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Abstract. In this paper, we will discuss the problem of optimal model order reduction of bilinear
control systems with respect to the generalization of the well-known H2-norm for linear systems. We
revisit existing first order necessary conditions for H2-optimality based on the solutions of generalized
Lyapunov equations arising in bilinear system theory and present an iterative algorithm which, upon
convergence, will yield a reduced system fulfilling these conditions. While this approach relies on the
solution of certain generalized Sylvester equations, we will establish a connection to another method
based on generalized rational interpolation. This will lead to another way of computing the H2-norm
of a bilinear system and will extend the pole-residue optimality conditions for linear systems, also
allowing for an adaption of the successful iterative rational Krylov algorithm to bilinear systems. By
means of several numerical examples, we will then demonstrate that the new techniques outperform
the method of balanced truncation for bilinear systems with regard to the relative H2-error.
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1. Introduction. The need for efficient numerical treatment of complex dynam-
ical processes often leads to the problem of model order reduction; i.e., the approx-
imation of large-scale systems resulting from, e.g., partial differential equations, by
significantly smaller ones. Since model reduction of linear systems has been studied
for several years now, there exists a well-established theory including error bounds
and structure-preserving properties fulfilled by a reduced-order model. However, al-
though there are still a lot of open and worthwhile problems, recently more and more
attention has been paid to nonlinear systems which are inevitably more complicated.
As a first step into this direction, the class of bilinear systems has been pointed out
to be an interesting interface between fully nonlinear and linear control systems; see
[10, 22, 23, 24, 27]. More precisely, these special systems are of the form

Σ :

⎧⎪⎨
⎪⎩

ẋ(t) = Ax(t) +

m∑
k=1

Nkx(t)uk(t) +Bu(t),

y(t) = Cx(t), x(0) = x0,

(1.1)

with A,Nk ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, u(t) = [u1(t), . . . , um(t)]
T ∈ Rm,

y(t) ∈ Rp. Throughout the rest of this paper, we will assume that we have a zero
initial condition x0 = 0. However, if this does not hold true, one can easily embed
all our results into the above setting by incorporating x0 in an enlarged input vector
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860 PETER BENNER AND TOBIAS BREITEN

of the form
[
B x0

]
. Due to the previous structure, which is obviously closely re-

lated to the state space representation of linear systems, many concepts known from
linear model order reduction have been shown to possess bilinear analogues. As was
already discussed in [10, 22, 23, 24], a variety of biological, physical, and economi-
cal phenomena naturally result in bilinear models. Here, models for nuclear fusion,
mechanical brakes or biological species can be mentioned as typical examples. In-
terestingly enough, a completely similar structure is obtained for a certain type of
linear stochastic differential equations. Some interesting applications, like, e.g., the
Fokker–Planck equation, are discussed in [20]. Coming back to the actual reduction
problem, we are formally aiming at the construction of another bilinear system,

Σ̂ :

⎧⎪⎨
⎪⎩

˙̂x(t) = Âx̂(t) +

m∑
k=1

N̂kx̂(t)uk(t) + B̂u(t),

ŷ(t) = Ĉx̂(t), x̂(0) = 0,

(1.2)

with Â, N̂k ∈ Rn̂×n̂, B̂ ∈ Rn̂×m, Ĉ ∈ Rp×n̂. Since Σ̂ should approximate Σ in some
sense, we want ŷ ≈ y for all admissible inputs u ∈ L2[0,∞[. Moreover, in order to
ensure a significant speed-up in numerical simulations, we demand n̂ � n. There are
different ways of achieving this goal. Similar to concepts used in the context of lin-
ear systems, there exist SVD-based approaches leading to a reasonable generalization
of the method of balanced truncation; see [6, 31]. While these methods have been
proven to perform very well, they require the solution of two generalized Lyapunov
equations which cause serious memory problems already for medium-sized systems.
More precisely, while for the case of linear systems there exist methods that make
use of the eigenvalue decomposition of the system matrix A and, consequently, lead
to algorithms that find an explicit solution in O(n3), this is no longer possible for
the bilinear case. This is due to the fact that one usually cannot find a simultane-
ous diagonalization of the matrices A and N1, . . . , Nm, which would be necessary in
order to generalize the ideas of, e.g., the Bartels–Stewart algorithm; see [5]. On the
other hand, several interpolation-based ideas have evolved that try to approximate
generalized transfer functions by projecting the original model on appropriate Krylov
subspaces; see [4, 3, 9, 13, 15, 25, 26]. Despite the fact that a memory efficient imple-
mentation is possible, the worse approximation quality compared to the method of
balanced truncation make these approaches unfavorable. Moreover, while the choice
of optimal interpolation points with respect to a certain norm has been solved for the
linear case (see [12, 19]) this is still an open question for bilinear system theory. The
goal of this paper now is to reveal an appropriate generalized interpolation framework
for bilinear systems that allows us to propose two different iterative algorithms that
aim at finding a local H2-minimum of the so-called error system. For the first one,
we will have to study certain generalized Sylvester equations. The second approach
extends the iterative rational Krylov algorithm (IRKA/MIRIAm) (see [12, 19]) to the
bilinear case. We will now proceed as follows. In the subsequent section, we will
give a brief review on optimal H2-model reduction for linear systems. This will in-
clude a recapitulation of first order necessary conditions as well as a discussion of the
solution provided by IRKA. In section 3, we will focus on the H2-norm for bilinear
systems, initially introduced in [31]. Here, we present an alternative computation of
the norm of the error system which, in section 4, will enable us to derive first order
necessary conditions that extend the ones known from the linear case. Finally, we
will study several numerical examples which will underscore the superiority of the
methods proposed in section 5 and conclude with a short summary.
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INTERPOLATORY H2 MOR OF BILINEAR CONTROL SYSTEMS 861

2. H2-optimal model reduction for linear systems. Since later on we will
extend the concepts from linear H2-model reduction, we briefly review the existing
theory for linear continuous time-invariant systems, i.e.,

Σ� :

{
ẋ(t) = A�x(t) +B�u(t),

y(t) = C�x(t), x(0) = 0,
(2.1)

with dimensions as defined in (1.1) and transfer function H�(s) = C� (sIn −A�)
−1

B�.
So far, we did not further specify criteria which allow us to measure the quality of
a reduced-order system. Here, we deal with the problem of finding a reduced-order
model which approximates the original system as accurately as possible with respect
to the H2-norm. Recall that for linear systems, this norm is defined as

||Σ�||H2 :=

(
1

2π

∫ ∞

−∞
tr
(
H�(−iω)HT

� (iω)
)
dω

) 1
2

,

where tr denotes the trace of a matrix. As is well known, there exist two alternative
computations for this norm. The first relies on the solution of the Lyapunov equations
corresponding to the system, i.e.,

A�P� + P�A
T
� +B�B

T
� = 0, AT

� Q� +Q�A� + CT
� C� = 0.

It can be shown that it holds

||Σ�||2H2
= tr

(
C�P�C

T
�

)
= tr

(
BT

� Q�B�

)
.

Rather recently, in [2], under the assumption that H� has only simple poles, Antoulas
provided a new derivation based on the poles and residues of the transfer function:

||Σ�||2H2
=

n∑
k=1

tr
(
res
[
H�(−s)HT

� (s), λk

])
,

where λk denotes the eigenvalues of the system matrix A� and

res
[
H�(−s)HT

� (s), λk

]
= lim

s→λk

H�(−s)HT
� (s)(s − λk).

Based on these expressions, it is possible to derive first order necessary conditions for
H2-optimality, i.e., for locally minimizing the norm of the error system ||Σ� − Σ̂�||H2 ;
see, e.g., [19, 21, 30]. On the one hand, the Lyapunov-based norm computation leads
to the Wilson conditions

PT
12Q12 + P22Q22 = 0, QT

12B +Q22B̂ = 0, ĈP22 − CP12 = 0,(2.2)

where

P err =

[
P11 P12

PT
12 P22

]
, Qerr =

[
Q11 Q12

QT
12 Q22

]
,

are the solutions of the Lyapunov equations of the error system

Aerr =

[
A� 0

0 Â

]
, Berr =

[
B�

B̂

]
, Cerr =

[
C� −Ĉ

]
.
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862 PETER BENNER AND TOBIAS BREITEN

Equivalently, it is possible to characterize the optimality via interpolation-based con-
ditions. Initially derived in [21] and picked up again in [19, 11, 29], the reduced
systems’ transfer function has to tangentially interpolate the transfer function of the
original system at the mirror images of its own poles i.e., for 1 ≤ k ≤ n̂,

C̃T
k Ĥ(−λ̂k) = C̃T

k H(−λ̂k),(2.3)

Ĥ(−λ̂k)B̃k = H(−λ̂k)B̃k,(2.4)

C̃T
k Ĥ

′(−λ̂k)B̃k = C̃T
k H

′(−λ̂k)B̃k,(2.5)

where RΛR−1 = Â is the spectral decomposition of Â with Λ = diag(λ̂1, . . . , λ̂n̂),
B̃ = B̂TR−T , C̃ = ĈR, and the subscript k denotes the kth column of a matrix. For
later purposes, it is important to note that there is another way of writing down the
above conditions. For this, we will make use of the Kronecker product notation and
some simple properties of the vect () operator:

vect (In) = In, tr
(
XTY

)
= vect (X)

T
vect (Y ) , vect (XY Z) = (ZT ⊗X) vect (Y ) .

