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Abstract. In this work, we investigate a model order reduction scheme for polynomial paramet-
ric systems. We begin with defining the generalized multivariate transfer functions for the system.
Based on this, we aim at constructing a reduced-order system, interpolating the defined generalized
transfer functions at a given set of interpolation points. Furthermore, we provide a method, inspired
by the Loewner approach for linear and (quadratic-)bilinear systems, to determine a good-quality
reduced-order system in an automatic way. We also discuss the computational issues related to
the proposed method and a potential application of CUR matrix approximation in order to further
speed-up simulations of reduced-order systems. We test the efficiency of the proposed methods via
several numerical examples.
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1. Introduction. An accurate solution of time-dependent partial differential
equations (PDEs), or ordinary differential equations (ODEs), or a combination of
both requires a fine spatial discretization of the governing equations. This leads to a
large number of equations, thus a high-dimensional system. This inevitably imposes
a huge burden on computational resources, and more often than not, it is almost

impossible to make use of such high-dimensional systems in engineering problem like,
e.g., optimization or control. A way to resolve this issue is to construct a reduced-
order system or a low-dimensional model, replicating the important dynamics of the
original system.

In this paper, we focus on parametric polynomial systems of the form:

(1.1)

E(p)ẋ(t,p) = A(p)x(t,p) +

d∑

ξ=2

Hξ(p)x
ξ (t,p) +

d∑

η=1

Nη(p) (u(t)⊗ xη (t,p))

+B(p)u(t), x(0,p) = 0,

y(t,p) = C(p)x(t,p),

where E(p), A(p) ∈ R
n×n, B(p) ∈ R

n×m, C(p) ∈ R
q×n, Hξ(p) ∈ R

n×nξ

, ξ ∈
{2, . . . , d}, Nη(p) ∈ R

n×m·nη

, η ∈ {1, . . . , d}; the state, input and output vectors
are x(t) ∈ R

n, u(t) ∈ R
m and y(t) ∈ R

q, respectively; x ξ := x⊗ · · · ⊗ x︸ ︷︷ ︸
ξ−times

and the

parameter vector is denoted p ∈ R
np . Since the system (1.1) has polynomial terms of

the order up to d, we refer to it as a d-th order polynomial system. The system (1.1)
lies in n-dimensional Euclidean space and generally, n is in O

(
105
)
−O

(
106
)
. Due to

the computational burden mentioned above, we seek to construct a low-dimensional
system, having the same structure as (1.1), which captures the dynamics of the original
system (1.1) for any given input u(t) and parameter p in a desired domain.
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Many of the widely used methods in model order reduction (MOR) to construct
low-dimensional models for (parametric) nonlinear systems are based on snapshots.
This means that the state vector x at time t needs to be evaluated for a given input
and parameter. In this category, proper orthogonal decomposition is arguably the
most favored method. This relies on determining the dominant subspace for the state
vectors through singular value decomposition (SVD) of the collected snapshots, which
is generally followed by computing a reduced-order system via Galerkin projection.
For more details, we refer to [17]. For nonlinear systems, it is often combined with
hyper-reduction methods such as EIM [6] and DEIM [13] to further reduce computa-
tional costs related to the reduced nonlinear terms. Another widely known method in
this category is the trajectory piecewise linear method, in which a nonlinear system
is approximated by a weighted sum of linearized systems (linearized along the trajec-
tory). Then, each linear system is reduced using popular methods for linear systems
such as balanced truncation or iterative methods, see, e.g. [3, 9, 12, 18]. Moreover,
reduced basis methods, which are also snapshots-based methods, have been success-
fully applied to several nonlinear parametric systems, see, e.g., [25]. Although these
methods have been very successful, they share a common drawback of being depen-
dent on snapshots, or in other words, simulations for given inputs and parameters.
Hence, it may become harder to obtain a reduced-order system to use e.g., in control.

In this work, we rather focus on MOR methods, allowing us to determine reduced-
order systems without any prior knowledge of inputs. There are, broadly speaking, two
types of such methods, namely interpolation-based approaches and balanced trunca-
tion. Recently, there have been significant efforts to extend these methods from linear
to special classes of non-parametric polynomial systems, namely bilinear systems, and
quadratic-bilinear systems, see, e.g., [4, 7, 8, 10, 11, 15]. For parametric nonlinear
systems, there has been a very recent work for bilinear parametric systems [26], where
the construction of an interpolating reduced system has been proposed for a given set
of interpolation points, and such a problem for quadratic-bilinear parametric systems
still remains to be studied.

In this paper, we investigate an interpolation-based MOR scheme to obtain a
reduced-order system for the parametric system (1.1). For this, we first define gener-
alized transfer functions for the system (1.1). Based on this, we aim at constructing a
reduced-order system such that its generalized transfer functions interpolate those of
the original system at a given set of interpolation points for the frequency and param-
eters. Furthermore, we propose a scheme, inspired by the Loewner approach for linear
and (quadratic-)bilinear systems [4, 15], thus leading to an algorithm that allows us to
construct a good quality reduced-order system in an automatic fashion. Furthermore,
we discuss related computational aspects and an application of pseudo-skeletal matrix
approximation, the so-called CUR, to further reduce the computational complexity
related to the reduced nonlinear terms.

The remaining structure of the paper is as follows. In the following section, we
discuss polynomialization of nonlinear systems and recap some basic concepts from
tensor algebra. In Section 3, we present the generalized transfer functions corre-
sponding to (1.1) for a fixed parameter vector and discuss the construction of an
interpolating reduced-order system using Petrov-Galerkin projection. Based on this,
we propose an algorithm which allows us to determine a good quality reduced-order
system in an automatic fashion. In Section 4, we discuss the related computational
aspects and investigate an application of CUR matrix approximation to further reduce
the complexity of the reduced nonlinear terms. In the subsequent section, we extend
the proposed method to polynomial parametric systems. In Section 6, we illustrate
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the efficiency of the proposed algorithms by means of two benchmark problems and
their variants. We conclude the paper with a summary of our contributions and future
perspectives.

