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SUMMARY

Model reduction has significant potential in design, optimization and probabilistic analysis applications, but
including the parameter dependence in the reduced-order model (ROM) remains challenging. In this work,
interpolation among reduced-order matrices is proposed as a means to obtain parametrized ROMs. These ROMs
are fast to evaluate and solve, and can be constructed without reference to the original full-order model. Spline
interpolation of the reduced-order system matrices in the original space and in the space tangent to the Riemannian
manifold is compared with Kriging interpolation of the predicted outputs. A heuristic criterion to select the most
appropriate interpolation space is proposed. The interpolation approach is applied to a steady-state thermal design
problem and probabilistic analysis via Monte Carlo simulation of an unsteady contaminant transport problem.
Copyright c© 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

High-fidelity numerical simulation tools have become indispensable for the analysis of complex

engineering systems, but remain too time-consuming for many design and optimization applications

— settings that require a large number of model evaluations. Since output quantities of interest are

generally restricted to a small number of solution functionals (such as lift and drag, or displacement and

stress at a point), a reduced-order model (ROM) can often be employed to provide accurate estimates

of output quantities of interest at greatly reduced computational cost. ROMs are derived from high-

fidelity models using a generalizable, systematic procedure (as opposed to reduced-physics models

that are created manually for each problem); the challenge in the design/optimization setting is to

include parameter dependence in the ROM in a way that leads to accurate results and computationally

efficient models. This paper presents an interpolation approach to achieve this goal.

∗Correspondence to: Karen Willcox, Massachusetts Institute of Technology, 77 Massachusetts Ave, Room 37-447, Cambridge,
MA 02139, USA, kwillcox@mit.edu
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2 J. DEGROOTE ET AL.

In this work, we consider both steady and unsteady models. A general steady model is written as

A(z)x = b(z) (1a)

y = C(z)x (1b)

and an unsteady model as

ẋ(t) = A(z)x(t) + B(z)u(t) (2a)

y(t) = C(z)x(t), (2b)

with t the time and a dot indicating a time derivative. The state vector is indicated by x ∈ R
n,

the input and output of the model are u ∈ R
p and y ∈ R

q, respectively, and z ∈ R
m denotes the

parameter vector. While the systems (1) and (2) have a general form, we are particularly interested in

those systems that arise from spatial discretization of partial differential equations. In this case, the

system matrices A ∈ R
n×n, B ∈ R

n×p, and C ∈ R
q×n, and vector b ∈ R

n arise from the particular

spatial discretization scheme and the boundary conditions, and the dimension of the system, n, is very

large. In this paper, all models considered are linear in the state but have general nonlinear dependence

on the parameter vector z. This assumption of state linearity does not limit our approaches, but rather

permits us to focus on addressing the question of nonlinear parametric dependencies. Our interpolation

approach is extensible to fully nonlinear systems, although it would need to be combined with an

efficient method for evaluating the terms involving nonlinear state dependence (such as the Empirical

Interpolation Method of [1, 2]).

Projection-based model reduction methods derive a ROM by projecting the governing equations

onto the subspace spanned by a set of basis vectors [3]. The basis vectors can be calculated with

several techniques, including the proper orthogonal decomposition (POD) [4, 5], truncated balanced

realization [6], and Krylov subspace methods [7, 8]. To be effective, ROMs for a design or optimization

problem must be both accurate over the entire parameter space of interest to the designer or optimizer

and computationally efficient to solve. One challenge is to derive a set of basis vectors that spans the

parameter space of interest. A second challenge is to incorporate the parametric dependence in the

ROM in such a way that solutions can be generated in a computationally efficient manner. As pointed

out by Farhat et al. [9] and others, for design and optimization the computational cost to generate

a ROM (if parameter dependence is not handled carefully) can outweigh the time gained by using

ROMs, in spite of their fast evaluation. For example, if evaluation of the ROM at a new parameter

point requires evaluating the full-order system matrices, projecting onto the reduced subspace, and

subsequently solving the ROM, then the computational cost may still be significant compared to the

original full-order model.

Several approaches have been proposed for deriving a basis that spans the parameter space, including

POD and Krylov-based sampling methods [10, 11, 12], reduced basis methods combined with the

use of error estimates and adaptivity [13], and optimization-based approaches [14]. In most cases,

these approaches exploit the specific structure of the parametric dependence to derive the ROM;

however, when the dependence of the system matrices on the parameters is a general (possibly

unknown) nonlinear function, a further challenge is efficient computation and evaluation of the ROM.

In the next section we provide an overview of approaches to address this challenge in the context

of a projection-based model reduction framework. Our proposed interpolation techniques are then

described in Section 3, and a heuristic algorithm to select an appropriate interpolation method is

proposed in Section 4. In Section 5, we present results for steady and unsteady problems and compare

the methods. Finally, Section 6 concludes the paper.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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INTERPOLATION AMONG REDUCED-ORDER MODELS 3

2. PARAMETRIZED REDUCED-ORDER MODELS

In this section, the projection-based model reduction approach is described. An overview of existing

methods for incorporating parametric dependence in ROMs is given, with a brief discussion of the

relative advantages and disadvantages of the various approaches.

In this work, the basis is computed using the POD method of snapshots [5]. The full-order system

(1) or (2) is solved for nz different parameter vectors, zi, i = 1, . . . , nz . The resulting state solutions

(referred to as snapshots) are collected in the columns of the matrix X ∈ R
n×ns ,

X =
[

x1 x2 . . . xns
]

, (3)

where xi is the ith snapshot and ns is the total number of snapshots. For the steady case, we obtain

one snapshot for each parameter sample, ns = nz , while for the unsteady case we collect ns = ntnz

snapshots, where nt is the number of snapshots for each unsteady simulation. The POD specifies the

basis to be the left singular vectors of the matrix X corresponding to the largest singular values. A

basis of dimension nr is contained in the matrix V ∈ R
n×nr ,

V =
[

v1 v2 . . . vnr
]

, (4)

where vi is the ith basis vector.