(2.6)

Note that the right-hand side of (2.3) consists of m columns. Considering now the
jth of those, we obtain

C̃T
k C�

(
−λ̂kIn −A�

)−1

Bj

=
(
C̃T

1 C� . . . C̃T
n̂C�

)⎡⎢⎣−λ̂1In −A�

. . .

−λ̂n̂In −A�

⎤
⎥⎦
−1

(ek ⊗Bj)

= vect
(
CT

� C̃
)T

(−Λ⊗ In − In̂ ⊗A�)
−1 (

eke
T
j ⊗B�

) Im
= IT

p

(
C̃ ⊗ C�

)
(−Λ⊗ In − In̂ ⊗A�)

−1 (ekeTj ⊗B�

) Im.

Hence, condition (2.3) is the same as requiring

(2.7)
IT
p

(
C̃ ⊗ Ĉ

)(
−Λ⊗ In̂ − In̂ ⊗ Â

)−1 (
eke

T
j ⊗ B̂

)
Im

= IT
p

(
C̃ ⊗ C�

)
(−Λ⊗ In − In̂ ⊗A�)

−1 (
eke

T
j ⊗B�

) Im,

for k = 1, . . . , n̂ and j = 1, . . . ,m. Similarly, we can derive conditions equivalent to
(2.4) and (2.5):

(2.8)
IT
p

(
eje

T
k ⊗ Ĉ

)(
−Λ⊗ In̂ − In̂ ⊗ Â

)−1 (
B̃T ⊗ B̂

)
Im

= IT
p

(
eje

T
k ⊗ C�

)
(−Λ⊗ In − In̂ ⊗A�)

−1
(
B̃T ⊗ B�

)
Im,

(2.9)

IT
p

(
C̃ ⊗ Ĉ

)(
−Λ⊗ In̂ − In̂ ⊗ Â

)−1 (
eke

T
k ⊗ In̂

)
×
(
−Λ⊗ In̂ − In̂ ⊗ Â

)−1 (
B̃T ⊗ B̂

)
Im

= IT
p

(
C̃ ⊗ C�

)
(−Λ⊗ In − In̂ ⊗A�)

−1 (
eke

T
k ⊗ In

)
× (−Λ⊗ In − In̂ ⊗A�)

−1
(
B̃T ⊗B�

)
Im.
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Based on these conditions, in [19, 11, 29] the authors have proposed iterative rational
Krylov algorithms (IRKA/MIRIAm) which, upon convergence, yield a locally H2-
optimal reduced system. Here, the crucial observation is that if we construct the
reduced system by the Petrov–Galerkin projection P = VWT , i.e.,

Â = WTA�V, B̂ = WTB�, Ĉ = C�V,

with V =
[
V1 . . . Vn̂

]
and W =

[
W1 . . . Wn̂

]
given as

Vi = (σiIn −A�)
−1

B�B̃i,(2.10)

Wi =
(
σiIn −AT

�

)−1
CT

� C̃i,(2.11)

we can guarantee that the transfer function of Σ̂� tangentially interpolates the values
and first derivatives of the original systems’ transfer function at the points σi. Again,
for later purposes it will be important to note that (2.10) and (2.11) can be rewritten
by using a vectorized notation:

vect (V ) = (diag(σ1, . . . , σn̂)⊗ In − In̂ ⊗A�)
−1

(B̃T ⊗B�)Im,(2.12)

vect (W ) =
(
diag(σ1, . . . , σn̂)⊗ In − In̂ ⊗AT

�

)−1
(C̃T ⊗ CT

� )Ip.(2.13)

3. H2-norm for bilinear systems. In this section, we will review a possible
generalization of the H2-norm for bilinear systems introduced in [31].

Definition 3.1. We define the H2-norm for bilinear systems as

||Σ||2H2
= tr

⎛
⎝ ∞∑

k=1

∫ ∞

0

. . .

∫ ∞

0

m∑
�1,...,�k=1

g
(�1,...,�k)
k (g

(�1,...,�k)
k )Tds1 . . . dsk

⎞
⎠,

with g
(�1,...,�k)
k (s1, . . . , sk) = CeAskN�1e

Ask−1N�2 · · · eAs1b�k .
It has been shown that the above definition makes sense in the case of the existence

of certain generalized observability and reachability Gramians associated with bilinear
systems. These, in turn, satisfy the generalized Lyapunov equations

AP + PAT +

m∑
k=1

NkPNT
k +BBT = 0,(3.1)

ATQ+QAT +

m∑
k=1

NT
k QNk + CTC = 0,(3.2)

and can be computed via the limit of an infinite series of linear Lyapunov equations.
Basically, these assumptions are closely related to the notion of stability of Σ. For a
more detailed insight, we refer to [31]. Hence, in the following we will always assume
that the original system Σ is stable, meaning that the eigenvalues of the system matrix
A lie in the open left complex plane and, moreover, the matrices Nk are sufficiently
bounded. More precisely, we state the following result on bounded-input-bounded-
output (BIBO) stability of bilinear systems, initially obtained in [28].

Theorem 3.2. Let a bilinear system Σ be given and assume that A is asymptot-
ically stable, i.e., there exist real scalars β > 0 and 0 < α ≤ −maxi(Re (λi(A))), such
that

||eAt|| ≤ βe−αt, t ≥ 0.
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864 PETER BENNER AND TOBIAS BREITEN

Further assume that ||u(t)|| =√∑m
k=1 |uk(t)|2 ≤ M uniformly on [0,∞[ with M > 0,

and denote Γ =
∑m

k=1 ||Nk||. Then Σ is BIBO stable, i.e., the corresponding Volterra
series of the solution x(t) uniformly converges on the interval [0,∞[ if Γ < α

Mβ .
Our stability assumption is motivated by the explicit solution formulas for

(3.1) and (3.2) and the demand of having positive semidefinite solutions P and Q,
respectively:

vect (P ) = −
(
A⊗ In + In ⊗A+

m∑
k=1

Nk ⊗Nk

)−1

vect
(
BBT

)
,(3.3)

vect (Q) = −
(
AT ⊗ In + In ⊗AT +

m∑
k=1

NT
k ⊗NT

k

)−1

vect
(
CTC

)
.(3.4)

Similarly to the linear case, the H2-norm now can be computed with the help of the
solutions P and Q; see [31].

Proposition 3.3. Let Σ be a bilinear system. Assume that A is asymptotically
stable and the reachability Gramian P and the observability Gramian Q exist. Then
it holds that

||Σ||2H2
= tr

(
CPCT

)
= tr

(
BTQB

)
.

Since in the subsequent section we want to derive first order necessary conditions
for H2-optimality that extend the interpolation conditions (2.3), (2.4), and (2.5) for
linear systems, we propose the following alternative derivation.

Theorem 3.4. Let Σ be a stable bilinear system. Then it holds that

||Σ||2H2
= IT

p (C ⊗ C)

(
−A⊗ In − In ⊗A−

m∑
k=1

Nk ⊗Nk

)−1

(B ⊗B) Im.