We make use of the following notation in the paper:
• orth(): it returns an orthonormal basis of a given matrix.
• The Hadamard product and Kronecker product are denoted by ‘◦’ and ‘⊗’,
respectively.

• Using MATLAB® notation, A(:, 1:r) denotes the first r columns of the matrix
A, and A(i, j) is the (i, j)th element of the matrix A.

• Im is the identity matrix of size m×m.
• V ξ is a short-hand notation for V ⊗ · · · ⊗ V︸ ︷︷ ︸

ξ−times

, where V is a vector/matrix.

2. Polynomialization of Nonlinear Systems and Tensor Algebra. In this
section, we recap two topics. We begin with the polynomialization of nonlinear sys-
tems.

2.1. Polynomialization of nonlinear systems. A class of nonlinear systems,
containing nonlinear terms such as exponential, trigonometric, rational, can be rewrit-
ten as a polynomial system (1.1), by introducing some auxiliary variables. This pro-
cess is very closely related to the McCormick relaxation, used in nonconvex opti-
mization [24]. In the recent past, due to advances in the methodologies for MOR
for quadratic-bilinear (QB) systems, there has been a substantial focus on rewriting a
nonlinear system into the QB form. However, in the subsection, we will illustrate with
an example how a polynomialization of a nonlinear system is done by introducing less
auxiliary variables as compared to its quadratic-bilinearization.

An illustrative example. Let us consider the following one-dimensional non-
linear ODE:

ẋ(t) = −x(t)− x3(t) · e−x(t) + u(t),(2.1a)

y(t) = x(t).(2.1b)

Now, we seek to rewrite the system (2.1) as a polynomial system via polynomializa-
tion. For this, we introduce an auxiliary variable as z(t) := e−x(t) and derive the
corresponding differential equation. That is

ż(t) = −e−x(t)ẋ(t) = −z(t)
(
−x(t)− x3(t)z(t) + u(t)

)
.

Thus, we can equivalently write the input-output system (2.1) as follows:
[
ẋ(t)
ż(t)

]
=

[
−x(t)
0

]
+

[
0

x(t)z(t)

]
−

[
x3(t)z(t)

0

]
+

[
0

x3(t)z2(t)

]
−

[
0

z(t)

]
u(t) +

[
u(t)
0

]
,

y(t) =
[
1 0

] [x(t)
z(t)

]
.

As can be seen, the system (2.1), which has cubic exponential nonlinearity, can be
rewritten into a polynomial system (3.1) of order 5 by introducing a single variable.
However, if one aims at rewriting the system into the QB form, then we need to
introduce at least 3 more auxiliary variables, which somehow also makes the resulting
system even more complicated, hence, also impeding its model reduction. Therefore,
it is advantageous to work with the polynomial system of order 5 and thus, we aim
at reducing polynomial systems with MOR schemes for polynomial systems.
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Figure 2.1: Illustration of a third-order tensor.

Furthermore, we emphasis that it still remains an open problem how many aux-
iliary variables are required minimally in order to rewrite a smooth nonlinear system
into a polynomial system, which demands further research. However, we mention that
there has some been some initial work in [16] in this direction.

2.2. Tensor Algebra. As the nonlinear part of the considered systems are writ-
ten in Kronecker (tensor) format, we will need a number of tensor based calculations
in the reminder of this paper. We will review or introduce the necessary concepts in
this subsection. A tensor is a multidimensional or an N -way array. An Nth-order
tensor X ∈ R

n1×···×nN is an N -dimensional array with entries X (i1, . . . , iN ) ∈ R,
where ij ∈ {1, . . . , nj}, j ∈ {1, . . . , N}. For illustration, in Figure 2.1, we present an
illustration of third-order tensor. An important concept of a tensor is the so-called
matricization. This allows us to unfold a tensor into a matrix, which plays a crucial
role in tensor computations. For an Nth order tensor, there are N different ways to
unfold as a matrix. In the following, we define mode-n matricization of a tensor X .

Definition 2.1 (e.g., [20]). The mode-n matricization of a tensor X ∈ R
n1×···×nN ,

denoted by X(n), satisfies the following mapping:

X(n)(in, j) = X (i1, . . . , iN ),

where j = 1 +
N∑

k=1,k 6=n

(ik − 1)Jk with Jk =
k−1∏

m=1,m 6=n

nm.

Like matrix-vector and matrix-matrix products, tensor-tensor, tensor-matrix and
tensor-vector products can be defined; however, the notation becomes quite cumber-
some. In the following, we present a connection between the mode-n matricization
and Kronecker products. For this, we define the following tensor-matrix product:

Y = X ×1 A
(1) ×2 A

(2) · · · ×N A(N),

where A(l) ∈ R
Jl×nl . Then, we have the following relation:

(2.2) Y(n) = A(n)X(n)

(
A(N) ⊗ · · · ⊗A(n+1) ⊗A(n−1) ⊗A(1)

)T
.

Of particular interest of the paper, we explicitly note down the results for tensor-vector
products as well. For this, let us define the following product:

(2.3) Y = X ×̄1a1×̄2 · · · ×̄MaM ,
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where M ≤ N and am ∈ R
jm , m ∈ {1, . . . ,M}. Then, using [20, Prop. 3.7], we define

(2.4) Y (n) = aTnX(n) (aM ⊗ · · · ⊗ an+1 ⊗ an−1 ⊗ · · · ⊗ a1) , n ∈ {1, . . . ,M}.

Furthermore, we consider a special case, which is very useful later in the paper, that
is when N = M . In this case, the quantity

X ×̄1a1×̄2 · · · ×̄NaN =: Ξ

is a scalar. Hence, using (2.4), we obtain the following relation:
(2.5)

aT1 X(1) (aN ⊗ · · · ⊗ a2) = aT2 X(2) (aN ⊗ · · · ⊗ a3 ⊗ a1) = · · ·

= aTNX(N) (aN−1 ⊗ · · · ⊗ a1) .

For further details on tensor concepts such as tensor-matrix, and tensor-vector mul-
tiplications, and matricization, we refer readers to [20] and references therein.

