g. Ji et al. 2008; Wang and Zhao 2017). CS, mainly applied in electrical engineering 260 

and computer science, exploits sparsity, or compressibility, in many real�world signals (e.g. 261 

Candès et al. 2006; Candès and Wakin 2008). A signal, denoted as a column vector � with a 262 

length of N, is defined as the variation of a physical quantity with time or space. 263 

“Compressibility” means that a signal �  can be represented concisely as a weighted 264 

summation of a proper type of basis functions, such as wavelet functions. In the mathematical 265 

formulation of CS, � is expressed as follows: 266 

 267 

 � = 9: (3) 

 268 
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where 9 is a N×N orthonormal matrix composed of columns of pre�specified basis functions, 269 

and ; is the corresponding weight coefficient vector with a length of N. Because of the 270 

compressibility of signals, most entries in ; are near to zero. Thus, � can be reconstructed by 271 

identifying and estimating the weight coefficients with significant value using the sparse 272 

measurement data vector < that has a length of M, where M<N, as follows:  273 

 274 

 < = =� = >:  (4) 

 275 

where = is a M×N matrix and represents the locations of components < in �. > = =9 is also 276 

a M×N matrix (Wang and Zhao 2016). Exploiting sparsity, the resulting underdetermined 277 

system of linear equations, i.e. Equation (4), can be solved by various existing efficient 278 

algorithms (e.g. Foucart and Rauhut 2013). For example, Wang and Zhao (2017) used a 279 

Bayesian method to statistically reconstruct the signal �? , which is an approximation of �. 280 

Mathematically, �? is defined by:  281 

 282 

 �? = 9:@  (5) 

 283 

where :@ is the approximate weight coefficient vector with a length of N, and all components 284 

are set to zero except for the S non�trivial components (S<<N). Following the Bayesian 285 

framework (Wang and Zhao 2017), the posterior marginal distribution of :@ derived from < 286 

follows a multivariate Student t distribution with a degree of freedom equal to 2AB and a scale 287 
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matrix of (5B AB)⁄ C . The mean and covariance matrix of :@  (i.e. μ:@  and DEF:@ , 288 

respectively) are expressed as:  289 

 290 

 μ:@ = C>G<  

DEF:@ = 5BCAB − 1 

(6) 

 291 

where C = (>H> + J)�
, AB = M 2⁄ + AL and 5B = M<N< − μ:@G C�Oμ:@P/2 + 5L. AL and 5L 292 

are small non�negative constants, e.g. AL = 5L = 10�Q , J is a N×N diagonal matrix with 293 

components D),) = #) and #) are unknown non�negative coefficients. Note that Equation (6) 294 

only depends on #)  and requires an iterative algorithm (e.g. the maximum likelihood 295 

estimation) to obtain the most probable value of #). Only the αi values corresponding to the S 296 

(S<<N) non�trivial coefficients in sω  need to be estimated in BCS, hence bypassing the 297 

possible problem caused by high dimensionality. The number S of coefficients needed is 298 

obtained by an iteration procedure using cosine similarity (Wang and Zhao 2017).  299 

Because :@ follows a multivariate Student t distribution and Equation (5), �? is also 300 

derived as a random vector following a multivariate Student t distribution (e.g. Ang and Tang 301 

2007; Fenton and Griffiths 2008), with 2AB degree of freedom, mean μ�?  and scale matrix 302 

(dn/cn)BHB
T
. The mean and covariance of �? (i.e. μ�?  and DEF�? , respectively) are derived as:  303 

 304 
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 μ�? = 9μ:@  

DEF�? = 9DEF:@9G = 5BAB − 19C9G 

(7) 

 305 

The BCS procedure has been implemented by a package of user functions in MATLAB 306 

(Mathworks, 2016). Only the sparse measurement data from site characterization are required 307 

to obtain the mean and CI profiles of soil properties of interest.  308 

In the following section, the BCS method is used to provide the best estimate of a 309 

complete soil property profile from sparse measurement data and construct the associated CI 310 

profiles. A statistical meaning of the CI profiles obtained from BCS is proposed: the 311 

corresponding confidence level for a CI profile from BCS is the expected coverage 312 

proportion (i.e. fraction) of the complete profile that falls within the CI, if all data points 313 

along depth can be measured to provide the complete profile. The statistical meaning of the 314 