To derive the ROM, the full-order state is approximated as a linear combination of the nr ≪ n basis

vectors vi,

x ≈ V xr. (5)

The reduced state, xr, thus represents the coordinates of the full-order state with respect to the basis

consisting of the columns of V . The ROMs are created by projecting equation (1a) or (2a) on the

subspace spanned by the columns of a left projection matrix W ∈ R
n×nr . This yields the ROM for

the general steady model (1) as

Ar(z)xr = br(z) (6a)

yr = Cr(z)xr, (6b)

where Ar(z) = W TA(z)V , br(z) = W Tb(z) and Cr(z) = C(z)V . The ROM of the unsteady

model (2) is given by

ẋr = Ar(z)xr + Br(z)u (7a)

yr = Cr(z)xr, (7b)

where Br(z) = W TB(z), Ar and Cr are defined as for the steady case, and W is chosen so that

W TV = I .

The challenge of efficient construction and solution of the ROM over the parametric input space

can be seen in the definitions of the reduced matrices in (6) and (7). Unless special treatment is

given to the parametric dependence, at each new parameter point z, solution of the ROM requires

evaluating the full-order system matrices, projecting those matrices onto the reduced subspace to

compute the reduced-order matrices, and then solving the resulting ROM. Since many elements of these

computations depend on n, the dimension of the full-order system, in general this process will not be

computationally efficient. Ly and Tran propose interpolation of the reduced state directly using cubic

spline interpolation, and show good results for predicting the steady-state temperature distribution of

flow in a square cavity as the Rayleigh number is varied [15]; however, it is not clear that this approach

can be extended to unsteady problems.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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4 J. DEGROOTE ET AL.

In the particular case that the system matrices can be expressed as an affine combination of constant

matrices with weighting coefficients that depend on the parameters, then each term of the weighted

sum can be projected a priori onto the set of basis vectors. For example, if the system matrix A can be

written as a decomposition of na terms,

A =

na
∑

j=1

Ajθj(z), (8)

where the matrices Aj ∈ R
n×n do not depend on the parameter and the coefficients θj are general

(known) functions of z, then the corresponding reduced-order matrix is

Ar =

na
∑

j=1

Aj
rθj(z), (9)

where Aj
r = W TAjV . Since the reduced-order component matrices Aj

r can be computed a priori,

construction and solution of the ROM for a new parameter point will be fast. In some cases, the problem

structure admits such a decomposition of the system matrices; otherwise, it can be obtained from the

low-order terms of a Taylor series expansion [16, 17, 14]. This approach can also be paired with Krylov

moment matching if all weighting coefficients that are not linear in just one parameter are replaced by

additional parameters [18, 10].

The Taylor series expansion to obtain a decomposition of the form (8) becomes too expensive for

a large number of parameters, or when parameter dependence is sufficiently nonlinear so that higher-

order terms of the expansion are required. An alternative can be found in the trajectory piecewise-linear

method of Rewienski and White [19], which was developed to create ROMs of nonlinear systems.

Instead of creating a high-order expansion around a single state, several low-order expansions at

different states are generated and combined with appropriate weighting functions. This idea has been

combined with parameterized moment matching by Bond and Daniel [20], who have also addressed

the effect of the selection of states around which the model is linearized [21].

The previously mentioned techniques use some linearization of the parameter dependence of the

system matrices, which results in an approximation of the system matrices if the parameter dependence

is nonlinear. A more general approach is to employ the coefficient-function approximation of [1, 2],

which replaces nonlinear parametric dependencies with a reduced-basis expansion and then uses

interpolation to efficiently compute the coefficients of that expansion for new parameter values.

Interpolation can also be used to calibrate the ROM, as in [22], where a ROM is considered for two-

dimensional vortex shedding past a confined square cylinder at different Reynolds numbers. In that

work, a POD basis is derived using a collection of snapshots computed over a range of Reynolds

numbers. Lagrange interpolation is used to approximate the dependence of the projected pressure term

on Reynolds number, giving a way to calibrate the model so that long-term dynamics are accurately

captured for Reynolds numbers not included in the snapshot set.

Another class of approaches calculates the full-order system matrices at a new value of the

parameters but approximates the variation of the projection basis as a function of the parameters. For

example, Taylor expansion of the projection basis as a function of the parameters has been applied to an

eigenmode reduction of a structural system for which the derivatives of the eigenmodes with respect

to the parameters are calculated analytically [23]. Similarly, the combined approximation technique

[24, 25] estimates the eigenmodes for a new parameter value as a linear combination of some reduced

basis, which results in a smaller eigenvalue problem than for the calculation of the actual eigenmodes.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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INTERPOLATION AMONG REDUCED-ORDER MODELS 5

While the combined approximation does not generally require knowledge of the sensitivities of the

eigenmodes with respect to the parameters, in [23] these sensitivities were used as the reduced basis.

These so-called extended ROM techniques were applied to POD by Weickum et al. [26], who used

the combined approximation on both the snapshots and the POD basis vectors, with and without their

approximate sensitivities with respect to the parameters. The extended ROM techniques result in a

parameter-dependent projection basis as opposed to the spanning ROM approaches, which create a

single projection basis from snapshots generated with different values of the parameters [26]. Creating a

spanning ROM by projecting on a single POD basis extracted from snapshots corresponding to distinct

parameter values has also been called global POD [27, 28].

An alternative for expansion of the basis is interpolation. Lieu and Lesoinne [29] demonstrated

that a direct interpolation between two orthonormal POD bases does not result in a new orthonormal

basis and applied the result from Björck and Golub [30], who showed that interpolation of the angles

between the subspaces does maintain orthonormality. This subspace angle interpolation has been used

for parametrized ROMs of large-scale aeroelastic simulations [29, 31, 32, 33] but proved difficult to

extend for variation of more than one parameter and is limited to interpolation between two sets of

basis vectors at a time [34]. To interpolate among more than two orthonormal sets of basis vectors,

each corresponding to different parameter values, Amsallem et al. [35] use interpolation in the space

tangent to the Grassmannian manifold of the bases which also preserves orthonormality. Consequently,

a ROM for a parameter value not included in the sampling set is obtained by creating a new full-order

model for those parameter values and by projecting it on the orthonormal set of basis vectors obtained

by the interpolation. That approach circumvents the calculation of a new set of basis vectors for each

value of the parameters, which would require a simulation with the full-order model to generate POD

snapshots; however, it still requires evaluation of the full-order matrices at the new parameter value.