3. Construction of Interpolating Reduced-Order Systems. In this sec-
tion, we discuss the construction of interpolating reduced-order systems. For simplic-
ity, we begin with non-parametric polynomial systems as follows:

(3.1)
ẋ(t) = Ax(t) +

d∑

ξ=2

Hξx
ξ (t) +

d∑

η=1

Nη (u(t)⊗ xη (t)) +Bu(t), x(0) = 0,

y(t) = Cx(t),

where x(t) ∈ R
n, u(t) ∈ R

m and y(t) ∈ R
q are state, input and output vectors re-

spectively, and all other matrices are constants and are of appropriate size. Moreover,
the system (3.1) is referred to as a single-input single-output (SISO) system when
q = m = 1; otherwise, it is referred to as a multi-input multi-output system (MIMO).

3.1. Reduced-order modeling for SISO systems. We begin with consid-
ering SISO polynomial systems (3.1). As a first step towards developing a MOR
scheme for the system, we aim at defining the generalized multivariate transfer func-
tions. Following the steps as shown in [11] for QB systems, we write the Volterra
series corresponding to the system (3.1) as follows:

(3.2) x(t) =

∫ t

0

eAσ1Bu(tσ1
)dσ1 +

d∑

ξ=2

∫ t

0

eAσ1Hξx
ξ (tσ1

)dσ1

+

∫ t

0

d∑

η=1

eAσ1Nη x ξ (tσ1
) u(tσ1

)dσ1,

where tσ1
:= t− σ1. The above equation also allows us to express x(tσ1

) as follows:

(3.3) x(tσ1
) =

∫ tσ1

0

eAσ2Bu(tσ1
−σ2)dσ2 +

d∑

ξ=2

∫ tσ1

0

eAσ2Hξx
ξ (tσ1

−σ2)dσ2

+

d∑

η=1

∫ tσ1

0

eAtσ2Nη xη (tσ1
−σ2) u(tσ1

−σ2)dσ2.
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Substituting the expression in (3.3) for x(tσ1
) in (3.2) and multiplying by C yields

y(t) =

∫ t

0

CeAσ1Bu(tσ1
)dσ1

+

d∑

ξ=2

∫ t

0

∫ tσ1

0

· · ·

∫ tσ1

0︸ ︷︷ ︸
ξ−times

CeAσ1Hξ

(
eAσ2B ⊗ · · · ⊗ eAσξ+1B

)
dσ1dσ2 · · · dσξ+1

+

d∑

η=1

∫ t

0

∫ tσ1

0

· · ·

∫ tσ1

0︸ ︷︷ ︸
η−times

CeAσ1Nη

(
eAσ2B ⊗ · · · ⊗ eAση+1B

)

× (u(tσ1
)u(tσ1

− σ2) · · ·u(tσ1
− ση+1)) dσ1dσ2 · · · dση+1 + · · · .

As the above Volterra series, corresponding to the system (3.1), is cumbersome and
contains infinitely many terms, we consider only the leading kernels of the series,
which are as follows:

fL(t1) := CeAt1B,(3.4a)

f
(ξ)
H (t1, . . . , tξ+1) := CeAt1Hξ

(
eAt2B ⊗ · · · ⊗ eAtξ+1B

)
,(3.4b)

f
(η)
N (t1, . . . , tη+1) := CeAt1Nη

(
eAt2B ⊗ · · · ⊗ eAtη+1B

)
,(3.4c)

where ξ ∈ {2, . . . , d} and η ∈ {1, . . . , d}. Furthermore, taking the multivariate Laplace
transform (see, e.g., [27]) of the above kernels, we get the frequency-domain represen-
tations of the kernels as follows:

FL(s1) := L(fL) = CΦ(s1)B,(3.5a)

F
(ξ)
H (s1, . . . , sξ+1) := L(f

(ξ)
H ) = CΦ(sξ+1)Hξ (Φ(sξ)B ⊗ · · · ⊗ Φ(s1)B) ,(3.5b)

F
(η)
N (s1, . . . , sη+1) := L(f

(η)
N ) = CΦ(sη+1)Nη (Φ(sη)B ⊗ · · · ⊗ Φ(s1)B) ,(3.5c)

where Φ(s) = (sIn−A)−1 is the so-called state transition matrix, and L(·) denotes the
multivariate Laplace transform. In the above, we have assumed that the mass matrix
in front of ẋ(t) in (3.1) is E = In; however, one can also perform the above algebra
to derive the multivariate transfer function for E 6= In but invertible. In this case,
we can also obtain the multivariate transfer functions as in (3.5), where the matrix
Φ(s) will be (sE−A)−1 instead of (sI−A)−1. In the rest of the paper, we assume that
the matrix E is an invertible matrix. We aim at constructing reduced-order systems,
having a similar structure as in (3.1), as follows:

(3.6)
Ê ˙̂x(t) = Âx̂(t) +

d∑

ξ=2

Ĥξx̂
ξ (t) +

d∑

η=1

N̂η (u(t)⊗ x̂η (t)) + B̂u(t), x̂(0) = 0,

ŷ(t) = Ĉx̂(t),

where x̂(t) ∈ R
r, u(t) ∈ R and ŷ(t) ∈ R are reduced state, input and output vectors,

respectively with r ≪ n, and all other matrices are of appropriate size. To that end,
our goal is to construct reduced-order systems (3.6) using Petro-Galerkin projection
such that the multivariate transfer functions, as given in (3.5), of the original system
match with those of the reduced-order system at a given set of interpolation points.
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For this, we essentially require projection matrices V ∈ R
n×r and W ∈ R

n×r, thus
leading to the system matrices of (3.6) as follows:

(3.7)
Ê = WTAV, Â = WTAV, Ĥξ = WTHξV

ξ , ξ ∈ {2, . . . , d},

B̂ = WTB, Ĉ = CV, N̂η = WTNηV
η , η ∈ {1, . . . , d}

with x(t) ≈ V x̂(t). Clearly, the choice of the matrices V and W must ensure the
desired interpolating properties of the original and reduced-order systems and also
determines the quality of the reduced-order system. Thus, in the following theorem,
we reveal the construction of the projection matrices V and W , yielding an interpo-
lating reduced-order system.