BCS CI profiles is similar to that of the CI profiles for random field data shown in the section 315 

“Coverage proportion of confidence interval profiles”. The statistical meaning of the BCS CI 316 

profiles will be evaluated systematically in the next section.  317 

 318 

Coverage proportion of the BCS confidence interval profiles  319 

Construction of CI profiles obtained from BCS with sparse measurement data as input 320 

As �?  follows a multivariate Student t distribution (Wang and Zhao 2017), the upper and 321 

lower bounds of the confidence interval are defined as (e.g. Taboga 2012):  322 

 323 
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 DS� =	μ�? ± T(
��)/,7U8(2AB − 2) 2AB⁄ VdiagMCOV�?P (8) 

 324 

where T(
��)/,7U is the Student t factor for a confidence level α and a degree of freedom 325 

2AB, 8(2AB − 2) 2AB⁄  is a scaling factor; and VdiagMCOV�?P is a column vector composed of 326 

the square root of the diagonal elements of COV�? . Note that CIα is composed of two column 327 

vectors, which correspond to the upper and lower bounds of the two�tailed data distribution at 328 

various depths (e.g. for α = 90%, the lower and upper bounds are the 5
th

 and 95
th

 percentiles, 329 

respectively). 330 

Consider, for example, using BCS to reconstruct the three RFSs shown in Figure 1 331 

with only M=20 measurement data points from each RFS as input (i.e. the sparse 332 

measurement data <). Figure 4 shows the M=20 measurement data points by open circles. 333 

The best estimate (i.e. mean) of the complete soil property X profile and 95% CI profiles are 334 

shown in Figure 4 as dashed and dotted lines, respectively. Additionally, the original and 335 

complete RFS profile is shown by a solid line in Figure 4 for comparison. Figure 4 shows 336 

that, although the best estimate (i.e. the dashed line) does not go exactly through the 337 

measurement data points (i.e. open circles), it follows a trend similar to that of these data 338 

points and the original and complete RFS profiles. This suggests that the soil property X 339 

profile reconstructed from BCS is consistent with the original variation of X with depth, even 340 

when only a limited number of measurement data points (e.g. 20 from a total of 512 data 341 

points) are used as input.  342 

Some local variations of the original profile are not reconstructed in the best estimate 343 

profile. This is because the number of measurement data is too limited (i.e. M=20≪N=512), 344 
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hence the statistical uncertainty is quite significant. The statistical uncertainty can be 345 

explicitly and objectively quantified by the covariance calculated in Equation (7) and the CI 346 

profiles calculated with Equation (8). For example, the bounds of the CI95% profiles are 347 

shown in Figure 4 by two dotted lines. Similar to the CI profiles for random field data 348 

discussed previously, the BCS CI profiles have a statistical meaning: the corresponding 349 

confidence level for a BCS CI profile is the expected coverage proportion (i.e. fraction) of the 350 

complete profile that falls within the CI, if all data points over depth can be measured to 351 

provide the complete profile. In other words, although some details of the original profile are 352 

not reflected by the best estimate from only 20 measured data points, on average around 95% 353 

of all local variations of the original profile fall within the CI95% upper and lower bounds. For 354 

example, the CP95% values of the three original RFSs shown in Figure 4 are 94.9%, 94.1% 355 

and 96.3%, respectively. Hence, about 95% of the three original RFSs shown in Figure 4 fall 356 

within the CI95% upper and lower bounds. Recall that, in the subsection “Probability 357 

distribution of CPα for CIα profiles”, the similar CP95% values evaluated for the full set of 358 

random field data were 94.5%, 94.9% and 96.1%, respectively. The difference is less than 1% 359 

and quite minor.  360 

 361 

Probability distribution of CPα for BCS CIα profiles 362 

To evaluate the probability distribution of CPα for the BCS CIα, the BCS method is used to 363 

construct each of the Ns = 1000 RFSs shown in Figure 1, using a limited number, e.g. M=20, 364 

of measurement data points from each RFS as input (i.e. <X, i = 1, 2, …, Ns). This leads to a 365 

total of 1000 best estimates and CI profiles obtained from BCS. Each of the 1000 RFSs is 366 

used as the original and complete soil property X profile, which is compared with the 367 
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corresponding best estimate and CI profiles obtained from each BCS interpretation. The 368 

coverage proportion (CPα) of each of the 1000 RFSs that falls within the corresponding BCS 369 