In this paper, we introduce interpolation among the system matrices of the reduced models to

efficiently handle nonlinear parametric dependencies. Our approach is efficient because, once an initial

set of ROMs has been derived, obtaining a ROM solution for a new parameter value avoids any

computations that depend on the dimension of the full-scale model. That is, at each new parameter

point, we avoid the costs of creating new full-order model matrices, of interpolation among sets of

basis vectors, and of projection onto this set of basis vectors. Our approach is summarized as follows.

A set of POD basis vectors is first created by simulating the full-order system for several parameter

values. The matrices for each of the parameter values are reduced by projection, which results in a set of

reduced systems, each for a different value of the parameters. Then a ROM for a new parameter value

is obtained by interpolation among the known ROMs. To improve the effectiveness of the approach, we

consider different spaces in which the interpolation among ROMs can be performed. These methods

are described in detail in the following sections.

3. INTERPOLATION OF REDUCED-ORDER MODELS

We consider the general (steady or unsteady) ROM (6) or (7) derived using the projection framework

described in the previous section. From the complete set of snapshots, x1, . . . ,xns , we compute a

single basis V using the POD and choose an appropriate left projection basis W . A ROM is evaluated

for each parameter sampled in the snapshots, that is, for zi, i = 1, . . . , nz . Since we choose to create

each ROM using the same basis V , then the reduced state xr has the same physical significance in

every model. A ROM for a new parameter vector ẑ can thus be obtained by interpolating among the

system matrices of the known ROMs. In the methods presented here, the interpolation among the

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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6 J. DEGROOTE ET AL.

reduced-order system matrices is performed elementwise, so standard techniques for interpolation of

scalar values can be applied. Cubic spline interpolants [36, 37] are used in this work. Our specific

approaches are described in the following subsections for a general reduced-order matrix M . For

example, to obtain the approximation of Ar at the new parameter point, set M = Ar; to obtain the

approximation of Br, set M = Br, etc.

3.1. Spline interpolation

Spline interpolation among matrices as a function of the parameters z is performed with cubic splines

[36, 37]. The set of nz reduced-order system matrices M i, i = 1, . . . , nz , where M i corresponds

to parameter vector zi, is interpolated elementwise to calculate the matrix M̂ that corresponds to

an arbitrary parameter point ẑ. We first describe how to approximate the variation of the element

in the gth row and hth column of M , Mgh, as a function of one parameter zs. The samples zi
s are

ordered in monotonically increasing order and the spline interpolant f i for Mgh(zs) in the interval

zi
s ≤ zs ≤ zi+1

s is given by

f i(zs) =
3

∑

k=0

αi
k

(

zs − zi
s

zi+1
s − zi

s

)k

, (10)

where the superscript k is an exponent. The coefficients αi
k are calculated by imposing the interpolation

conditions

f i(zi
s) = M i

gh, (11a)

f i−1(zi
s) = M i

gh, (11b)

and equality of the first and second derivative evaluated at zi
s

df i−1

dzs

(zi
s) =

df i

dzs

(zi
s) (12a)

d2f i−1

dz2
s

(zi
s) =

d2f i

dz2
s

(zi
s). (12b)

Natural end conditions (d
2f

dz2
s

= 0) are imposed at z1 and znz .

The cubic spline interpolation can be readily extended to multiple parameters. For example, in the

case of two parameters, zs and zt, with uniform sampling, the samples are ordered on the nodes of a

square grid. In the cell of the grid with zi
s ≤ zs ≤ zj

s and zi
t ≤ zt ≤ zj

t , the interpolation function f ij

for Mgh(zs, zt) is

f ij(zs, zt) =
3

∑

k=0

3
∑

l=0

αij
kl

(

zs − zi
s

zj
s − zi

s

)k (

zt − zi
t

zj
t − zi

t

)l

. (13)

For the determination of the coefficients αij
kl and for splines with more than two parameters and/or

non-uniform sampling, the reader is referred to [38].

3.2. Spline interpolation in the space tangent to the manifold

Direct interpolation with splines among the system matrices of reduced models will be successful if

the variation of the matrix elements as a function of the parameters is captured well by the interpolants.

In case of general nonlinear dependence of the reduced-order matrix on the parameters, this variation

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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INTERPOLATION AMONG REDUCED-ORDER MODELS 7

will not necessarily be modeled well. It may then be more advantageous to map the matrices to a

space where the variation of the matrix elements as a function of the parameter is more amenable to

interpolation with cubic splines. After the interpolation is performed in the mapped space, the result of

the interpolation is mapped back to the original space to obtain the desired reduced-order matrix.

Key to success of this idea is identification of an appropriate mapping; that is, a mapping to a

space in which variation of the matrix elements as a function of the parameters is smooth. Drawing

on the mapping approach employed by Amsallem et al. [35] for interpolation of the POD basis vectors,

we choose here to use the concept of a Riemannian manifold, originating from differential geometry

[39, 40, 41]. A Riemannian manifold M is a differentiable manifold, which means that a tangent space

TMi exists for every matrix M i of the manifold. The mapping from the manifold to the tangent space

at M i is called the logarithmic mapping LogMi and the mapping back to the manifold from that

same tangent space is the so-called exponential mapping ExpMi , which will both be defined below.

Moreover, an inner product is defined in each tangent space of a Riemannian manifold such that angles

and distances can be measured and consequently interpolation in a space tangent to a Riemannian

manifold can be performed [42].

The first step in the proposed interpolation approach is to select one of the matrices as a reference.