Proof. For the proof, recall the properties from (2.6), together with the results
from Proposition 3.3 and the solution formulas (3.3) and (3.4), respectively,

||Σ||2H2
= tr

(
CPCT

)
= vect

(
CT
)T

vect
(
PCT

)
= vect

(
CT
)T

(C ⊗ I) vect (P )

= vect
(
CT
)T

(C ⊗ I)

(
−A⊗ I − I ⊗A−

m∑
k=1

Nk ⊗Nk

)−1

vect
(
BBT

)

=
((
CT ⊗ I

)
vect

(
CT
))T (−A⊗ I − I ⊗A−

m∑
k=1

Nk ⊗Nk

)−1

(B ⊗B) Im

=
(
vect

(
CTC

))T (−A⊗ I − I ⊗A−
m∑

k=1

Nk ⊗Nk

)−1

(B ⊗B) Im

=
(
vect

(
CT IpC

))T (−A⊗ I − I ⊗A−
m∑

k=1

Nk ⊗Nk

)−1

(B ⊗B) Im

=
(
(CT ⊗ CT )Ip

)T (−A⊗ I − I ⊗A−
m∑

k=1

Nk ⊗Nk

)−1

(B ⊗B) Im

= (Ip)T (C ⊗ C)

(
−A⊗ I − I ⊗A−

m∑
k=1

Nk ⊗Nk

)−1

(B ⊗B) Im.
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4. H2-optimality conditions for bilinear systems. Next, we want to discuss
necessary conditions for H2-optimality. As in the linear case, for this we have to
consider the norm of the error system Σerr := Σ− Σ̂, which is defined as follows:

Aerr =

[
A 0

0 Â

]
, Nerr

k =

[
Nk 0

0 N̂k

]
, Berr =

[
B

B̂

]
, Cerr =

[
C −Ĉ

]
.

Based on the assertions from Proposition 3.3 in [31], it is shown that the reduced
system matrices have to fulfill conditions that extend the Wilson conditions to the
bilinear case:

(4.1)
QT

12P12 +Q22P22 = 0, Q22N̂kP22 +QT
12NkP12 = 0,

QT
12B +Q22B̂ = 0, ĈP22 − CP12 = 0,

where

P err =

[
P11 P12

PT
12 P22

]
, Qerr =

[
Q11 Q12

QT
12 Q22

]
,(4.2)

are the solutions of the generalized Lyapunov equations

AerrP err + P err(Aerr)T +
m∑

k=1

Nerr
k P err(Nerr

k )T +Berr(Berr)T = 0,(4.3)

(Aerr)TQerr +QerrAerr +

m∑
k=1

(Nerr
k )TQerrNerr

k + (Cerr)TCerr = 0.(4.4)

Since we are heading for a generalization of the iterative rational Krylov algorithm,
next we want to derive necessary conditions based on the computation formula from
Theorem 3.4. A simple analysis of the structure of the error system leads to the
following expression for the error functional E.

Corollary 4.1. Let Σ and Σ̂ be the original and reduced bilinear systems,
respectively. Then

E2 := ||Σerr||2H2
:= ||Σ− Σ̂||2H2

= (Ip)T
([
C −C̃

]⊗ [C −Ĉ
])

×
(
−
[
A 0
0 Λ

]
⊗ In+n̂ − In+n̂ ⊗

[
A 0

0 Â

]
−

m∑
k=1

[
Nk 0

0 ÑT
k

]
⊗
[
Nk 0

0 N̂k

])−1

×
([

B

B̃T

]
⊗
[
B

B̂

])
Im,

= (Ip)T
([
C −C̃

]⊗ [C −C̃
])

×
(
−
[
A 0
0 Λ

]
⊗ In+n̂ − In+n̂ ⊗

[
A 0
0 Λ

]
−

m∑
k=1

[
Nk 0

0 ÑT
k

]
⊗
[
Nk 0

0 ÑT
k

])−1

×
([

B

B̃T

]
⊗
[
B

B̃T

])
Im,

where RΛR−1 = Â is the spectral decomposition of Â and B̃ = B̂TR−T , C̃ =
ĈR, Ñk = RT N̂T

k R−T .
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The above representation is motivated by the demand of having optimization
parameters Λ, Ñk, B̃, and C̃ that can be chosen to minimize ||Σ − Σ̂||2H2

, at least
locally. Before we proceed, let us introduce a specific permutation matrix

M =

[
In̂ ⊗

[
In
0

]
In̂ ⊗

[
0T

In̂

]]
,

which will simplify the computation of Kronecker products for certain block matrices.
For this, consider one of the block structures appearing in Corollary 4.1 for which we
can show that

MT

(
ÑT

k ⊗
[
Nk 0

0 N̂k

])
M

=
[
In̂ ⊗ [In 0T

]
In̂ ⊗ [0 In̂

]] (
ÑT

k ⊗
[
Nk 0

0 N̂k

])[
In̂ ⊗

[
In
0

]
In̂ ⊗

[
0T

In̂

]]

=
[
In̂ ⊗ [In 0T

]
In̂ ⊗ [0 In̂

]] [
ÑT

k ⊗
[
Nk

0

]
ÑT

k ⊗
[
0T

N̂k

]]

=

[
ÑT

k ⊗Nk 0

0 ÑT
k ⊗ N̂k

]
.

For the differentiation with respect to the optimization parameters, we make use of
the product rule for Kronecker products (see Lemma A.1 in Appendix A):

∂E2

∂C̃ij

= 2 · (Ip)T
([
0 −eie

T
j

]⊗ [C −C̃
])

×
(
−
[
A 0
0 Λ

]
⊗ In+n̂ − In+n̂ ⊗

[
A 0
0 Λ

]
−

m∑
k=1

[
Nk 0

0 ÑT
k

]
⊗
[
Nk 0

0 ÑT
k

])−1

×
([

B

B̃T

]
⊗
[
B

B̃T

])
Im

= 2 · (Ip)T
([
0 −eie

T
j

]⊗ [C −Ĉ
])

×
(
−
[
A 0
0 Λ

]
⊗ In+n̂ − In+n̂ ⊗

[
A 0

0 Â

]
−

m∑
k=1

[
Nk 0

0 ÑT
k

]
⊗
[
Nk 0

0 N̂k

])−1

×
([

B

B̃T

]
⊗
[
B

B̂

])
Im

= 2 · (Ip)T
(−eie

T
j ⊗ [C −Ĉ

])(−Λ⊗
[
In 0
0 In̂

]
− In̂ ⊗

[
A 0

0 Â

]

×−
m∑

k=1

ÑT
k ⊗

[
Nk 0

0 N̂k

])−1(
B̃T ⊗

[
B

B̂

])
Im

= 2 · (Ip)T
(−eie

T
j ⊗ [C −Ĉ

])(
M

(
−
[
Λ⊗ In 0

0 Λ⊗ In̂

]

−
[
In̂ ⊗A 0

0 In̂ ⊗ Â

]
−

m∑
k=1

[
ÑT

k ⊗Nk 0

0 ÑT
k ⊗ N̂k

])
MT

)−1(
B̃T ⊗

[
B

B̂

])
Im
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= −2 · (Ip)T
(
eie

T
j ⊗ C

)(−Λ⊗ In − In̂ ⊗A−
m∑

k=1

ÑT
k ⊗Nk

)−1 (
B̃T ⊗B

)
Im

+ 2 · (Ip)T
(
eie

T
j ⊗ Ĉ

)(
−Λ⊗ In̂ − In̂ ⊗ Â−

m∑
k=1

ÑT
k ⊗ N̂k

)−1 (
B̃T ⊗ B̂

)
Im.

Here, the last step is justified by the fact that M is a permutation matrix and, thus,
MTM = I and the identities:

(−eie
T
j ⊗ [C −Ĉ

])
M =

[
−eie

T
j ⊗ C eie

T
j ⊗ Ĉ

]
, MT

(
B̃ ⊗

[
B

B̂

])
=

[
B̃ ⊗B

B̃ ⊗ B̂

]
.

Setting the resulting expression equal to zero reveals that Σ̂ has to satisfy

(4.5)

(Ip)T
(
eie

T
j ⊗ C

)(−Λ⊗ In − In̂ ⊗A−
m∑

k=1

ÑT
k ⊗Nk

)−1 (
B̃T ⊗B

)
Im

= (Ip)T
(
eie

T
j ⊗ Ĉ

)(
−Λ⊗ In − In̂ ⊗ Â−

m∑
k=1

ÑT
k ⊗ N̂k

)−1 (
B̃T ⊗ B̂

)
Im.