CIα profiles was evaluated for different α values ranging from 50 to 95%.  370 

Figure 5a to 5c show histograms of CP50%, CP80% and CP95%, respectively, when M = 371 

20 (i.e. 20/512=3.9% or less than 4% of the complete profile is measured). The mean CP50%, 372 

CP80% and CP95% values are shown in Figures 5a to 5c as 0.54, 0.79, and 0.92, respectively. 373 

These mean CP values are quite close to their respective α values (i.e. 0.5, 0.8 and 0.95, 374 

respectively). Therefore, the confidence level may be interpreted as the expected coverage 375 

proportion of the original and complete profile that falls within the corresponding BCS CI 376 

profiles, if the original and complete profile can be measured. Additionally, similar to the 377 

random field data discussed in the section “Coverage proportion of confidence interval 378 

profiles”, the CP probability distribution is close to symmetric when α = 50% (see Figure 5a). 379 

As α increases and approaches unity, the distribution becomes less symmetric and presents a 380 

negative skewness (see Figures 5b and 5c). Similar to Figure 2, Figure 6a shows box�and�381 

whiskers plots for CPα with various α values when M=20. A 1:1 line is also included in 382 

Figure 6a. All mean CPα values at various α levels plot close to the 1:1 line. This 383 

demonstrates again that the confidence level may be interpreted as the expected coverage 384 

proportion of the original and complete profile that falls within the corresponding CI profiles 385 

obtained from BCS, if this original profile can be measured. Additionally, for relatively large 386 

α values, the data are negatively skewed, similar to the random field data shown in Figure 2b, 387 

and the mean CPα value is slightly below α.  388 

 389 

Effect of the number of measurement data points (M) on CPα 390 
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The BCS method was repeated with different number of measurement data points (M), 391 

namely, M = 10 to 60, with an increment of 10 points. These values correspond to 392 

measurement spacing between 30cm and 2m, and of fractions equal to 2% to about 12% of 393 

the complete profile. As M increases, more local variations of the original profile are 394 

captured by the reconstructed BCS mean profile, as shown by Wang and Zhao (2017). 395 

Additionally, as M increases, the bounds of the CIα profiles become narrow and approach to 396 

the mean profile. This reflects that the statistical uncertainty is effectively reduced when more 397 

data points are available. In this section, the effect of M is evaluated on the coverage 398 

proportion of the original and complete profile that falls within the corresponding CI profiles 399 

obtained from BCS.  400 

Figure 5 shows histograms of CP50%, CP80% and CP95% for three M values (i.e. M=20, 401 

40 and 60). The mean CP50%, CP80% and CP95% values are shown in Figure 5d to 5f for M=40 402 

as 0.54, 0.8, and 0.93, respectively. In Figure 5g to 5i, the mean CP50%, CP80% and CP95% 403 

values for M=60 are shown to be 0.48, 0.77, and 0.92, respectively. For M=20 and M=40, the 404 

mean CP50% is slightly greater than 50% while the mean value for CP95% is slightly less than 405 

95%. Nonetheless, these mean CPα values are quite close to their respective α values. On 406 

average a proportion α of all local variations of the original profile fall within the 407 

corresponding CIα profiles, even when as few as M=20 points are used to reconstruct the 408 

mean and CIα profiles, which is less than 4% of the total data. In Figure 5, it can be seen that 409 

the variability of the CPα values decreases as M value increases. In addition, as previously 410 

shown for M=20 and for the full set of random field data, as α approaches unity the 411 

distribution develops a negative skewness. However, as can be seen for CP80% and CP95%, as 412 