Theorem 3.1. Consider a SISO system as given in (3.1). Let σi and µi, i ∈
{1, . . . , r̃}, be interpolation points such that (sE−A) is invertible for all s = {σi, µi},
i ∈ {1, . . . , r̃}. Moreover, let the projection matrices V and W be as follows:

VL = range (Φ(σ1)B, . . . ,Φ(σr̃)B) ,

VN =

d⋃

η=1

range (Φ(λη+1)Nη (Φ(λη)B ⊗ · · · ⊗ Φ(λ1)B)) ,

VH =

d⋃

ξ=2

range (Φ(λξ+1)Hξ (Φ(λξ)B ⊗ · · · ⊗ Φ(λ1)B)) ,

WL = range
(
Φ(µ1)

TCT , . . . ,Φ(µr̃)
TCT

)
,

WN =

d⋃

η=1

range
(
Φ(λ1)

T (Nη)(2)
(
Φ(λη)B ⊗ · · · ⊗ Φ(λ2)B ⊗ Φ(β)TCT

))
,

WH =

d⋃

ξ=2

range
(
Φ(λ1)

T (Hξ)(2)
(
Φ(λξ)B ⊗ · · · ⊗ Φ(β)TCT

))
,

V = range (VL, VN , VH) ,

W = range (WL,WN ,WH) ,

where Φ(s) := (sE−A)−1, λi ∈ {σ1, . . . , σr̃}, i ∈ {1, . . . , d+1}, β ∈ {µ1, . . . , µr̃}, and

(Hξ)(2) ∈ R
n×nξ

and (Nη)(2) ∈ R
n×m·nξ

are, respectively, the mode-2 matricizations

of the (ξ+1)-way tensor Hξ ∈ R
n×···×n and (η+2)-way tensor N η ∈ R

n×···×n whose

mode-1 matricizations are Hξ and Nη, respectively. Assume V and W are of full

column rank. If a reduced-order system is computed as shown in (3.7) using the

matrices V and W , then the reduced-order system satisfies the following interpolation

conditions:

FL(λ1) = F̂L(λ1),(3.9a)

FL(β) = F̂L(β),(3.9b)

F
(η)
N (λ1, . . . , λη+1) = F̂

(η)
N (λ1, . . . , λη+1),(3.9c)

F
(η)
N (λ1, . . . , λη, β) = F̂

(η)
N (λ1, . . . , λη, β),(3.9d)

F
(ξ)
H (λ1, . . . , λξ+1) = F̂

(ξ)
H (λ1, . . . , λξ+1),(3.9e)

F
(ξ)
H (λ1, . . . , λη, β) = F̂

(ξ)
H (λ1, . . . , λη, β).(3.9f)
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Proof. The relations, given in (3.9a) and (3.9b) follows directly from the linear
case, see, e.g., [3]. Therefore, we omit their proofs for the sake of brevity of the paper.
However, for the rest of the proof, we note down intermediate results, which can be
obtained while proving (3.9a) and (3.9b):

V Φ̂(λ1)B̂ = Φ(λ1)B, λ1 ∈ {σ1, . . . , σr̃}(3.10a)

WΦ(β)T Ĉ = Φ(β)TCT , β ∈ {µ1, . . . , µr̃},(3.10b)

where Φ(s) = (sE − A)−1 and Φ̂(s) = (sÊ − Â)−1B̂. Now, we focus on the relation
(3.9c). We begin with

V Φ̂(λη+1)N̂η

(
Φ̂(λη)B̂ ⊗ · · · ⊗ Φ̂(λ1)B̂

)

= V Φ̂(λη+1)W
TNηV

η

(
Φ̂(λη)B̂ ⊗ · · · ⊗ Φ̂(λ1)B̂

)

(
∵ N̂η = WTNηV

η

)

= V Φ̂(λη+1)W
TNη

(
V Φ̂(λη)B̂ ⊗ · · · ⊗ V Φ̂(λ1)B̂

)

= V Φ̂(λη+1)W
TNη (Φ(λη)B ⊗ · · · ⊗ Φ(λ1)B)

(using (3.10a))

= V Φ̂(λη+1)W
TΦ(λη+1)

−1 Φ(λη+1)Nη (Φ(λη)B ⊗ · · · ⊗ Φ(λ1)B)︸ ︷︷ ︸
∈V(

introduction of In = Φ(λη+1)
−1Φ(λη+1)

)

= V Φ̂(λη+1)W
TΦ(λη+1)

−1V z,(3.11)

where the vector z is such that V z = Φ(λη+1)Nη (Φ(λη)B ⊗ · · · ⊗ Φ(λ1)B). Addi-
tionally, we have

Φ̂(s)WTΦ(s)−1V = (sÊ − Â)−1WT (sE −A)V

= (sÊ − Â)−1(sWTEV −WTAV ) = Ir.

Substituting the above relation in (3.11) and pre-multiplying with C yields the relation
(3.9c). Similarly, we can prove the relation (3.9e). Next, we focus on the relation
(3.9d). We know that

N̂η = WTNη V η .