In view of (2.4) in the form of (2.8), we see that this demand naturally extends
the interpolation-based condition known from the linear case. For the differentiation
with respect to the poles of Â, we use the second part of the Lemma A.1 in order to
obtain

∂E2

∂λi
= 2 · IT

p

([
C − C̃

]⊗ [C −C̃
])

×
([

A 0
0 Λ

]
⊗ In+n̂ + In+n̂ ⊗

[
A 0
0 Λ

]
+

m∑
k=1

[
Nk 0

0 ÑT
k

]
⊗
[
Nk 0

0 ÑT
k

])−1

×
([

0 0
0 eie

T
i

]
⊗ In+n̂

)

×
([

A 0
0 Λ

]
⊗ In+n̂ + In+n̂ ⊗

[
A 0
0 Λ

]
+

m∑
k=1

[
Nk 0

0 ÑT
k

]
⊗
[
Nk 0

0 ÑT
k

])−1

×
([

B

B̃T

]
⊗
[
B

B̃T

])
Im

= 2 · IT
p

([
C − C̃

]⊗ [C −Ĉ
])

×
([

A 0
0 Λ

]
⊗ In+n̂ + In+n̂ ⊗

[
A 0

0 Â

]
+

m∑
k=1

[
Nk 0

0 ÑT
k

]
⊗
[
Nk 0

0 N̂k

])−1

×
([

0 0
0 eie

T
i

]
⊗ In+n̂

)

×
([

A 0
0 Λ

]
⊗ In+n̂ + In+n̂ ⊗

[
A 0

0 Â

]
+

m∑
k=1

[
Nk 0

0 ÑT
k

]
⊗
[
Nk 0

0 N̂k

])−1

×
([

B

B̃T

]
⊗
[
B

B̂

])
Im

D
ow

nl
oa

de
d 

11
/0

7/
12

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

868 PETER BENNER AND TOBIAS BREITEN

= 2 · IT
p

(
−C̃ ⊗ [C −Ĉ

])

×
(
Λ⊗ In+n̂ + In̂ ⊗

[
A 0

0 Â

]
+

m∑
k=1

ÑT ⊗
[
Nk 0

0 N̂k

])−1 (
eie

T
i ⊗ In+n̂

)

×
(
Λ⊗ In+n̂ + In̂ ⊗

[
A 0

0 Â

]
+

m∑
k=1

ÑT
k ⊗

[
Nk 0

0 N̂k

])−1(
B̃T ⊗

[
B

B̂

])
Im

= −2 · IT
p

(
C̃ ⊗ C

)(
−Λ⊗ In − In̂ ⊗A−

m∑
k=1

ÑT
k ⊗Nk

)−1

× (eieTi ⊗ In
)(−Λ⊗ In − In̂ ⊗A−

m∑
k=1

ÑT
k ⊗Nk

)−1 (
B̃T ⊗B

)
Im

+ 2 · IT
p

(
C̃ ⊗ Ĉ

)(
−Λ⊗ In̂ − In̂ ⊗ Â−

m∑
k=1

ÑT
k ⊗ N̂k

)−1

× (eieTi ⊗ In̂
)(−Λ⊗ In̂ − In̂ ⊗ Â−

m∑
k=1

ÑT
k ⊗ N̂k

)−1 (
B̃T ⊗ B̂

)
Im.

Once more, we find an interpolation-based condition generalizing (2.5) in the form of
(2.9) if we set the last expression equal to zero:

(4.6)

(Ip)T
(
C̃ ⊗ C

)(
−Λ⊗ In − In̂ ⊗A−

m∑
k=1

ÑT
k ⊗Nk

)−1

× (eieTi ⊗ In
)(−Λ⊗ In − In̂ ⊗A−

m∑
k=1

ÑT
k ⊗Nk

)−1 (
B̃T ⊗B

)
Im

= (Ip)T
(
C̃ ⊗ Ĉ

)(
−Λ⊗ In̂ − In̂ ⊗ Â−

m∑
k=1

ÑT
k ⊗ N̂k

)−1

× (eieTi ⊗ In̂
)(−Λ⊗ In̂ − In̂ ⊗ Â−

m∑
k=1

ÑT
k ⊗ N̂k

)−1 (
B̃T ⊗ B̂

)
Im.

Finally, as a matter of careful analysis, we obtain similar optimality conditions
when differentiating with respect to B̃ and Ñk, respectively,

(4.7)

IT
p

(
C̃ ⊗ C

)(
−Λ⊗ In − In̂ ⊗A−

m∑
k=1

ÑT
k ⊗Nk

)−1 (
eje

T
i ⊗B

) Im
= IT

p

(
C̃ ⊗ Ĉ

)(
−Λ⊗ In̂ − In̂ ⊗ Â−

m∑
k=1

ÑT
k ⊗ N̂k

)−1 (
eje

T
i ⊗ B̂

)
Im,

IT
p

(
C̃ ⊗ C

)(
−Λ⊗ In − In̂ ⊗A−

m∑
k=1

ÑT
k ⊗Nk

)−1

× (ejeTi ⊗N
)(−Λ⊗ In − In̂ ⊗A−

m∑
k=1

ÑT
k ⊗Nk

)−1 (
B̃T ⊗B

)
Im
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= IT
p

(
C̃ ⊗ Ĉ

)(
−Λ⊗ In̂ − In̂ ⊗ Â−

m∑
k=1

ÑT
k ⊗ N̂k

)−1

(4.8)

×
(
eje

T
i ⊗ N̂

)(
−Λ⊗ In̂ − In̂ ⊗ Â−

m∑
k=1

ÑT
k ⊗ N̂k

)−1 (
B̃T ⊗ B̂

)
Im.

Hence, the previous derivations can be summarized in the following theorem.
Theorem 4.2. Let Σ denote a BIBO stable bilinear system. Assume that Σ̂ is a

reduced bilinear system of dimension n̂, minimizing the H2-norm of the error system
among all bilinear systems of dimension n̂. Then Σ̂ fulfills (4.5)–(4.8).

Remark 4.1. At this point one might wonder why it makes sense to denote the
above conditions as being of interpolatory nature. Note that if the inverse(

−Λ⊗ In − In̂ ⊗A−
m∑

k=1

ÑT
k ⊗Nk

)−1

exists, we can rewrite it by means of the Neumann Lemma as an infinite series of the
form

∞∑
i=0

(
(−Λ⊗ In − In̂ ⊗A)

−1

(
m∑

k=1

ÑT
k ⊗Nk

))i

(−Λ⊗ In − In̂ ⊗A)
−1

.

Now each term of this series in a way corresponds to the Volterra series representation
arising for bilinear control systems. More precisely, as has been discussed in [17],
one can show that the above conditions mean that the Volterra series representation
evaluated at the mirror images of the poles of the reduced system has to coincide
with that of the original system. In other words, conditions (4.5)–(4.8) describe
interpolation conditions for the Volterra series representation of a bilinear control
system.

5. Generalized Sylvester equations and bilinear IRKA. Now that we have
specified first order necessary conditions for H2-optimality, in this section we will
propose two algorithms that iteratively construct a reduced-order system which locally
minimizes the H2-error. We will start with a procedure based on certain generalized
Sylvester equations which in the linear case reduces to the concept discussed in [29].
For this, let us consider the following two matrix equations:

AX +XÂT +

m∑
k=1

NkXN̂T
k +BB̂T = 0,(5.1)

ATY + Y Â+
m∑

k=1

NT
k Y N̂k − CT Ĉ = 0.(5.2)

Obviously, the solutions X,Y ∈ Rn×n̂ can be explicitly computed by vectorizing both
sides and making use of the vect ()-operator. However, this requires solving two linear
systems of equations:(

−In̂ ⊗A− Â⊗ In −
m∑

k=1

N̂k ⊗Nk

)
vect (X) = vect

(
BB̂T

)
,

(
In̂ ⊗AT + ÂT ⊗ In +

m∑
k=1

N̂T
k ⊗NT

k

)
vect (Y ) = vect

(
CT Ĉ

)
.
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Throughout the rest of this paper, we will assume that there exist unique solutions
satisfying these Sylvester equations. Due to the properties of the eigenvalue com-
putation of Kronecker products, this certainly is satisfied if the eigenvalues of Â
are located in C− and the norms of N̂k are sufficiently small. However, in view of
Theorem 3.2 we have already mentioned that this basically characterizes a stable bilin-
ear system. Although, in general, this cannot be ensured by our proposed algorithms,
we did not observe unstable reduced-order systems so far. For a similar discussion for
the linear case, we refer to [19]. For the sake of completeness, we mention that under
appropriate assumptions X and Y can be computed as the limit of an infinite series
of linear Sylvester equations.