M increases, the distribution approaches to a normal distribution.  413 
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Similar to Figure 6a, Figures 6b and 6c show box�and�whiskers plots for CPα with 414 

various α values when M=40 and 60, respectively. 1:1 lines are also include in these figures. 415 

As seen for M=20 in Figure 6a, the mean CPα values at the α levels evaluated are close to the 416 

1:1 line. In Figure 6 it is also evident that the variability of CPα values decreases as M 417 

increases, e.g. see the size of the boxes in Figure 6. Figure 7 shows the mean values of CP50%, 418 

CP80% and CP95% for all values of M tested. Even though the statistical uncertainty is reduced 419 

with increasing M, the mean CPα is not greatly affected and fluctuates around the α value. 420 

The relative difference between the average CPα and α is less than 15% in all the cases tested. 421 

This demonstrates once again that the confidence level may be interpreted as the expected 422 

coverage proportion of the original and complete profile that falls within the corresponding 423 

BCS CI profiles. 424 

 425 

Effect of correlation length on CPα 426 

To analyze the effect of the correlation length (67) on CPα results, new sets of RFSs are 427 

generated using a truncated KL expansion with different 67 . Eight 67  values were tested 428 

ranging from 0.1 to 10m to consider possible values of 67 for soil properties reported in the 429 

literature (e.g. Phoon and Kulhawy 1999). For each RFS set, the BCS method was repeated 430 

for three values of M, namely M=20, 40 and 60. Figure 8 shows the mean CPα results for all 431 

67  and M values tested. When 67  is large (i.e. when there is a smoothly varying random 432 

field), the average CPα tends to be greater than α, indicating that the statistical uncertainty 433 

reflected in the profiles for the bounds of CIα is greater than the variations with depth. In 434 

other words, a relatively large proportion of many RFSs tested falls inside the corresponding 435 

CIα profiles. In contrast, with small values of 67, which implies a very variable field, the 436 
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average CPα tends to be smaller than α, indicating that a relatively small proportion of the 437 

original profile falls inside the corresponding CIα bounds.  The difference between the 438 

average CPα and α decreases as M increases, irrespective of whether the 67 values used in the 439 

simulation are small or large. For 67 values between 0.5m and 2m, which are common values 440 

for soil properties, the relative difference between the average CPα and α is less than 15%. 441 

The BCS method is robust and performs satisfactorily for the possible range of 67 values for 442 

soil properties reported in the literature. It is worth noting that it is very difficult to determine 443 

the correlation length (67) in engineering practice due to the limited measurement data. Using 444 

the BCS method enables the need to determine the 67 value to be bypassed and provides the 445 

best estimate and CI profiles for soil properties. In addition, note that, although an 446 

exponential correlation function is used as illustrative examples in this paper, the method 447 

proposed in the paper is general and equally applicable to other types of auto�correlation 448 

function, and the BCS method performs well for other types of auto�correlation function. 449 

 450 

Illustrative example: Selection of effective friction angle profile 451 

In this section, the BCS method is demonstrated using a set of real CPT data for selection of 452 

the characteristic value of the effective friction angle (YZ). BCS provides the best estimate 453 

profile of the effective friction angle and various CI profiles associated with various 454 

confidence levels. These CI profiles may be used by engineers to facilitate determination of 455 

the characteristic value profile in reliability�based design. To illustrate the proposed method, 456 

only some of the normalized tip resistance ([) values measured from CPT are used. First, the 457 

BCS method is applied to provide the best estimate and CI profiles of [ . The coverage 458 

proportion of the BCS CI profiles is evaluated using the original and complete set of CPT 459 

data. Then a transformation model is used to relate the [ profiles to YZ profiles. The effect of 460 
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the transformation model uncertainty on the YZ profiles is also considered using Monte Carlo 461 

simulations. Note that the YZ  profiles at various CI levels may be used by geotechnical 462 

engineers to facilitate selection of the YZ characteristic value in reliability�based design.  463 