The interpolation will be performed in the space tangent to the manifold at that reference. In the

example shown in Figure 1, we depict interpolation of the reduced matrix Ar, that is M = Ar.

The reference in this example is chosen to be A2
r , the matrix at the second parameter point z2, and

the interpolation is performed in the space TA2

r
, tangent to the manifold M at A2

r . The influence of

the chosen reference will be discussed in Section 5. Second, the matrices at other parameter points

are mapped to the reference tangent space. In Figure 1, A1
r and A3

r on the manifold are mapped

respectively to the matrices Θ
1 and Θ

3 in TA2

r
with the logarithmic mapping LogA2

r
. The image of

A2
r is the origin of the tangent space TA2

r
. Third, the interpolation of all images Θ

i is performed

in the tangent space with cubic spline interpolation (as explained in Section 3.1). Finally, the result is

mapped back to the original space. In Figure 1, Θ̂ is mapped to Âr on the manifold with the exponential

mapping ExpA2

r
. As can be seen in Figure 1, the interpolation between points on the manifold does

not necessarily lie on the manifold but if the interpolation is performed in the space tangent to the

manifold, then the mapping from the tangent space to the manifold makes sure that the result of the

interpolation lies on the manifold.

The Log and Exp mappings are now described for elements of the general linear group GL(n), the

set of invertible matrices in R
n×n together with the operation of matrix multiplication [42]. In the

example of Figure 1, the matrix A1
r is mapped to a matrix Θ

1 in the tangent space of A2
r with the

logarithmic mapping

Θ
1 = LogA2

r
(A1

r) = log
[

A1
r(A

2
r)

−1
]

. (14)

This mapping employs the matrix logarithm (log) of A1
r(A

2
r)

−1 which is calculated with the algorithm

of Davies and Higham [43]. The mapping of the matrix Θ̂ from the tangent space of A2
r to the matrix

Âr in the original space is given by the exponential mapping

Âr = ExpA2

r
(Θ̂) = exp(Θ̂)A2

r, (15)

which is obtained by calculating the matrix exponential (exp) of Θ̂ using a Padé approximation with

scaling and squaring [44]. If the system matrices are symmetric positive-definite or if they have other

special properties, then other mappings that preserve those properties as listed by Rahman et al. should

be used [42]. Here, we apply the manifold interpolation only to the square matrices Ar; the other

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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8 J. DEGROOTE ET AL.

system matrices Br and Cr are interpolated directly with splines. The procedure is summarized in

Algorithm 1.

Algorithm 1 Spline interpolation in the space tangent to the manifold.

1: Select a reference parameter point zt with corresponding matrix At
r to create the tangent space in

which the interpolation will be performed

2: Set Θt = 0

3: for i = 1, . . . , nz , i 6= t do

4: Map Ai
r to Θ

i = LogAt
r
(Ai

r)
5: end for

6: Perform elementwise spline interpolation among the Θ
i, i = 1, . . . , nz; giving Θ̂ as the

interpolated matrix at parameter point ẑ

7: Map Θ̂ to Âr = ExpAt
r
(Θ̂), giving Âr as the interpolated approximation of Ar(ẑ)

Although the mapping to and from the tangent space in Algorithm 1 requires computation of matrix

exponentials and matrix logarithms, these operations are performed only on reduced-order matrices,

with no computations that depend on the size of the original full-order system. Thus, this approach

will in general be significantly cheaper than existing approaches, which require the construction of

a new full-order matrix, possibly interpolation among basis vectors, and projection of the full-order

model onto the basis vectors. A second advantage of our approach is that it is relatively non-intrusive;

that is, derivation of ROMs at new parameter points can be carried out without any recourse to the

original large-scale simulation code. Once the initial set of ROMs has been computed and stored, the

ROM for a new parameter value is formed using only those precomputed ROMs. The effectiveness of

this approach depends on how well the chosen interpolation scheme represents the variation of matrix

elements. Thus selection of an appropriate interpolation space is an important consideration, which is

addressed in the next section.

4. SELECTION OF THE INTERPOLATION SPACE

In the previous section, two possibilities were presented for interpolation of the ROMs: interpolation

of the matrix entries in their original coordinate system, or interpolation in a mapped space. In order

to make the interpolation as effective as possible (i.e., maximizing ROM accuracy at interpolated

parameter points while minimizing the number of samples), the interpolation should be carried out in

the space where the variation of the matrix elements as a function of the parameters is most amenable

to interpolation (here using cubic splines). The most appropriate space is clearly problem dependent; in

this section we propose a heuristic criterion to give a priori guidance on selection of the interpolation

space.

For each element of the matrix to be interpolated, we perform a linear regression of that element’s

variation with the parameters. A normalized measure of the residual is then used as an indicator

to select the interpolation space. For the dependence of element Mgh on the parameter vector

z = [z1, . . . , zm]
T

, an approximate linear model is written as

Mgh(z) ≈ αgh
0 +

m
∑

j=1

αgh
j zj . (16)
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The coefficients αgh
j , j = 0, . . . ,m are calculated by performing a linear regression over the matrices

at the nz parameter samples, M1
gh, . . . ,Mnz

gh . The 2-norm of the remaining least-squares residuals,

normalized by the difference between the maximal and minimal value of Mgh, is an indicator of the

nonlinearity of the variation of that particular matrix element as a function of the parameters. This

indicator is given by

γgh =

√

∑nz

i=1

(

αgh
0 +

∑m
j=1

αgh
j zi

j − M i
gh

)2

maxi M i
gh − mini M i

gh

. (17)

The maximum of this normalized residual over all matrix elements,

γ = max
g,h

γgh, (18)

is used as the selection criterion.

An analogous criterion is defined for the matrices in the mapped space. That is, we consider fitting

the linear model

Θgh(z) ≈ βgh
0 +

m
∑

j=1

βgh
j zj , (19)

where the coefficients βgh
j , j = 0, . . . ,m are calculated by performing a linear regression over the

matrices at the nz parameter samples, Θ1
gh, . . . ,Θnz

gh. The normalized residual is computed as

λgh =

√

∑nz

i=1

(

βgh
0 +

∑m
j=1

βgh
j zi

j − Θi
gh

)2

maxi Θi
gh − mini Θi

gh

. (20)

The selection criterion is again defined to be the maximum normalized residual, given by

λ = max
g,h

λgh. (21)

A comparison of γ and λ provides heuristic guidance to select the appropriate interpolation space.