Lemma 5.1. Let L,Π : Rn×n̂ → Rn×n̂ denote two linear operators defined by the
bilinear systems Σ and Σ̂, with L(X) := AX + XÂT and Π(X) :=

∑m
k=1 NkXN̂T

k .
If the spectral radius ρ(L−1Π) < 1, then the solution X of the generalized Sylvester
equation (5.1) is given as X = limj→∞Xj , with

AX1 +X1Â
T +BB̂T = 0, AXj +XjÂ

T +

m∑
k=1

NkXj−1N̂
T
k +BB̂T = 0, j > 1.

A dual statement is obviously true for (5.2). Since the statement is a direct
consequence of the theory of convergent splittings, we dispense with the proof and
instead refer to [14] for an equivalent discussion on bilinear Lyapunov equations.

Remark 5.1. Although the aforementioned splitting at least theoretically yields a
possible way of solving the generalized Sylvester equation (5.1), the procedure strongly
depends on the size of the spectral radius ρ(L−1Π). Moreover, so far it seems hard
to state properties of a bilinear control system that automatically ensure the desired
convergence.

Let us now focus on Algorithm 1, which in each step constructs a reduced system
Σ̂ by a Petrov–Galerkin type projection P = V (WTV )−1WT , determined by the
solutions of the generalized Sylvester equations associated with the preceding system
matrices.

Algorithm 1. Generalized Sylvester iteration

Input: A, Nk, B, C, Â, N̂k, B̂, Ĉ
Output: Âopt, N̂opt

k , B̂opt, Ĉopt

1: while (not converged) do
2: Solve AX +XÂT +

∑m
k=1 NkXN̂T

k +BB̂T = 0.

3: Solve ATY + Y Â+
∑m

k=1 N
T
k Y N̂k − CT Ĉ = 0.

4: V = orth(X), W = orth(Y )

5: Â =
(
WTV

)−1
WTAV , N̂k =

(
WTV

)−1
WTNkV , B̂ =

(
WTV

)−1
WTB, Ĉ =

CV
6: end while
7: Âopt = Â, N̂opt

k = N̂k, B̂
opt = B̂, Ĉopt = Ĉ

Remark 5.2. Note that the two main steps of Algorithm 1 consist of finding
solutions to generalized Sylvester equation of the form

AX +XÂT +

m∑
k=1

NkXN̂T
k +BB̂T = 0,
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determined by the large size matrix A from the original system and the small size
matrix Â from the reduced system. Similar to the generalized Lyapunov equations
arising for bilinear control systems, solving a matrix equation of this type might still
pose a severe challenge. However, one might think of considering the explicit system
of linear equations, given by the Kronecker formulation(

−In̂ ⊗A− Â⊗ In −
m∑

k=1

N̂k ⊗Nk

)
vect (X) = − vect

(
BBT

)
,

which can be solved by means of an iterative Krylov subspace based solver. As a
preconditioning technique, one naturally might think of the corresponding simplified
Sylvester equation appearing in the linear case (i.e., Nk = 0) which can be efficiently
solved by means of a Schur decomposition; see [7].

Finally, we are ready to prove one of our two main results.
Theorem 5.2. Assume Algorithm 1 converges. Then, Âopt, N̂opt

k , B̂opt, Ĉopt

fulfill the necessary H2-optimality conditions (4.1).
Proof. Let Ā, N̄k, B̄, C̄ denote the matrices corresponding to the next to last

step in the while loop. Due to convergence, Σ̂opt is a state space transformation of Σ̄,
i.e. ∃T ∈ Rn̂×n̂ nonsingular, such that

Ā = T−1ÂoptT, N̄k = T−1N̂opt
k T, B̄ = T−1B̂opt, C̄ = ĈoptT.

Furthermore, according to step 4 of Algorithm 1, we have

V opt = XoptF, W opt = Y optG,

with F,G ∈ Rn̂×n̂ nonsingular. Thus, it holds that(
(W opt)TV opt

)−1
(W opt)T =

(
GT (Y opt)TXoptF

)−1
GT (Y opt)T

= F−1
(
(Y opt)TXopt

)−1
(Y opt)T .

From step 2, it follows

AXopt +XoptĀT +

m∑
k=1

NkX
optN̄T

k +BB̄T = 0.

Hence,

F−1
(
Y optTXopt

)−1

(Y opt)T︸ ︷︷ ︸
((Wopt)TV opt)−1(Wopt)T

AXoptF︸ ︷︷ ︸
V opt

+ F−1ĀTF +

m∑
k=1

F−1
(
(Y opt)TXopt

)−1
(Y opt)TNkX

optN̄T
k F

+ F−1
(
(Y opt)TXopt

)−1
(Y opt)TBB̄TF = 0,

which implies

Âopt + F−1T T (Âopt)
T
T−TF +

m∑
k=1

N̂opt
k F−1T T (N̂opt

k )TT−TF

+ B̂opt(B̂opt)TT−TF = 0.
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Finally, we end up with

ÂoptF−1T T + F−1T T (Âopt)T +

m∑
k=1

N̂opt
k F−1T T (N̂opt

k )T + B̂opt(B̂opt)T = 0.

From the last line and the fact that we assumed the reduced system to be stable,
the solution of the generalized Lyapunov equation is unique and we conclude that
P22 = F−1T T , where P22 is the lower right block from the partitioning in (4.2).
Similarly, we obtain

ATY opt + Y optĀ+

m∑
k=1

NT
k Y optN̄k − CT C̄ = 0.

This leads to

FT (Xopt)TATY opt((Xopt)TY opt)−1F−T + FT (Xopt)TY optĀ((Xopt)TY opt)−1F−T

+

m∑
k=1

FT (Xopt)TNT
k Y optN̄k((X

opt)TY opt)−1F−T

− FT (Xopt)TCT C̄((Xopt)TY opt)−1F−T = 0,

which can be transformed into

(Âopt)T + FT (Xopt)TY optT−T ÂoptT ((Xopt)TY opt)−1F−T

+

m∑
k=1

FT (Xopt)TNTY opt((Xopt)TY opt)−1

× F−TFT (Xopt)TY optN̄k((X
opt)TY opt)−1F−T

− FT (Xopt)TCT ĈoptT ((Xopt)TY opt)−1F−T = 0.

Thus it follows that

(Âopt)T + FT (Xopt)TY optT−T ÂoptT ((Xopt)TY opt)−1F−T

+

m∑
k=1

(N̂opt
k )TFTXoptTY optT−1N̂opt

k T ((Xopt)TY opt)−1F−T

− (Ĉopt)T ĈoptT ((Xopt)TY opt)−1F−T = 0,

and, subsequently,

− (Âopt)TFT (Xopt)TY optT−1 − FT (Xopt)TY optT−1(Âopt)T

−
m∑

k=1

(N̂opt
k )TFT (Xopt)TY optT−1N̂opt

k + (Ĉopt)T Ĉopt = 0.

Again, the unique solution of the generalized Lyapunov equation of the reduced system
satisfies Q22 = −FT (Xopt)TY optT−1, with Q22 as defined in (4.1). Moreover, due to
symmetry of the solution, it follows that Q22 = −T−T (Y opt)TXoptF. Finally, we will
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need the solutions of the generalized Sylvester equations arising in (4.3). However, it
holds that

AXopt +XoptĀT +

m∑
k=1

NkX
optN̄T

k +BB̄T = 0

is equivalent to

AXopt +XoptT T (Âopt)TT−T +

m∑
k=1

NkX
optT T (N̂opt

k )TT−T +B(B̂opt)TT−T = 0,

yielding

AXoptT T +XoptT T (Âopt)T +
m∑

k=1

NkX
optT T (N̂opt

k )T +B(B̂opt)T = 0.

Here, we make use of the unique solution of the generalized Sylvester equation. Thus,
it follows that P12 = XoptT T . Since the argumentation for the dual Sylvester equation
is completely analogous, we will skip the derivation that leads to Q12 = Y optT−1. Let
us now show the optimality conditions (4.1):

QT
12P12 +Q22P22 = T−T (Y opt)TXoptT T − T−T (Y opt)TXoptFF−1T T = 0,

Q22N̂
opt
k P22 +QT

12NkP12

= −T−T (Y opt)TXoptFN̂opt
k F−1T T + T−T (Y opt)TNkX

optT T

= −T−T (Y opt)TXoptF
(
(W opt)TV opt

)−1
(W opt)TNkV

optF−1T T

+ T−1(Y opt)TNkX
optT T

= −T−T (Y opt)TXFF−1
(
(Y opt)TXopt

)−1
(Y opt)TNkV

optFF−1T T

+ T−T (Y opt)TNkX
optT T = 0,

QT
12B +Q22B̂

opt

= T−T (Y opt)TB − T−T (Y opt)TXoptFB̂opt

= T−T (Y opt)TB − T−T (Y opt)TXoptF
(
(W opt)TV opt

)−1
(W opt)TB

= T−T (Y opt)TB − T−T (Y opt)TXoptFF−1
(
(Y opt)TXopt

)−1
(Y opt)TB = 0,

ĈoptP22 − CP12 = ĈoptF−1T T − CXoptT T = CV optF−1T T − CXoptT T

= CXoptFF−1T T − CXoptT T = 0.