The CPT was performed on the Piedmont soils in Georgia Tech campus, Atlanta, in 464 

which an extensive program of in�situ and laboratory tests has been carried out for soil 465 

property determination (Mayne and Harris 1993). The BCS method is applied to the CPT 466 

data in the residual silty sand layer between the depths of 3.8 and 19.2m, approximately 467 

(Mayne and Harris 1993). Note that only one soil layer of residual silty sand is considered in 468 

this illustrative example. Stratification therefore is not needed here. However, for a profile 469 

with different soil layers, before application of the method proposed in this paper, 470 

stratification of soil layers shall be performed, if possible, using, for example, Bayesian 471 

method (Cao and Wang 2013; Wang et al. 2013,2014). In this layer, the cone tip resistance 472 

([7) ranges between 3.3MPa and 7.3MPa, and the soil has a loose to medium�dense relative 473 

density according to Meyerhof (1956). The soil has an average of 33% fines content, 8% 474 

clays and a median grain size (D50) of 0.14mm. Note that although CPT data is used here for 475 

illustration and validation, the BCS method really aims at the typical situation of sparsely 476 

measured data (e.g. SPT data or laboratory test data) in engineering practice. 477 

The cone tip resistance is normalized by the square root of the vertical effective stress 478 

( �\LZ ) as follows: [ = ([7 ]^⁄ ) 8�\LZ ]^⁄⁄ 	 , where ]^  is the atmospheric pressure. The 479 

normalized tip resistance is shown in Figure 9a as a solid line. The BCS procedure is applied 480 

to 15 data points (i.e. M= 15), which represent a sampling interval of about 1m. These points 481 

are also shown in Figure 9a as open circles. The best estimate and the bounds of the 90% 482 

confidence interval (CI90%) obtained from BCS are shown in Figure 9a by a dashed and two 483 
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dotted lines, respectively. The coverage proportion of the original CPT data within the CI90% 484 

profiles is CP90% = 85%, which is close to the expected value of 90%.  485 

The effective friction angle (YZ) is estimated using a correlation model from Kulhawy 486 

and Mayne (1990) as follows:  487 

 488 

 ϕZ = 17.6 + 11	 log q 

 

(9) 

 

Figure 9b shows as a solid line the YZ profile obtained when applying Equation (9) to the 489 

original and complete set of CPT data. Similarly, shown as dashed and two dotted lines are 490 

the results when applying Equation (9) to the profiles of the best estimate and the bounds of 491 

the 90% CI obtained from the BCS procedure. For comparison, Figures 9b also includes lab 492 

test results from consolidated undrained triaxial compression tests that were performed using 493 

soil samples at different depths from this site (Mayne and Harris 1993). The mean YZ from 494 

the 13 triaxial test data points is about 35°, which is similar to the value obtained from BCS 495 

(i.e. 35.39°). However, the triaxial data present more variability than that shown by the BCS 496 

CI90% profiles.  497 

Note that Equation (9) was obtained by a semi�log regression on twenty data sets from 498 

different sites, which cover site condition similar to that at Georgia Tech campus, Atlanta. A 499 

total of 633 data points was used in the regression. Significant residual error over Equation 500 

(9) was reported, and the corresponding standard deviation of the residual error is 2.8° 501 

(Kulhawy and Mayne 1990). This residual error can be treated as the model uncertainty of 502 

Equation (9), and it may be included in Equation (9) as an additive zero�mean normally 503 
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distributed random variable (εm). The εm in this example is modelled as a single random 504 

variable to represent a perfectly correlated nature of εm over depth. To account for both the 505 

model uncertainty and the BCS statistical uncertainty, Monte Carlo simulations were carried 506 

out to provide the best estimate and various CI profiles for the effective friction angle. Five 507 

thousand random samples of εm were generated in the simulations. Each εm sample was used 508 

together with Equation (9), and a complete [ profile is reconstructed from BCS to generate a 509 