Hence, using (2.2), we obtain

(3.12)
(
N̂η

)
(2)

= V T (Nη)(2)

(
V

η−1

⊗W

)
,

where
(
N̂η

)
(2)

is the mode-2 matricization of the tensor N̂ η whose mode-1 matri-

cization is N̂η. With the relation (3.12), we now consider

W Φ̂(λ1)
T
(
N̂η

)
(2)

(
Φ̂(λη)B̂ ⊗ · · · ⊗ Φ(λ2)B̂ ⊗ Φ̂(β)T ĈT

)

= W Φ̂(λ1)
TV T (Nη)(2)

(
V

η−1

⊗W

)(
Φ̂(λη)B̂ ⊗ · · ·
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⊗Φ(λ2)B̂ ⊗ Φ̂(β)T ĈT
)

(using (3.12))

= W Φ̂(λ1)
TV T (Nη)(2)

(
V Φ̂(λη)B̂ ⊗ · · · ⊗ V Φ̂(λ2)B̂ ⊗W Φ̂(β)T ĈT

)

= W Φ̂(λ1)
TV T (Nη)(2)

(
sΦ(λη)B ⊗ · · · ⊗ Φ(λ2)B ⊗ Φ(β)TCT

)

(using (3.10))

= W Φ̂(λ1)
TV TΦ(λ1)

−T

× Φ(λ1)
T (Nη)(2)

(
Φ(λη)B ⊗ · · · ⊗ Φ(λ2)B ⊗ Φ(β)TCT

)
︸ ︷︷ ︸

∈W (∴ =:Wq)

= W Φ̂(λ1)
TV TΦ(λ1)

−TWq = Wq

= Φ(λ1)
T (Nη)(2)

(
Φ(λη)B ⊗ · · · ⊗ Φ(λ2)B ⊗ Φ(β)TCT

)
.

Next, we multiply both sides by BT to get

B̂T Φ̂(λ1)
T
(
N̂η

)
(2)

(
Φ̂(λη)B̂ ⊗ · · · ⊗ Φ(λ2)B̂ ⊗ Φ̂(β)T ĈT

)

= BΦ(λ1)
T (Nη)(2)

(
Φ(λη)B ⊗ · · · ⊗ Φ(λ2)B ⊗ Φ(β)TCT

)
.

Using the matricization property of tensor-vector multiplications (2.4), we get

ĈΦ̂(β)N̂η

(
Φ̂(λη)B̂ ⊗ · · · ⊗ Φ̂(λ1)B̂

)
= CΦ(β)Nη (sΦ(λη)B ⊗ · · · ⊗ Φ(λ1)B) ,

which is nothing but the relation given in (3.9d). Using similar steps, we can prove
(3.9f); thus, for the sake of brevity, we skip it. This concludes the proof.

3.2. Tangential-interpolating ROMs for MIMO systems. In this subsec-
tion, we discuss a construction of an interpolating reduced-order systems for MIMO
polynomial systems. Similar to the SISO case, the leading generalized transfer func-
tions for a MIMO polynomial system are given as follows:

FL(s1) = CΦ(s1)B,(3.14a)

F
(ξ)
H (s1, . . . , sξ+1) = CΦ(sξ+1)Hξ (Φ(sξ)B ⊗ · · · ⊗ Φ(s1)B) ,(3.14b)

F
(η)
N (s1, . . . , sη+1) = CΦ(sη+1)Nη (Im ⊗ Φ(sη)B ⊗ · · · ⊗ Φ(s1)B) ,(3.14c)

where Φ(s) = (sIn−A)−1. In Theorem 3.1, we have provided a general interpola-
tion framework for SISO polynomial systems, which can be extended to the MIMO
case. However, a straightforward extension of the interpolation idea for the MIMO
case might lead to projection matrices V and W with an unmanageable number of
columns for the MIMO case. Therefore, we make use of the tangential interpolation
concept from the linear case for MIMO systems [14]. Furthermore, for ease of practical
implementation, we avoid vectors in the projection matrices V and W corresponding
to cross frequencies. This means that we set λ1 = λ2 = · · · = λ{η,ξ} = β. As a result,
we propose the following lemma that is arguably of more importance from a practical
point of view.

Lemma 3.2. Consider the original system as given in (3.1). Let σi ∈ C, i ∈
{1, . . . , r̃}, be interpolation points such that sE−A is invertible for all s ∈ {σ1, . . . , σr̃},
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and bi ∈ C
m and ci ∈ C

q i ∈ {1, . . . , r̃} be right and left tangential directions corre-

sponding to σi, respectively. Let V and W be defined as follows:

VL =
r̃⋃

i=1

range (Φ(σi)Bbi) ,

VN =

d⋃

η=1

r̃⋃

i=1

range (Φ(σi)Nη (Im ⊗ Φ(σi)Bbi ⊗ · · · ⊗ Φ(σi)Bbi)) ,

VH =

d⋃

ξ=2

r̃⋃

i=1

range (Φ(σi)Hξ (Φ(σi)Bbi ⊗ · · · ⊗ Φ(σi)Bbi)) ,

WL =

r̃⋃

i=1

range
(
Φ(σi)

TCT ci
)
,

WN =
d⋃

η=1

r̃⋃

i=1

range
(
Φ(σi) (Nη)(2)

(
Im ⊗ Φ(σi)B ⊗ · · · ⊗ Φ(σi)B ⊗ Φ(σi)

TCT
))

,

WH =

d⋃

ξ=2

r̃⋃

i=1

range
(
Φ(σi) (Hξ)(2)

(
Φ(σi)B ⊗ · · · ⊗ Φ(σi)B ⊗ Φ(β)TCT

))
,

V = range (VL, VN , VH) ,

W = range (WL,WN ,WH) .

If a reduced-order system is computed as shown in (3.7) using the projection ma-

trices V and W , where we assume V and W to be of full rank, then the following

interpolation conditions are fulfilled:

FL(σi)bi = F̂L(σi)bi,(3.16a)

cTi FL(σi) = cTi F̂L(σi),(3.16b)

d

ds1
cTi FL(σi)bi =

d

ds1
cTi F̂L(σi)bi,(3.16c)

F
(η)
N (σi, . . . , σi)

(
Im ⊗ b

η

i

)
= F̂

(η)
N (σi, . . . , σi)

(
Im ⊗ b

η

i

)
,(3.16d)

cTi F
(η)
N (σi, . . . , σi)

(
I 2

m ⊗ b
η−1

i

)
= cTi F̂

(η)
N (σi, . . . , σi)

(
I 2

m ⊗ b
η−1

i

)
(3.16e)

d

dsj
cTi F

(η)
N (σi, . . . , σi)

(
Im ⊗ b

η

i

)
=

d

dsj
cTi F̂

(η)
N (σi, . . . , σi)

(
Im ⊗ b

η

i

)
,(3.16f)