If the maximum normalized residual is lower for the M i matrices than for the Θ
i matrices (i.e. if

γ < λ), then interpolation in the original space is recommended as the appropriate choice. Interpolation

in the tangent space to the Riemannian manifold should be used if the maximum normalized residual

is lower for the Θ
i matrices. This idea could be easily extended to apply to other mappings, and to

situations where more than two mapping options are employed. The procedure for selection of the

most appropriate space is summarized in Algorithm 2.

5. RESULTS

In this section, results are presented to demonstrate our approaches. In addition to presenting results

for our proposed ROM interpolation approach, we provide a comparison with results obtained using

Kriging interpolation applied directly to the outputs. In some situations it may be more effective to

create a data-fit surrogate model — that is, to directly model the output as a function of the input

parameters — rather than create a ROM. In this section we first briefly discuss some of the advantages

and disadvantages of data-fit versus ROM strategies, and then present results for a steady thermal

design problem and an unsteady contaminant transport application.
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Algorithm 2 Heuristic criterion for selection of the interpolation space.

1: for all Mgh do

2: Calculate regression parameters αgh
j , j = 0, . . . ,m in Eq. (16)

3: Calculate γgh, using Eq. (17)

4: end for

5: The maximum normalized residual in the original coordinate system is γ = maxg,h γgh

6: for all Θgh do

7: Calculate regression parameters βgh
j , j = 0, . . . ,m in Eq. (19)

8: Calculate λgh, using Eq. (20)

9: end for

10: The maximum normalized residual in the mapped space is λ = maxg,h λgh

11: if γ > λ then

12: use interpolation in the tangent space

13: else

14: use interpolation in the original space

15: end if

5.1. Data-fit models versus reduced-order models

Surrogate models can be categorized into three different classes: data-fit models, reduced-order models,

and hierarchical models [45]. Data-fit models are generated using interpolation or regression of

simulation data from the input/output relationships in the high-fidelity model [46, 45]. A significant

advantage of this approach is that the process of deriving the data-fit model is completely non-intrusive.

That is, the full-order model can be run in “black-box” mode: specify a set of input parameters and

generate the corresponding outputs. The process of deriving a ROM on the other hand is fairly intrusive,

in particular requiring projections of full-order operators onto the reduced subspace. However, deriving

a ROM endows the surrogate model with considerable flexibility, by retaining the underlying structure

of the model. For example, a projection-based ROM retains the concept of state in the surrogate model,

which is not the case for a data-fit model that approximates directly the input/output map. This can

be an important distinction, particularly for unsteady problems. For example, a ROM could be run

for many different initial conditions or different temporal variations of boundary conditions, while a

statistical data-fit model would be applicable only to the specific conditions under which it was derived.

However, it is important to note that, unless rigorous error guarantees are available, all surrogate models

must be used with care for values of parameters other than those over which they were derived.

Here, we employ Kriging interpolation of the output as a function of the parameters to create a data-

fit model for comparative purposes. We follow a standard approach to create a Kriging model for every

element of the output separately. Results are obtained using the MATLAB Kriging toolbox DACE [47].

The variation of an output element yg as a function of the parameters z is modeled as the sum of a

regression function, here taken to be a constant, and a Gaussian function. The Gaussian correlation

model used is

R(ρ,zi,zj) =
m
∏

k=1

exp
[

−ρk(zi
k − zj

k)2
]

, (22)

where zi
k is the kth element of the ith parameter sample and the ρ are scaling factors that are determined

using a maximum likelihood estimator. A complete description of Kriging-based approximation
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INTERPOLATION AMONG REDUCED-ORDER MODELS 11

models can be found in [48, 49].

5.2. Thermal fin example

The first example is a steady model of a thermal fin with parametrized geometry and material

properties such that the model can be used for optimization [14]. For a ROM to facilitate such a

design optimization task, it must be accurate and rapid to solve over a range of geometric and material

parameters. The geometry of the fin is shown in Figure 2, with the subdomains Ωj and the fin dimension

parameters lj indicated. The temperature T in subdomain Ωj is described by the steady heat equation

− κj∇
2T = 0, (23)

where κj is the constant thermal conductivity in Ωj . At the root of the fin, a Neumann boundary

condition is prescribed to specify the heat flux,

− κ9(~∇T · ~n) = −1, (24)

where ~n is the unit normal vector pointing out of the domain. Convection to the air that surrounds the

fin is imposed on the remainder of the outer boundary with a Robin boundary condition,

− κj(~∇T · ~n) = Bi · T, (25)

where Bi is the Biot number. The output of interest, y, is the area-weighted average temperature of the

fin,

y =

∑16

j=1

∫

Ωj
TdΩ

∑16

j=1

∫

Ωj
dΩ

. (26)

For numerical simulation, the domain is discretized with linear, triangular finite elements using

17,899 degrees of freedom, leading to a system of equations of the form (1). In this example, the full-

order system matrices can be written as in Eq. (8); thus, all elements of the system matrices vary in the

same (nonlinear) way as a function of z. In practice for this example, the nonlinearity of the parameter

dependence in the functions θj(z) is known and is mainly 1/z. However, in order to demonstrate the

general applicability of our approach, we do not use the decomposition Eq. (8), and rather assume an

unknown form for A(z). Results are presented for three cases, described below.