Remark 5.3. Note that Algorithm 1 generalizes a Sylvester equation based algo-
rithm for H2-optimality (see [18]) and thus does not require diagonalizability of Â.

We will now turn our attention to an interpolation-based approach that can be
directly derived from Algorithm 1. For a similar derivation in the linear case, see,
e.g., [18]. Again, let Â = RΛR−1 denote the eigenvalue decomposition of the reduced
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874 PETER BENNER AND TOBIAS BREITEN

system. As already mentioned before, the explicit solution for (5.1) in vectorized form
reads

vect (X) =

(
−In̂ ⊗A− Â⊗ In −

m∑
k=1

N̂k ⊗Nk

)−1

vect
(
BB̂T

)

=

(
−In̂ ⊗A− Â⊗ In −

m∑
k=1

N̂k ⊗Nk

)−1 (
B̂ ⊗B

)
Im

=

[
(R⊗ In)

(
−In̂ ⊗A− Λ ⊗ In −

m∑
k=1

R−1N̂kR⊗Nk

)(
R−1 ⊗ In

)]−1

×
(
B̂ ⊗B

)
Im

= (R⊗ In)

(
−In̂ ⊗A− Λ⊗ In −

m∑
k=1

R−1N̂kR⊗Nk

)−1 (
R−1B̂ ⊗B

)
Im︸ ︷︷ ︸

vect(V )

.

From the last line, we can now conclude that

(R⊗ In)
−1 vect (X) = vect (V ) and hence XR−T = V.

Similarly, starting from (5.2), we obtain

vect (Y ) =

(
In̂ ⊗AT + ÂT ⊗ In +

m∑
k=1

N̂T
k ⊗NT

k

)−1

vect
(
CT Ĉ

)

=

(
In̂ ⊗AT + ÂT ⊗ In +

m∑
k=1

N̂T
k ⊗NT

k

)−1 (
ĈT ⊗ CT

)
Ip

=

[(
R−T ⊗ In

)(−In̂ ⊗AT

− Λ⊗ In −
m∑

k=1

RT N̂T
k R−T ⊗NT

k

)(−RT ⊗ In
)]−1 (

ĈT ⊗ CT
)
Ip

=
(−R−T ⊗ In

)
vect (W ) .

Once again, this leads to(−R−T ⊗ In
)−1

vect (Y ) = vect (W ) and Y (−R) = W,

where

vect (W ) :=

(
−In̂ ⊗AT − Λ ⊗ In −

m∑
k=1

RT N̂T
k R−T ⊗NT

k

)−1 (
RT ĈT ⊗ CT

)
Ip.

According to the proof of Theorem 5.2, as long as span{X} ⊂ V and span{Y } ⊂ W, we
can ensure that the reduced system satisfies the necessary H2-optimality conditions.
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Hence, we have found an equivalent method which obviously extends IRKA to the
bilinear case; see Algorithm 2.

Algorithm 2. Bilinear IRKA (BIRKA)

Input: A, Nk, B, C, Â, N̂k, B̂, Ĉ
Output: Âopt, N̂opt

k , B̂opt, Ĉopt

1: while (not converged) do
2: RΛR−1 = Â, B̃ = B̂TR−T , C̃ = ĈR, Ñk = RT N̂T

k R−T

3: vect (V ) = (−Λ⊗ In − In̂ ⊗A−∑m
k=1 Ñ

T
k ⊗Nk)

−1(B̃T ⊗B)Im
4: vect (W ) = (−Λ⊗ In − In̂ ⊗AT −∑m

k=1 Ñk ⊗NT
k )−1(C̃T ⊗ CT )Ip

5: V = orth(V ), W = orth(W )

6: Â =
(
WTV

)−1
WTAV , N̂k =

(
WTV

)−1
WTNkV , B̂ =

(
WTV

)−1
WTB, Ĉ =

CV
7: end while
8: Âopt = Â, N̂opt

k = N̂k, B̂
opt = B̂, Ĉopt = Ĉ

Finally, we point out the equivalence between the optimality conditions (4.1) and
(4.5). For this, we need the following projection-based identity.

Lemma 5.3. Let V,W ∈ Rn×n̂ be matrices of full rank n̂.
(a) Let z ⊂ span{vect (V )}. Then (In̂ ⊗ V (WTV )−1WT

)
z = z.

(b) Let z ⊂ span{vect (W )}. Then zT
(
In̂ ⊗ V (WTV )−1WT

)
= zT .

Proof. By assumption, there exists x ∈ R
n·n̂ such that (s.t.)

(
In̂ ⊗ V (WTV )−1WT

)
z =

(
In̂ ⊗ V (WTV )−1WT

)
vect (V )x

= vect
(
V (WTV )−1WTV

)
x = vect (V )x = z.

The proof of the second statement is based on the exact same arguments.

Theorem 5.4. Assume Algorithm 2 converges. Then Âopt, N̂opt
k , B̂opt, Ĉopt

fulfill the necessary interpolation-based H2-optimality conditions.

Proof. Since the only difference in proving conditions (4.5)–(4.8) lies in using
statement (b) of Lemma 5.3 and the combination of both (a) and (b), respectively,
we will restrict ourselves to showing optimality condition (4.5):

IT
p

(
eie

T
j ⊗ Ĉopt

)(
−Λ⊗ In̂ − In̂ ⊗ Âopt −

m∑
k=1

ÑT
k ⊗ N̂opt

k

)−1 (
B̃T ⊗ B̂opt

)
Im

= IT
p

(
eie

T
j ⊗ CV

)
×
[(

In̂ ⊗ (WTV )−1WT
)(−Λ⊗ In − In̂ ⊗A−

m∑
k=1

ÑT
k ⊗Nk

)
(In̂ ⊗ V )

]−1

×
(
B̃T ⊗ (WTV )−1WTB

)
Im
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876 PETER BENNER AND TOBIAS BREITEN

= IT
p

(
eie

T
j ⊗ CV

)
×
[(

In̂ ⊗ (WTV )−1WT
)(−Λ⊗ In − In̂ ⊗A−

m∑
k=1

ÑT
k ⊗Nk

)
(In̂ ⊗ V )

]−1

× (In̂ ⊗ (WTV )−1WT
)

×
(
−Λ⊗ In − In̂ ⊗A−

m∑
k=1

ÑT
k ⊗Nk

)(
−Λ⊗ In − In̂ ⊗A−

m∑
k=1

ÑT
k ⊗Nk

)−1

×
(
B̃T ⊗B

)
Im

(5.3a)
= IT

p

(
eie

T
j ⊗ CV

)
×
[(

In̂ ⊗ (WTV )−1WT
)(−Λ⊗ In − In̂ ⊗A−

m∑
k=1

ÑT
k ⊗Nk

)
(In̂ ⊗ V )

]−1

× (In̂ ⊗ (WTV )−1WT
)(−Λ⊗ In − In̂ ⊗A−

m∑
k=1

ÑT
k ⊗Nk

)

× (In ⊗ V (WTV )−1WT
)(−Λ⊗ In − In̂ ⊗A−

m∑
k=1

ÑT
k ⊗Nk

)−1 (
B̃T ⊗B

)
Im

= IT
p

(
eie

T
j ⊗ CV

) (
In ⊗ (WTV )−1WT

)
×
(
−Λ⊗ In − In̂ ⊗A−

m∑
k=1

ÑT
k ⊗Nk

)−1 (
B̃T ⊗B

)
Im

= IT
p

(
eie

T
j ⊗ C

)(−Λ⊗ In − In̂ ⊗A−
m∑

k=1

ÑT
k ⊗Nk

)−1 (
B̃T ⊗B

)
Im.

Remark 5.4. Note that, analogously to the case of solving generalized Sylvester
and Lyapunov equations, respectively, it is also possible to construct the matrices
appearing in Algorithm 2 as the limit of an infinite series of linear IRKA type com-
putations. For this, in each iteration, one starts with

V 1
i = (−λiI −A)

−1
BB̃i,

and continues with

V j
i = (−λiI −A)

−1

(
m∑

k=1

NkV
j−1(Ñk)i

)
.