F
(ξ)
H (σi, . . . , σi)b

ξ

i = F̂
(ξ)
H (σi, . . . , σi)b

ξ

i ,(3.16g)

cTi F
(ξ)
H (σi, . . . , σi)

(
Im ⊗ b

ξ−1

i

)
= cTi F̂

(ξ)
H (σi, . . . , σi)

(
Im ⊗ b

ξ−1

i

)
,(3.16h)

d

dsj
cTi F

(ξ)
H (σi, . . . , σi)b

ξ

i =
d

dsj
cTi F̂

(ξ)
H (σi, . . . , σi)b

ξ

i(3.16i)

where i ∈ {1, . . . , r̃}, ξ ∈ {2, . . . , d}, η ∈ {1, . . . , d} and
d

dsj
denotes the partial

derivative with respect to sj of a given function.
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Proof. The proof of (3.16a), (3.16b), (3.16d), (3.16e), (3.16g), and (3.16h) exactly
follows the proof of Theorem 3.1. Using very similar steps and simple algebra, one
can easily prove the rest of the conditions.

3.3. Connection to the Loewner Approach. In recent years, Loewner-based
MOR has received a lot of attention. For linear systems, the authors in [23] have
discussed the Loewner approach to construct reduced-order systems using transfer
function data. Later on, the Loewner approach has been extended to other classes of
nonlinear systems, namely bilinear and QB systems in [4, 15], where data related to
generalized transfer functions is required to obtain a reduced-order system.

An important ingredient in the Loewner approach is the construction of the
Loewner matrix (L) and the shifted Loewner matrix (Ls). One way to construct
the matrices L and Ls is either by using an experimental set-up or by using numerical
evaluations of the generalized transfer functions, which is the primary inspiration of
the method. However, there is a strong connection with interpolation of (generalized-)
transfer functions, corresponding to a given system. As a result, we, alternatively,
can construct the latter matrices by projection for a given realization of a system,
ensuring the interpolation conditions.

For an example, let us consider 4 frequency measurements H(σ1), H(σ2), H(µ1)
and H(µ2), where H(s) := C(sE−A)−1B ∈ C is the transfer function of a linear SISO
system with the system matrices (E,A,B,C). As shown e.g., in [5], the matrices L

and Ls, using the data points and letting σ{1,2} and µ{1,2} to be the right and left
interpolation points, can be constructed as follows:

(3.17) L(i, j) =
H(µi)−H(σj)

µi − σj
, Ls(i, j) =

µiH(µi)− σjH(σj)

µi − σj
,

where i, j ∈ {1, 2}. Moreover, if the matrices V and W are given as in Theorem 3.1,
i.e.,

V =
[
(σ1E −A)−1B, (σ2E −A)−1B

]
,

W =
[
(µ1E −A)−TCT , (µ2E −A)−TCT

]
,

then the matrices L and Ls, shown in (3.17), can also be constructed as

(3.18) L = −WTEV, Ls = −WTAV.

A similar analogy can also be seen for bilinear and QB systems [4, 15]. It is prefer-
able to construct L and Ls using the data if the data corresponding to the transfer
function can be either computed cheaply by its explicit expression or determined by
an experimental setup. However, in the case nonlinear systems, it is not straightfor-
ward to determine the generalized transfer function by an experiment, which is mainly
due to not having a clear interpretation of generalized transfer functions of nonlinear
systems as in the case of linear systems. Thus, the method to determine L and Ls

by projection shown in (3.18), can be of greater use when measurement data is not
available but instead, we have a system realization.

In this paper, we assume that a realization of the polynomial systems (3.1) is
given and thus focus on constructing the matrices L and Ls using projection (3.18),
and the rest of the system matrices using the same projection matrices V and W are
given as follows:

B = WTB, Hξ = WTHξV
ξ , ξ ∈ {2, . . . , d},

C = CV, Nη = WTNη (Im ⊗ V η ) , η ∈ {1, . . . , d}.
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By Theorem 3.1, it is clear that the systems S1 : (E,A,Hξ, Nη, B, C) and S2 :
(L,Ls,Hξ,Nη,B,C) are interpolating at the considered frequency points. However,
S2 can be singular, meaning that it may contain a lot of redundant information which
can be compressed. Thus, inspired by the Loewner approach for linear, bilinear, and
QB systems, we remove the redundancy by compressing the information using an
SVD of the following matrices, composed of L and Ls:

[
L Ls

]
= Y1Σ1X

T
1 ,(3.19)

[
L

Ls

]
= Y2Σ2X

T
2 ,(3.20)

where the diagonal entries of Σ1 and Σ2 are in non-increasing order. Based on the
first r columns of Y1 and X2, denoted by Yr and Xr, we can determine a compressed
Ŝ2, compressing the information of S2, as follows:

Ê = Y T
r LXr, Â = Y T

r LsX
T
r , Ĥξ = Y T

r HξX
ξ

r , ξ ∈ {2, . . . , d},

B̂ = Y T
r B, Ĉ = CXr, N̂η = Y T

r Nη

(
Im ⊗X

η

r

)
, η ∈ {1, . . . , d}.

There are essentially two steps involved in order to get Ŝ2. In the first step, we
require matrices such as Hξ and Nη, which are generally dense, hence unmanageable.
This is followed by compressing these matrices by using Xr and Yr. However, upon
closer inspection, we can determine Ŝ2 without completely forming S2, or matrices
Hξ and Nη, but we can rather determine Ŝ2 by directly projecting the original system
matrices using appropriate projection matrices. If we define the effective projection
matrices as follows:

(3.21) Veff := V Xr, and Weff := WYr,

then Ŝ2 can be determined in a traditional projection framework of the original sys-
tem (3.1) as follows:

(3.22)
Ê = WT

effEVeff , Â = WT
effAVeff , Ĥξ = WeffHξV

ξ

eff ,

B̂ = WT
effB, Ĉ = CVeff , N̂η = V T

effNη

(
Im ⊗ V

η

eff

)
,

where ξ ∈ {2, . . . , d} and η ∈ {1, . . . , d}. We point out that it is advantageous

to determine reduced system matrices, or the system Ŝ2 as shown in (3.22); this
way, we are not required to form large dense matrices such as Hξ and Nη. We can
rather compute reduced matrices by multiplying efficiently the sparse and super-
sparse1 original matrices Hξ and Nη with Veff and Weff . Having all these results,
we briefly sketch the steps to determine reduced-order systems in Algorithm 3.1.
However, an important computational aspect related to tensor computations such as
WeffHξV

ξ

eff still remains, which is discussed in the next section.