In Case I, the thermal conductivities κj in subdomains Ω1 to Ω8 are varied simultaneously as one

parameter z1, which is sampled at [0.2 0.4 0.8 1.0]. ROMs with dimension nr = 4 are constructed at

each of these parameter points using a Petrov-Galerkin projection of the form W = AV [14]. The

maximal relative error of the output of the ROMs compared to the output of the full-order models

is 1.19e-14. An interpolated ROM is then constructed for z1 = 0.6 using the approaches described

in Section 3. For interpolation in the space tangent to the manifold, the tangent space is created at

z1 = 0.4. The selection criterion in Algorithm 2 yields γ = 0.44 for spline interpolation and λ = 0.61
for interpolation in the space tangent to the manifold; thus, the criterion indicates that interpolation in

the original space is preferred. Figure 3 shows the output as a function of the parameter, from which it

can be seen that both interpolated ROMs yield accurate predictions.

Table I shows the relative errors between a full-order simulation with z1 = 0.6 and the predicted

output using the interpolation approaches. These results show that the error using spline interpolation

in the original space is two orders of magnitude lower than the error incurred when using spline

interpolation in the space tangent to the manifold; thus confirming the validity of the indicator used

to select the interpolation space. For comparison, a Kriging model of the output is also used to predict
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the output at z1 = 0.6. Table I and Figure 3 show that the Kriging model performs similarly to the

interpolated ROMs, although the prediction accuracy is lower for this case.

In Case II, the geometric dimensions l1, l5, l9 and l13 are varied simultaneously, modeled using

one parameter z1 that is sampled at [0.50 0.65 0.85 1.00]. The maximal relative error in the output

of the ROMs computed at each of these parameter points compared to the full-order models is 5.09e-

14. The interpolated ROM for z1 = 0.75 is generated and the tangent space is created at z1 = 0.65.

The selection criterion for interpolation in the original space yields γ = 0.79 compared to λ = 0.65
for interpolation in the tangent space, so the criterion indicates that interpolation with mapping to the

tangent space is preferred. This is confirmed by Figure 4, which shows the output as a function of the

parameter. The relative errors in output prediction between the interpolation approaches and a full-

order simulation with z1 = 0.65 are shown in Table I. Again, the results obtained using a Kriging

model of the output are similar to the interpolated ROM results, although in this case Kriging performs

slightly better than the ROMs.

Our third case, Case III, considers interpolation with two parameters. The fin height dimensions

l1, l5, l9 and l13 are varied simultaneously as a first parameter z1. The widths of the fins l2, l3, l6,

l7, l10, l11, l14 and l15 are varied as the second parameter z2. The parameter space is sampled on a

grid with values for z2 of [1.5 2.0 2.5 3.0 3.5] and values for z1 as in Case II, resulting in a total of

20 parameter samples. The selection criteria for interpolation in the original and tangent spaces space

yield γ = 2.84 and λ = 1.74, respectively. This indicates that interpolation in the tangent space is

preferred. The results in Table I again confirm this result, showing that the error in the output for an

interpolated model at z1 = 0.75, z2 = 2.75 is an order of magnitude smaller for interpolation in the

tangent space versus interpolation in the original space.

The influence of different choices for the origin of the tangent space is illustrated in Table II. The

recommended approach is to select the origin of the tangent space to be that parameter point closest to

the parameter value for which interpolation is desired. In Cases I and II above, this strategy leads to

choices of z1 = 0.4 or z1 = 0.6 and z1 = 0.65 or z1 = 0.85, respectively (in each case two parameter

points are equal distance from the desired point). As Table II shows, for each case these choices result

in both a similar value of λ and a similar relative interpolation error. If however the tangent space

is constructed using one of the other parameter values further from the desired point, both λ and the

relative error are larger. We also note that the heuristic criterion is not as reliable in these cases: for

Case II, constructing the tangent space at z1 = 0.5 leads to λ = 0.86 and γ = 0.79, yet the relative

error is lower for interpolation in the tangent space.

5.3. Contaminant transport example

A second setting for which ROMs can provide valuable information is real-time prediction and

decision-making. For example, the characterization of hazardous events and subsequent prediction

of the evolution of the hazard require simulation tools that can be solved rapidly in the field. Here we

consider the simple example of contaminant transport governed by the convection-diffusion equation.

In [50], it was shown that given a specified velocity field in a domain, a ROM can be used to accurately

predict the contaminant transport over a wide range of initial conditions. However, in practice, the

velocity field would not be specified a priori, but would be estimated using local weather models

and/or inference of sparse measurements. This leads to two challenges for ROM real-time prediction

in this setting: first, the ROM should be able to accept as input an arbitrary velocity field (which

may also vary in time); second, the uncertainty associated with the specified velocity will impact

the corresponding predictions of contaminant transport. To support effective decision-making, these
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INTERPOLATION AMONG REDUCED-ORDER MODELS 13

prediction uncertainties must be quantified. Our interpolation methodology provides a mechanism to

address the first challenge — incorporating velocity dependence in such a way that the ROM can be

quickly regenerated for different velocity fields, with no need to run addition large-scale simulations.

To address the second challenge, we show how our ROMs facilitate Monte Carlo simulations that can

be used rapidly characterize uncertainties in ROM predictions.

Our specific example considers contaminant transport in the two-dimensional rectangular domain,

Ω, shown in Figure 5. The x-coordinate is denoted η and the y-coordinate is denoted ζ. The physical

process is modeled by the convection-diffusion equation,

∂C

∂t
+ ~v · ~∇C − µ∇2C = 0 in Ω × (0, tf ), (27)

C = 0 on ΓD × (0, tf ), (28)

∂C

∂n
= 0 on ΓN × (0, tf ), (29)

C = C0 in Ω for t = 0, (30)

where C is the contaminant concentration (which varies in time and over the domain Ω), ~v is the

velocity vector field, µ is the diffusivity, tf is the time horizon of interest, and C0 is the given initial

condition. Homogeneous Dirichlet boundary conditions are applied on the inflow boundary ΓD, while

homogeneous Neumann conditions are applied on the other boundaries ΓN . For the domain shown

in Figure 5, the inflow boundary, ΓD, is defined by η = 0, 0 ≤ ζ ≤ 0.4; the remaining boundaries

comprise ΓN . The Péclet number based on the mean velocity and the width of the domain is 0.50.