YZ profile, leading to 5000 friction angle profiles. Then, the CI90% YZ profiles with model 510 

uncertainty was evaluated and shown in Figure 9c by two gray lines, together with those 511 

without model uncertainty using the same symbols in Figure 9b. The interval given by the 512 

two gray lines (i.e. with model uncertainty) is obviously much bigger than that given by two 513 

dotted lines (i.e. without model uncertainty). It is obvious that the model uncertainty has 514 

significant effect on the YZ profiles. The 13 YZ data points from triaxial tests are also included 515 

in Figure 9c. Eleven out of 13 data points (i.e. 11/13 = 85%) fall within the CI90% YZ profiles. 516 

This is quite consistent with the statistical meaning of CI90% YZ profiles that about 90% of 517 

data points are expected to fall within the corresponding bounds. The lower bound of CI90% 518 

with both statistical and model uncertainty represents a 5% fractile of the YZ  profile and 519 

might be selected as the characteristic value profile of YZ in reliability�based design, if the 520 

characteristic value is defined as the 5% fractile.  521 

It is worth noting that the interpreted profile from the BCS method in this paper has 522 

meaning similar to the local estimation of a geotechnical property of interest at the location 523 

where a borehole was drilled (e.g. Honjo and Setiawan 2007; Honjo 2008). If global 524 

estimation of a geotechnical property (i.e. the geotechnical property within the whole site) is 525 

of interest (e.g. Honjo and Setiawan 2007; Honjo 2008), a perfect correlation in the 526 

horizontal direction may be assumed. Alternatively, the BCS method may be extended from 527 
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1D to 2D, and the perfect correlation assumption is not needed for 2D BCS method, which is 528 

currently under development and beyond the scope of this study. 529 

 530 

Conclusions 531 

This paper developed a statistical procedure to facilitate objective selection of geotechnical 532 

property characteristic value from spatially varying but sparsely measured data. The proposed 533 

procedure is based on the Bayesian compressive sampling (BCS) method, which is not only 534 

able to reconstruct the best estimate profile of a geotechnical property from sparse 535 

measurement data, but also able to provide confidence interval (CI) profiles for quantifying 536 

the statistical uncertainty associated with the interpretation. The quantified uncertainty in 537 

BCS has a clear statistical meaning: the corresponding confidence level for BCS CI is the 538 

expected coverage proportion (i.e. fraction) of the complete profile that falls within the CI, if 539 

all data points over the depth can be measured to provide the complete profile.  540 

The statistical meaning of CI was firstly illustrated using random field data. When a 541 

large number of complete sets of random field samples (RFSs) are used, the expected 542 

coverage proportion (CPα) for a confidence interval with a confidence level α (CIα) is equal 543 

to α. In addition, when only a limited number of data points from the RFS are measured, the 544 

proposed BCS method can be used to reconstruct the best estimate and CIα profiles of the 545 

complete set of RFS. It is shown that on average, the BCS CPα is close to α even if only 546 

about 2% of the data points from the original and complete RFS are measured. As more data 547 

points are available the statistical uncertainty is reduced and the variability in CPα also 548 

reduces, but the average value is only slightly affected. In addition, the effect of the 549 

correlation length (67) of the random field on the average CPα was also investigated. It is 550 
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shown that the proposed method is robust and performs satisfactorily for the typical range of 551 

67 values for soil properties reported in the literature.  552 

For geotechnical engineering applications, the complete set of data (i.e. a high�553 

resolution measurement data profile over depth) is often not available, and the BCS method 554 

can be used to not only provide the best estimate profiles from sparse measurement data, but 555 

also offer various confidence interval profiles. To illustrate this, BCS was used to estimate an 556 

effective friction angle profile from sparse CPT data points in a real case history. 557 

Furthermore, the uncertainty in the transformation model that relates CPT data to effective 558 

friction angle can also be considered in the proposed method. It is shown that the effective 559 

friction angle CI profiles from the proposed method using sparse CPT data points are 560 

consistent with those from triaxial tests. Hence the best estimate and CI profiles from the 561 

proposed method may be used to facilitate an objective determination of geotechnical 562 

property characteristic values from sparse measurement data. 563 

 564 
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Figure Captions 721 

Figure 1: Ns = 1000 sets of random field samples (RFSs) generated for soil property X (The 722 