The actual projection matrix V is then given as V =
∑∞

j=1 V
j . A dual derivation

obviously yields the projection matrix W. At this point, the interpolatory interpre-
tation of the proposed algorithm is seen once more. The construction of each V j

corresponds in a way to the tangential interpolation framework appearing for linear
dynamical systems with multiple inputs and multiple outputs. Furthermore, similar
to the statement in Remark 5.2, another way of constructing the projection matrices
is given by the use of an iterative solver which again might be implemented with a
natural preconditioner determined by the simplified and underlying linear problem
which can be easily tackled by the iterative rational Krylov algorithm. Since the lat-
ter method is computationally more attractive than the Schur decomposition based
approach discussed in [7], the reformulation of Algorithm 1 into Algorithm 2 might
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turn out to be profitable for practicable computations and will be a topic of further
research.

Remark 5.5. Note that the numerical efficiency of both Algorithm 1 and Algo-
rithm 2 heavily depend on the number of iterations needed until the relative change
of the eigenvalues of the system matrix A approaches zero. As has already been
shown for the linear case (cf. [19]), the iterative rational Krylov algorithm (IRKA)
is a simplified Newton iteration where the Jacobian matrix is neglected. Obviously,
this means that there exist a lot of examples where both algorithms will not converge
at all. Nevertheless, recently there have been some first convergence results for sym-
metric state space systems; see [16]. However, at this point it seems very hard to
generalize those ideas to the bilinear case.

6. Numerical examples. In this section, we will now study several applications
of bilinear control systems and discuss the performance of the approaches proposed
above. As we already mentioned, the method of balanced truncation for bilinear
systems is connected to generalized controllability and reachability Gramians of the
underlying system, respectively. Hence, similar to the linear case, we expect this
method to yield reduced models with small relative H2-error as well and we will
thus use it for a comparison with our algorithms. However, due to the theoretical
equivalence of Algorithms 1 and 2, we will mainly report the results for the latter case.
Nevertheless, we remark that if iterative solvers are included in numerical simulations,
there might occur differences with respect to robustness and speed of convergence
which will be subject to further studies. However, here we computed the projection
matrices V and W by solving the large systems of linear equations explicitly instead
of using more sophisticated iterative techniques. Finally, all Lyapunov equations were
solved by the method proposed in [14] which allows for solving medium-sized systems.
All simulations were generated on an Intel Core i7 CPU 920, 8 MB cache, 12 GB
RAM, openSUSE Linux 11.1 (x86 64), MATLAB Version 7.11.0.584 (R2010b) 64-bit
(glnxa64).

6.1. An interconnected power system. The first application is a model for
two interconnected power systems which can be described by a bilinear system of state
dimension 17. The hydro unit as well as the steam unit each can be controlled by two
input variations resulting in a system with four inputs and three outputs. Since we
are only interested in the reduction process, we refer to [1] where a detailed derivation
of the dynamics can be found. We have successively reduced the original model to
systems varying from n̂ = 1, . . . , 16 state variables. A comparison of the associated
relative H2-norm of the error system between our approaches and the method of
balanced truncation is shown in Figure 6.1.

As one can see, except for the cases n̂ = 2, we always obtain better results with
the new technique. The initialization of Algorithms 1 and 2 is done completely at
random, using arbitrary reduced order models, interpolations points, and tangential
directions, respectively. For both algorithms we use the same initialization and, as
shown in Figure 6.1, obtain the exact same results. This underscores the theoretical
equivalence and thus justifies concentrating on Algorithm 2. As indicated for system
dimensions n̂ = 5, 10, 14, the algorithm does not always converge in a few steps; see
Figure 6.2. On the other hand, we see that the relative H2-error stagnates very fast.
Hence, the stopping criterion, which is chosen to be that the relative change of the
norm of the poles of the reduced system becomes smaller than

√
ε, where ε denotes

machine precision, might be too restrictive. Again, finding appropriate criteria seems
to be a reasonable topic of further research.
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878 PETER BENNER AND TOBIAS BREITEN

Fig. 6.1. Power system. Comparison of relative H2-error between balanced truncation and
B-IRKA.

Fig. 6.2. Power system. Convergence history of the relative H2-error.

6.2. Fokker–Planck equation. The second example is an application from
stochastic control and was already discussed in [20]. Let us consider a dragged
Brownian particle whose one-dimensional motion is described by the stochastic dif-
ferential equation

dXt = −∇V (Xt, t)dt+
√
2σdWt,

with σ = 2
3 and V (x, u) = W (x, t) + Φ(x, ut) = (x2 − 1)2 − xu − x. As mentioned in

[20], we might alternatively consider the underlying probability distribution function

ρ(x, t)dx = P [Xt ∈ (x, x + dx)]
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Fig. 6.3. Fokker–Planck equation. Comparison of relative H2-error between balanced truncation
and B-IRKA.

which is described by the Fokker–Planck equation,

∂ρ

∂t
= σΔρ+∇ · (ρ∇V ), (x, t) ∈ (a, b)× (0, T ],

0 = σ∇ρ+ ρ∇B, (x, t) ∈ {a, b} × [0, T ],

ρ0 = ρ, (x, t) ∈ (a, b)× 0.

After a semidiscretization resulting from a finite difference scheme consisting of 500
nodes in the interval [−2, 2], we obtain a single-input single-output bilinear control
system, where we choose the output matrix C to be the discrete characteristic function
of the interval [0.95, 1.05]. Since we only pointed out the most important parameters of
the model, we once more refer to [20] for gaining a more detailed insight into this topic.
In Figure 6.3, we again compare the relative H2-errors between balanced truncation
and B-IRKA for varying system dimensions. We observe convergence for all reduced
system dimensions and our new method clearly outperforms balanced truncation.

6.3. Viscous Burgers equation. Next, let us consider the viscous Burgers
equation

∂v

∂t
+ v

∂v

∂x
= ν

∂2v

∂x2
, (x, t) ∈ (0, 1)× (0, T ),

subject to initial and boundary conditions

v(x, 0) = 0, x ∈ [0, 1], v(0, t) = u(t), v(1, t) = 0, t ≥ 0.

Introduced in [9], after a spatial semidiscretization of this nonlinear partial differen-
tial equation using k nodes in a finite difference scheme, we end up with an ordinary
differential equation including a quadratic nonlinearity. As is well known, the Car-
leman linearization technique (see, e.g., [27]) allows to approximate this system by
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880 PETER BENNER AND TOBIAS BREITEN

Fig. 6.4. Burgers equation. Comparison of relative H2-error between balanced truncation and
B-IRKA.

a bilinearized system of dimension n = k + k2. The simulations are generated with
ν = 0.1 and k = 30. The measurement vector C is chosen to yield the spatial average
value for the quantity v. As shown in Figure 6.4, in all cases the relative H2-error
for the systems constructed by B-IRKA is smaller than that resulting from balanced
truncation. Moreover, once more there are no convergence problems at all although
we again use random data for the initialization.

6.4. A heat transfer model. Finally, we study another standard bilinear test
example resulting from a boundary controlled heat transfer system; see, e.g., [8].
Formally, the dynamics are described by the heat equation subject to Dirichlet and
Robin boundary conditions, i.e.,

xt = Δx in (0, 1)× (0, 1),

n · ∇x = 0.75 · u1,2,3(x− 1) on Γ1,Γ2,Γ3,

x = u4 on Γ4,

where Γ1,Γ2,Γ3, and Γ4 denote the boundaries of Ω. Hence, a spatial discretization
using k2 grid points now yields a bilinear system of dimension n = k2, with four inputs
and one output, chosen to be the average temperature on the grid. In order to show
that our algorithm also works in large-scale settings, we implement the above system
with 10000 grid points. The results for reduced system dimensions n̂ = 2, . . . , 30 are
given in Figure 6.5 and demonstrate that we can improve the approximation quality
with regard to the H2-norm with a numerically efficient interpolation-based frame-
work. Moreover, in order to show the superiority of the new approach we further plot
the results for the reduced systems obtained by IRKA as well as those generated by the
new interpolation framework together with some clever, but nonoptimal interpolation
points. This means, we use real equidistributed and Chebyshev interpolations points
between the smallest and largest real part of the mirror images of the eigenvalues of
the system matrix A and stop Algorithm 2 after the first iteration step. However,
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Fig. 6.5. Heat transfer model. Comparison of relative H2-error between balanced truncation
and B-IRKA.

the relative H2-error is computed only when the corresponding reduced systems are
stable, leading to positive definite solutions of the Gramians of the error systems.
Moreover, as can be seen in Figure 6.5, the linear iterative rational Krylov algorithm
converges only for reduced system dimensions up to n̂ = 18 at all.