The governing equations are discretized in time using the backward Euler method with 100 time

steps over the time horizon t = 0 to tf = 0.5. The spatial discretization employs the streamline

upwind/Petrov-Galerkin finite-element method [51]. The rectangular domain is discretized using linear

triangular elements with a total of 4,005 nodes. The initial concentration of the contaminant is given

by the superposition of three Gaussian functions as depicted in Figure 5.

The velocity field is specified using two parameters z1 and z2, which are the coordinates of a velocity

source point within the rectangular domain. The velocity vector ~v has a length inversely proportional

to the distance from the source and is directed away from the source according to

~v(η, ζ) = 0.001
(η − z1)~eη + (ζ − z2)~eζ

(η − z1)2 + (ζ − z2)2
, (31)

where ~eη and ~eζ are the unit vectors in the η and ζ directions, respectively. The norm of the velocity is

set to zero at the center of the velocity source (η = z1, ζ = z2) and drops below 0.01 outside a circle

with radius 0.1. In this example, the elements of the system matrices all have a different nonlinear

dependence on the velocity source parameters.

We define the output of interest to be the accumulated contaminant concentration at two sensor

locations in the domain. The accumulated contaminant concentration at a spatial location (η, ζ) is

defined as

C̄(η, ζ) =

∫ tf

0

C(η, ζ, t) dt, (32)

and is calculated using the trapezoidal rule to approximate the integral. For the cases considered here,

Sensor 1 is located at η = 0.15, ζ = 0.25, and Sensor 2 at η = 0.45, ζ = 0.20 as indicated in Figure 5.

When there is no velocity source present, the contaminant is transported only through the diffusion

process (there is no convection). In that case, the accumulated contaminant over the time horizon of
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14 J. DEGROOTE ET AL.

interest, tf = 0.5, is C̄ = 1.3503e-2 for Sensor 1 and C̄ = 1.2535e-3 for Sensor 2. For the case of

a velocity source in the middle of the domain (z1 = 0.50, z2 = 0.20), the evolution in time of the

concentration at the two sensor locations is shown in Figure 6.

In practice, the velocity field may be unknown or there may be significant uncertainties associated

with the prescribed velocity field (which may be, for example, estimated from sparse measurements

taken over the domain). These uncertainties in turn impact the prediction of the contaminant

concentration and thus the subsequent decisions that are made. To demonstrate the ability of the

interpolated ROMs to capture this variation, we consider the parameters describing the velocity

field to be uncertain. Each parameter is assigned a uniform distribution with 0.1 ≤ z1 ≤ 0.9 and

0.1 ≤ z2 ≤ 0.3. The distributions of the accumulated contaminant concentration at each of the sensor

locations are then estimated using Monte Carlo simulation over this parameter space. The top left plots

in Figures 7 and 8 show the resulting distributions computed using the full-order model with 160,000

random samples.

It can be seen from Figures 7 and 8 that the output histograms have a rather unusual shape. With the

relatively low Péclet number, the process is dominated by diffusion; hence the reasonably tight range of

output values. The distribution of the accumulated contaminant concentration at Sensor 1 consists of a

single peak for 1.352e-2 and very low probabilities for other values. This behavior is due to the fact that

only when the velocity source is near the sensor does it influence the contaminant concentration at that

point significantly. As Figure 9 shows, other parameter values result in an accumulated concentration

of C̄ = 1.352e-2, i.e. that due to diffusion. The accumulated concentration at Sensor 2 as a function

of z1 and z2 is depicted in Figure 10, which shows that only a small range of the parameters results in

an accumulated concentration between 1.24e-3 and 1.28e-3, as can be seen from the two distinct peaks

in Figure 8. Physically, the shape of the distribution in Figure 8 can be explained since most of the

contaminant reaching Sensor 2 originates from Gaussian 2 in the initial condition shown in Figure 5. If

the velocity source is positioned far away from Sensor 2 (z1 < 0.3 or z1 > 0.6), the source’s influence

decreases and the accumulated contaminant at Sensor 2 is due mostly to diffusion. If the velocity source

is positioned closer and to the left of the sensor (0.3 < z1 < 0.45), some of the contaminant initially

contained within Gaussian 2 is convected toward Sensor 2, increasing the accumulated contaminant.

If the source is positioned close and to the right of Sensor 2 (0.45 < z1 < 0.6), the contaminant

initially contained within Gaussian 2 is convected away from the sensor, decreasing the accumulated

contaminant. The contaminant from Gaussian 2 is hence convected either toward or away from Sensor

2, which explains the two peaks in the distribution.

This example highlights how output predictions can be substantially affected by uncertainties in

input parameters. To achieve Monte Carlo simulations such as those shown in Figures 7 and 8 in real

time — critical for supporting decision-making in the field — we require ROMs that can be evaluated

and solved rapidly over the possible range of velocity conditions. To implement our methodology,

121 ROMs are constructed over the parameter range specified above, using a uniform grid with 11

sample points in each direction. For the mapping, the space tangent to the manifold is constructed at

z1 = 0.50; z2 = 0.20. The Monte Carlo simulation results using ROMs interpolated in the original

space and in the tangent space are shown in Figures 7 and 8 for Sensor 1 and Sensor 2, respectively.

The figures show that representing the details of these unusually shaped distributions is rather difficult

with an approximate model; however, it can be seen that the general character of the distributions is

captured. In particular, the ROMs are able to successfully identify the bimodal nature of the distribution

for Sensor 2. The figures also show the results using Kriging interpolation of the outputs. While Kriging

of the output better approximates the distributions, the Kriging model cannot be used for different initial

concentrations; thus its usefulness in a practical setting is limited. The ROMs on the other hand have

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6

Prepared using fldauth.cls



INTERPOLATION AMONG REDUCED-ORDER MODELS 15

the flexibility to be applied to many different initial conditions, provided the basis is sufficiently rich

to capture the important dynamics.

For further comparison, the mean, standard deviation and skewness of the output distributions are

estimated from the Monte Carlo simulation results and shown in Table III. All interpolation techniques

estimate the mean value well but have a significant error in the standard deviation and skewness.