95% coverage proportion (CP95%) for the three RFS examples is indicated as title of each 723 

subplot) 724 

Figure 2: Box�and�whiskers plot for the coverage proportion (CPα) as a function of the 725 

confidence level (α) for different correlation length (67): (a) 0.5m, (b) 2m and (c) 5m (Mean 726 

values are shown with circles; the median values are shown with a line inside the box; and 727 

the minimum and maximum values are shown with crosses)  728 

Figure 3: Effect of the correlation length (67) on CPα: (a) Box plots for CP50%, CP80% and 729 

CP95%; (b) Standard deviation of CPα (σCPα) as a function of α (The analytical solution for the 730 

case with no correlation (i.e. 67=0) is shown with a solid line)  731 

Figure 4: Three simulated X profiles and those reconstructed from BCS using M = 20 732 

measurement data points y 733 

Figure 5: Histograms of the coverage proportion (CPα) for 50%, 80% and 95% confidence 734 

levels (The red vertical lines show the confidence level)  735 

Figure 6: Box�and�whiskers plot for the coverage proportion (CPα) of the original RFS profile 736 

within the given BCS CI under different M scenarios: (a) M = 20, (b) M = 40 and (c) M = 60 737 

Figure 7: Effect of the number of measurement data points (M) on the mean CPα values for 738 

confidence levels 50%, 80% and 95%.  739 

Figure 8: Effect of the correlation length (λc) on the mean CPα values 740 
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Figure 9: Results of illustrative example: estimation of effective friction angle φ΄ from 741 

normalized CPT tip resistance q: (a) Comparison between the original q profile and the q 742 

profile reconstructed from BCS (b) Best estimate and CI90% profiles of ϕ΄ without 743 

consideration of model uncertainty εm (c) Best estimate and CI90% profiles of ϕ΄ with 744 

consideration of model uncertainty εm 745 

 746 
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(a) CP95%=94.5% (b) CP95%=94.9% (c) CP95%=96.1% 

Figure 1: Ns = 1000 sets of random field samples (RFSs) generated for soil property X (The 2 

95% coverage proportion (CP95%) for the three RFS examples is indicated as title of each 3 

subplot) 4 
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(a) (b) (c) 

Figure 2: Box3and3whiskers plot for the coverage proportion (CPα) as a function of the 8 

confidence level (α) for different correlation length (��): (a) 0.5m, (b) 2m and (c) 5m (Mean 9 

values are shown with circles; the median values are shown with a line inside the box; and 10 

the minimum and maximum values are shown with crosses)  11 
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 13 

(a) (b) 

Figure 3: Effect of the correlation length (��) on CPα: (a) Box plots for CP50%, CP80% and 14 

CP95%; (b) Standard deviation of CPα (σCPα) as a function of α (The analytical solution for the 15 

case with no correlation (i.e. ��=0) is shown with a solid line)  16 
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(a) CP95%=94.9% (b) CP95%=94.1% (c) CP95%=96.3% 

Figure 4: Three simulated X profiles and those reconstructed from BCS using M = 20 20 

measurement data points � 21 
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 23 

Figure 5: Histograms of the coverage proportion (CPα) for 50%, 80% and 95% confidence 24 

levels (The red vertical lines show the confidence level)  25 
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 27 

(a) (b) (c) 

Figure 6: Box3and3whiskers plot for the coverage proportion (CPα) of the original RFS profile 28 

within the given BCS CI under different M scenarios: (a) M = 20, (b) M = 40 and (c) M = 60 29 
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 31 

Figure 7: Effect of the number of measurement data points (M) on the mean CPα values for 32 

confidence levels 50%, 80% and 95%.  33 
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 35 

Figure 8: Effect of the correlation length (λc) on the mean CPα values 36 
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 39 

(a) (b) (c) 

Figure 9: Results of illustrative example: estimation of effective friction angle φ΄ from 40 

normalized CPT tip resistance q: (a) Comparison between the original q profile and the q 41 

profile reconstructed from BCS (b) Best estimate and CI90% profiles of ϕ΄ without 42 

consideration of model uncertainty εm (c) Best estimate and CI90% profiles of ϕ΄ with 43 

consideration of model uncertainty εm 44 
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