Since so far most bilinear reduction methods have been evaluated by means of
comparing the relative error for outputs corresponding to typical system inputs, we
compute the time response to an input of the form uk(t) = cos(kπt), k = 1, 2, 3, 4.
The results are plotted in Figure 6.6, where we test the performance for an original

Fig. 6.6. Heat transfer model. Comparison of relative error to an input of the form uk(t) =
cos(kπt) for a bilinear system of order n = 2500 between balanced truncation and B-IRKA for
varying scaling factors γ.
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bilinear system of order n = 2500 and different scaling values γ. This means, the
matrices Nk and B, respectively, are multiplied with γ, while the input signal u(t)
is replaced with 1

γu(t). Similar experiments are studied in [6]. Interestingly enough,
while the convergence results for B-IRKA do not change significantly, the relative
error is smaller for smaller values of γ. However, all tested values γ can certainly
compete with the approximation quality obtained from balanced truncation.

7. Conclusions. In this paper, we have studied the problem of H2-model reduc-
tion for bilinear systems. Based on an existing generalization of the linear H2-norm,
we have derived first-order necessary conditions for optimality. As has been shown,
these can be interpreted as an extension of those obtained for the linear case and
lead to a generalization of the iterative rational Krylov algorithm. We have further
proposed an equivalent iterative procedure that requires solving certain generalized
Sylvester equations. The efficiency of our approaches has been evaluated by several
bilinear test examples for which they yield better results than the popular method
of balanced truncation. Finally, it was shown that the new method can addition-
ally compete when the approximation quality is measured in terms of the transient
response in time domain. As a topic of further and ongoing research, we currently
investigate the effect of choosing reasonable initial data in order to improve conver-
gence rates of the algorithms as well as efficient solution techniques for the special
generalized Sylvester equations one has to solve in each iteration step.

Appendix A. Product rule for matrices with Kronecker structure.

Lemma A.1. Let C(x) ∈ R
p×n, A(y), Nk ∈ Rn×n, and B ∈ Rn×m, with x, y ∈ R.

Let

L(y) =
(
−A(y)⊗ I − I ⊗A(y)−

m∑
k=1

Nk ⊗Nk

)

and assume that C and A are differentiable with respect to x and y. Then,

∂

∂x

[
(Ip)T (C(x) ⊗ C(x))L(y)−1(B ⊗B)Im

]
= 2 · (Ip)T

(
∂

∂x
C(x) ⊗ C(x)

)
L(y)−1(B ⊗ B)Im

and

∂

∂y

[
(Ip)T (C(x) ⊗ C(x))L(y)−1(B ⊗B)Im

]
= 2 · (Ip)T (C(x) ⊗ C(x))L(y)−1

(
∂

∂y
A(y)⊗ I

)
L(y)−1(B ⊗B)Im.

Proof. For the first part, note that(
−A(y)⊗ I − I ⊗A(y)−

m∑
k=1

Nk ⊗Nk

)−1

(B ⊗B)Im := vect (P (y))

is the solution of the Lyapunov equation

A(y)P (y) + P (y)A(y)T +
m∑

k=1

NkP (y)NT
k +BBT = 0.
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Hence, we can conclude that P (y) = P (y)T . Next, using (2.6), we observe that

(Ip)T
(
C(x)⊗ ∂

∂x
C(x)

)
vect (P (y)) = vect

((
∂

∂x
C(x)TC(x)

))T

vect (P (y))

= tr

(
C(x)T

∂

∂x
C(x)P (y)

)
= tr

(
∂

∂x
C(x)P (y)C(x)T

)

= tr

(
C(x)P (y)T

∂

∂x
C(x)T

)
= tr

(
C(x)P (y)

∂

∂x
C(x)T

)

= tr

((
∂

∂x
C(x)T

)
C(x)P (y)

)
= vect

((
C(x)T

∂

∂x
C(x)

))T

vect (P (y))

= (Ip)T
(

∂

∂x
C(x)⊗ C(x)

)
vect (P (y)) .

The last equation implies that we can interchange the derivatives with respect to
x. However, the assertion now follows trivially. For the second part, recall that we

have ∂
∂y

(
A(y)−1

)
= −A(y)−1 ∂A(y)

∂y A(y)−1. Furthermore, with Q(x, y) we denote the
solution of the dual Lyapunov equation

A(y)TQ(x, y) +Q(x, y)A(y) +

m∑
k=1

NT
k Q(x, y)Nk + C(x)TC(x) = 0.

Hence, with 2.6, we end up with

(vect (Q(x, y)))
T

(
I ⊗ ∂

∂y
A(y)

)
vect (P (y))

= (vect (Q(x, y)))T vect

(((
∂

∂y
A(y)

)
P (y)

))
= tr

(
Q(x, y)T

(
∂

∂y
A(y)

)
P (y)

)

= tr

(
P (y)T

(
∂

∂y
A(y)T

)
Q(x, y)

)
= tr

((
∂

∂y
A(y)T

)
Q(x, y)TP (y)

)

= tr

((
Q(x, y)

∂

∂y
A(y)

)T

P (y)

)
=

(
vect

((
Q(x, y)

∂

∂y
A(y)

)))T

vect (P (y))

=

((
∂

∂y
A(y)T ⊗ I

)
vect (Q(x, y))

)T

vect (P (y))

= (vect (Q(x, y))T
(

∂

∂y
A(y)⊗ I

)
vect (P (y)) .

Again, the last line proves the second statement.
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[7] P. Benner, M. Köhler, and J. Saak, Sparse-dense Sylvester Equations in H2-model Order
reduction, MPI Magdeburg Preprints MPIMD/11-11, 2011. Available online from http://
www.mpi-magdeburg.mpg.de/preprints/2011/MPIMD11-11.pdf.

[8] P. Benner and J. Saak, Linear-Quadratic Regulator Design for Optimal Cooling of Steel Pro-
files, Technical Report SFB393/05-05, Sonderforschungsbereich 393 Parallele Numerische
Simulation für Physik und Kontinuumsmechanik, TU Chemnitz, Chemnitz, Germany,
2005. Available online from http://www.tu-chemnitz.de/sfb393.

[9] T. Breiten and T. Damm, Krylov subspace methods for model order reduction of bilinear
control systems, Systems Control Lett., 59 (2010), pp. 443–450.

[10] C. Bruni, G. DiPillo, and G. Koch, On the mathematical models of bilinear systems, Auto-
matica, 2 (1971), pp. 11–26.

[11] A. Bunse-Gerstner, D. Kubalinska, G. Vossen, and D. Wilczek, Necessary optimality
conditions for H2-norm optimal model reduction, preprint, 2007.

[12] A. Bunse-Gerstner, D. Kubalinska, G. Vossen, and D. Wilczek, h2-norm optimal model
reduction for large scale discrete dynamical MIMO systems, J. Comput. Appl. Math., 233
(2010), pp. 1202–1216.

[13] M. Condon and R. Ivanov, Krylov subspaces from bilinear representations of nonlinear sys-
tems, COMPEL, 26 (2007), pp. 11–26.

[14] T. Damm, Direct methods and ADI-preconditioned Krylov subspace methods for generalized
Lyapunov equations, Numer. Linear Algebra Appl., 15 (2008), pp. 853–871.

[15] L. Feng and P. Benner, A note on projection techniques for model order reduction of bilinear
systems, in Numerical Analysis and Applied Mathematics, AIP Conference Proceedings
936, 2007, pp. 208–211.

[16] G. Flagg, C. Beattie, and S. Gugercin, Convergence of the iterative rational Krylov algo-
rithm, Systems Control Lett., 61 (2012), pp. 688–691.

[17] G. Flagg, On the optimal approximation of bilinear systems in an interpolation framework,
2011. Talk given at the ICIAM 2011, Vancouver, Canada.

[18] K. Gallivan, A. Vandendorpe, and P. Van Dooren, Model reduction of MIMO systems via
tangential interpolation, SIAM J. Matrix Anal. Appl., 26 (2004), pp. 328–349.

[19] S. Gugercin, A. Antoulas, and S. Beattie, H2 model reduction for large-scale dynamical
systems, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 609–638.
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