However, one should be careful in using only moment information for decision-making given the

irregular shapes of the distributions.

Table IV lists the relative CPU time taken to perform the Monte Carlo simulations with the different

techniques. The computational results were obtained on a workstation with 2 quad-core 2.66GHz Xeon

processors. Both the full-order and reduced-order calculation take advantage of parallelization across

multiple cores in the same way. The time to construct the 121 ROMs is included in the two ROM

spline interpolation approaches. For the Kriging interpolation, the time to perform the 121 full-order

simulations is included. While Kriging interpolation of the output is faster than the ROM interpolation

methods, its usefulness is limited for unsteady problems, as mentioned above. The approximation

methods show approximately an order of magnitude reduction in computational time over the full-

order simulation.

6. CONCLUSION

Parametrized ROMs can be obtained by interpolating among the system matrices of a set of

precomputed ROMs. This approach offers the advantage of being simple to implement, while yielding

ROMs that are fast to evaluate and solve. It is important to select the most appropriate space in which

to perform the interpolation, especially if the variation of the system matrices as a function of the

parameters is nonlinear. For any problem, it is important to carefully weigh the relative advantages

and disadvantages of different surrogate modeling methods. Interpolation among a set of outputs with

Kriging is fast, can be implemented as a black-box strategy, and results in a good approximation of the

output for many problems. However, the general class of data-fit surrogate models do not retain system

structure, thus limiting their applicability for parameters and input values other than those over which

they were derived.
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Figure 2. Geometry of the thermal fin with indication of the subdomains Ωj and dimension parameters lj [14].
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Figure 3. Area-weighted average temperature of the thermal fin as a function of the thermal conductivity z1 = κj

in subdomains Ω1 to Ω8 (Case I).
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Figure 4. Area-weighted average temperature of the thermal fin as a function of the fin height dimensions l1, l5, l9
and l13 which are varied simultaneously as one parameter z1 (Case II).
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Figure 5. Initial concentration of the contaminant in the unsteady contaminant transport problem, which is a
superposition of three Gaussian functions. The sensor locations are also indicated.
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Figure 6. Evolution of the contaminant concentration at Sensor 1 (η = 0.15, ζ = 0.25) and Sensor 2
(η = 0.45, ζ = 0.20) as a function of time for a velocity source at z1 = 0.50, z2 = 0.20 in the unsteady

contaminant transport problem.
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Figure 7. Estimated distribution of the accumulated contaminant concentration at Sensor 1 (η = 0.15, ζ = 0.25)
corresponding to a uniform distribution of the parameters z1 and z2 in the unsteady contaminant transport problem.
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Figure 8. Estimated distribution of the accumulated contaminant concentration at Sensor 2 (η = 0.45, ζ = 0.20)
corresponding to a uniform distribution of the parameters z1 and z2 in the unsteady contaminant transport problem.
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Figure 9. Accumulated contaminant concentration at Sensor 1 (η = 0.15, ζ = 0.25) as a function of velocity
source location described by z1 and z2.
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Figure 10. Accumulated contaminant concentration at Sensor 2 (η = 0.45, ζ = 0.20) as a function of velocity
source location described by z1 and z2.
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Algorithm Case I Case II Case III

Mapping space selected by indicator Original Tangent Tangent

Spline interpolation in original space 3.40e-6 3.27e-2 5.22e-2

Spline interpolation in tangent space 1.43e-4 3.43e-3 5.25e-3

Kriging of the output 1.90e-3 3.19e-4 1.20e-3

Table I. Relative error in the prediction of the output of interest (area-weighted average temperature of the thermal
fin) for the different interpolation approaches applied to three different cases.
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(a)

z1 λ error

0.2 0.64 1.76e-4

0.4 0.61 1.43e-4

0.8 0.60 1.00e-4

1.0 0.75 8.16e-4

(b)

z1 λ error

0.5 0.86 7.17e-3

0.65 0.65 3.43e-3

0.85 0.67 4.19e-3

1.0 0.77 8.80e-3

Table II. Indicator value and relative error in the prediction of the output of interest (area-weighted average
temperature of the thermal fin) for spline interpolation in the tangent space as a function of the parameter value z1

at the origin of the tangent space for (a) Case I and (b) Case II.
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(a)

Algorithm
Mean Standard deviation Skewness

Value Error Value Error Value Error

Full-order 1.3526e-2 — 7.4901e-5 — 4.8630e+0 —

Spline interpolation 1.3522e-2 3.44e-4 5.2517e-5 2.99e-1 1.5854e+0 6.74e-1

Spline int. in the tangent space 1.3523e-2 2.70e-4 5.2518e-5 2.19e-1 1.8875e+0 6.12e-1

Kriging of the output 1.3520e-2 4.79e-4 4.5148e-5 3.97e-1 3.8232e+0 2.14e-1

(b)

Algorithm
Mean Standard deviation Skewness

Value Error Value Error Value Error

Full-order 1.2538e-3 — 4.2499e-5 — 6.9435e-1 —

Spline interpolation 1.2559e-3 1.65e-3 1.2399e-5 7.08e-1 4.8405e-1 3.03e-1

Spline int. in the tangent space 1.2549e-3 8.54e-4 1.3899e-5 6.73e-1 5.2605e-1 2.42e-1

Kriging of the output 1.2541e-3 2.15e-4 4.2147e-5 8.28e-3 7.3012e-1 5.15e-2

Table III. Mean, standard deviation and skewness of the accumulated contaminant concentration at (a) η =
0.15, ζ = 0.25 and (b) η = 0.45, ζ = 0.20, together with the relative error with respect to the full-order

simulation.
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Algorithm Duration

Full-order 78.36

Spline interpolation 6.04

Spline interpolation in the tangent space 7.33

Kriging of the output 1.00

Table IV. Computational time taken to complete the Monte Carlo simulation with 160,000 samples for the unsteady
contaminant transport problem, relative to the fastest calculation (Kriging of the output).
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