4. Computational Aspects and Application of CUR. In this section, we
discuss two important computational aspects which are related to evaluating the non-
linear terms of the reduced-order systems (3.22) and the use of the CUR matrix
approximation in order to accelerate simulations of the reduced-order systems.

1super-sparsity of a matrix is defined as a ratio of the number of non-zero distinct numbers to
the total number of non-zero elements.



INTERPOLATION-BASED MOR SCHEME FOR POLYNOMIAL SYSTEMS 13

Algorithm 3.1 MOR for Non-Parametric Polynomial Systems (LbNPS-Algo).

Input: The system matrices E,A,Hξ, Nη, B, C, ξ ∈ {2, . . . , d}, η ∈ {1, . . . , d}
and a set of interpolation points σi and corresponding tangential directions bi and
ci, the reduced order r.
Output: The reduced system matrices Ê, Â, Ĥξ, N̂η, B̂, Ĉ, ξ ∈ {2, . . . , d}, η ∈
{1, . . . , d}.

1: Determine V and W as shown in Lemma 3.2.
2: Define Loewner and shifted Loewner matrices as follows:

L = −WTEV, Ls = −WTAV,

3: Compute SVD of the matrices:

[
L,Ls

]
= Y1Σ1X

T
1 ,[

L

Ls

]
= Y2Σ2X

T
2 .

4: Define Yr := Y1(:, 1 : r) and Xr := X2(:, 1 : r).
5: Determine compact projection matrices:

Veff := orth (V Xr) and Weff := orth (WYr).
6: Determine the reduced-order system as follows:

Ê = WT
effEVeff , Â = WT

effAVeff , Ĥξ = WeffHξV
ξ

eff , ξ ∈ {2, . . . , d},

B̂ = WT
effB, Ĉ = CVeff , N̂η = V T

effNη

(
Im ⊗ V

η

eff

)
, η ∈ {1, . . . , d}.

4.1. Efficient evaluation the nonlinear terms of the ROMs. Let us begin
with the computational effort related to evaluating, e.g., Ĥξ := WT

effHξV
ξ

eff . It can be

noticed that a direct computation of the above terms requires the computation of V
ξ

eff .

Generally, the matrix Veff is a dense matrix; thus, the computation related to V
ξ

eff is
of complexity O((n·r)ξ), which easily becomes an unmanageable task. For ξ = 2, the

authors in [8] have proposed a method using tensor algebra to compute Ĥ2 without
explicitly forming Veff ⊗ Veff . On the other hand, the authors in [11] have aimed at
exploiting the structure of the nonlinear operators, typically arising in PDEs/ODEs,

thus also leading to an efficient method to compute Ĥ2.
In this paper, we focus on the latter approach, where the explicit nonlinear op-

erator of the PDEs is utilized, to compute Ĥξ. Extending the discussion in [11], in
principle, we can write the term Hξx

ξ in the system (3.1) in the Hadamard product
form as follows:

(4.1) Hξx
ξ = A1x ◦ · · · ◦ Aξx,

where ◦ denotes the Hadamard product and Ai ∈ R
n×n are the constant matrices

depending on the nonlinear operator in a governing equation. In order to reduce these
nonlinear terms, resulting in a reduced-order system, we proceed as follows. Firstly,
we substitute x(t) ≈ Veff x̂(t), where x(t) ∈ R

n and x̂(t) ∈ R
r are the original and

reduced state vectors, respectively, and then multiply WT
eff from the left-hand side,

thus leading to the corresponding nonlinear term:

Ĥξx̂
ξ = WT

eff

((
Â1x̂

)
◦ · · · ◦

(
Âξx̂

))
,
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where Âi = AiVeff , i ∈ {1, . . . , ξ}. Next, we use the relation between a Hadamard
product and the Kronecker product, that is

Pp ◦ Qq =



P(1, :)⊗Q(1, :)

...
P(n, :)⊗Q(n, :)


 (p⊗ q).

Thus, we get

WT
eff

((
Â1x̂

)
◦ · · · ◦

(
Âξx̂

))
= WT

eff



Â1(1, :)⊗ · · · ⊗ Âξ(1, :)

...

Â1(n, :)⊗ · · · ⊗ Âξ(n, :)




︸ ︷︷ ︸
=:Â

x̂ ξ .(4.2)

It can be seen that WT
effÂ = Ĥξ. Summarizing, we can perform computations re-

lated to Ĥξ efficiently by utilizing the particular structure of the nonlinear terms in

PDEs/ODEs, without explicitly forming V
ξ

eff . We illustrate the procedure for a typical
nonlinear PDE term in Subsection 4.3.

4.2. CUR matrix approximation and ROMs. Next, we discuss another
computational issue, due to which we may not achieve the desired reduction in the
simulation time even after reducing the original system (3.1). Explaining this issue

further, the reduced matrices such as Ĥξ ∈ R
r×rξ are generally dense matrices which

are multiplied with x̂ ξ . Thus, the computation Ĥξx̂
ξ is in O(r2ξ+1), which increases

rapidly with the order of the reduced system or polynomial system (3.1). As a remedy,

in this paper, we propose a new procedure to approximate Ĥξx̂
ξ , which can be

computed cheaply. For this, we make use of the CUR matrix approximation, see,
e.g. [22, 28, 29]. Using this, we can approximate the matrix Â, defined in (4.2), as
follows:

(4.3) Â ≈ CUR,

where C ∈ R
n×nc and R ∈ R

nr×rl contain wisely chosen nc columns and nr rows
of the matrix Â, respectively, and U ∈ R

nc×nr is determined such that it minimizes
‖Â − CUR‖ in an appropriate norm. There has been a significant research how to
choose columns and rows appropriately, leading to a good or even optimal in some
sense, approximation of a matrix. We refer the reader to [22, 28, 29] and references
therein for more details. Substituting the relation (4.3) in (4.2) results in

WT
effÂx̂ ξ ≈ WT

effCURx̂ ξ .(4.4)

Next, we closely look at the term Rx̂ ξ , whose columns are given as

(4.5)
(
Â1(ir, :)⊗ · · · ⊗ Âξ(ir, :)

)
x̂ ξ ,

where ir belongs to the columns chosen by the CUR matrix approximation. We know
that Â1(ir, :) = A1(ir, :)V . Substituting this relation and x ≈ V x̂, we get

Â1(ir, :)⊗ · · · ⊗ Âξ(ir, :)x̂
ξ

= (A1(ir, :)⊗ · · · ⊗ Aξ(ir, :))V
ξ x̂ ξ

≈ (A1(ir, :)⊗ · · · ⊗ Aξ(ir, :))x
ξ := NLir .
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Comparing the above quantity with (4.1), it can be noticed that the quantity NLir is
nothing but the computation of the corresponding nonlinearity of the original system
at a particular grid point. Furthermore, the term WT

effCU ∈ R
r×nr can be precom-

puted. This idea is very closely related to empirical interpolation methods, which
are commonly used in reduced basis methods or proper orthogonal decomposition for
nonlinear systems to reduce the computational cost related to nonlinear terms [6, 13].

4.3. An illustration using Chafee-Infante equation. In the following, we
illustrate the computation of the reduced nonlinear term Ĥξ and the usage of the CUR
decomposition with the help of the Chafee-Infante equation. At this stage, we avoid
describing the governing PDEs of the Chafee-Infante equation; we provide a detailed
description of it in the numerical section. However, at the moment, we just note that
it has cubic nonlinearity, i.e., −v3, where v is the dependent variable. Hence, if the
system is written in the form given in (3.1), we have the following nonlinear term:

H3x
3 := −x ◦ x ◦ x.

If the above term is reduced using the projection matrices Veff and Weff as shown in
(3.22), then we obtain

WT
effH3V

3

eff x̂
3 = Ĥ3x̂

3

= WT
eff (Veff x̂ ◦ Veff x̂ ◦ Veff x̂)

= WT
eff



Veff(1, :)⊗ Veff(1, :)⊗ Veff(1, :)

...
Veff(n, :)⊗ Veff(n, :)⊗ Veff(n, :)




︸ ︷︷ ︸
=:Veff

(x̂⊗ x̂⊗ x̂) .(4.6)

Equation (4.6) shows that instead of explicitly forming V 3

eff to determine Ĥ3, we can
rather compute it by a smart choice of rows and perform the Kronecker products as
shown in (4.6). Furthermore, as discussed earlier, the evaluation of the term Ĥ3x̂

3 , in
general, is of complexity O(r7), which might be expensive if the order of the reduced

system (r) is notable. Also, we stress that the term Ĥ3x̂
3 needs to be computed at

each time step for every simulation. To ease that we aim at further approximating
Ĥ3x̂

3 . Thus, we first apply the CUR matrix approximation to the matrix Veff , defined
in (4.6), to approximate it by using selected columns and rows, that is

(4.7) Veff ≈ CvUvRv,

where Cv ∈ R
r×nc and Rv ∈ R

nr×r3 consist of columns and rows of Veff , respectively.
Let us assume that IR ⊆ {1, . . . , n} denotes the indices, leading to the construction
of the matrix Rv in (4.7), i.e.,

Rv = Veff(IR, :).

As a result, we use the relation (4.7) in (4.6) to obtain

WT
effVeff x̂

3 ≈ WT
effCvUvRvx̂

3

≈ WT
effCvUv︸ ︷︷ ︸
=:Ψ

(
Veff(IR, :)x̂ 3

)
.



16 PETER BENNER, AND PAWAN GOYAL

Now, it can be noticed that the term Veff(IR, :)x̂ 3 is nothing but evaluating the
nonlinearity (in this case, it is a cubic nonlinearity) at indices IR. As a result, we
need to determine the nonlinearity at nr points. Moreover, the matrix Ψ ∈ R

r×rv

can be precomputed. This is exactly the idea of hyper-reduction methods such as
(D)EIM proposed in [6, 13] in the case of nonlinear MOR. However, a major difference
between the methodology in this paper and (D)EIM is that we do not require time-
domain snapshots of the nonlinearity as needed in the case of DEIM, but we rather
approximate the nonlinear terms in the reduced-order systems. Summarizing, for the
Chafee-Infante equation in the end, we have

WT
effVeff (x̂⊗ x̂⊗ x̂) ≈ Ψ(x̃ ◦ x̃ ◦ x̃) ,(4.8)

where x̃ = Veff(IR, :)x̂, which is of complexity O(r · n2
r).

Remark 4.1. In the above, we have focused on the computational aspect related

to Ĥξ and Ĥξx̂
ξ . However, analogously, a complexity reduction can be performed for

computing N̂η and N̂ηx̂
η .

5. Parametric Polynomial Systems. Until now, we have discussed the non-
parametric case, i.e., all the system matrices are assumed to be constant. In this
section, we briefly present an extension of the idea presented in the previous sections to
parametric polynomial system (1.1). Similar to the non-parametric case, we can derive
generalized transfer functions for the parametric case, which are given as follows:

FL(s1,p) = C(p)Φ(s1,p)B(p),(5.1a)

F
(ξ)
H (s1, . . . , sξ+1,p) = C(p)Φ(sξ+1,p)Hξ (Φ(sξ,p)⊗ · · · ⊗ Φ(s1,p))B(p) ξ ,

(5.1b)

F
(η)
N (s1, . . . , sη+1,p) = C(p)Φ(sη+1,p)Nη (Im ⊗ Φ(sη,p)⊗ · · · ⊗ Φ(s1,p))B(p)η ,

(5.1c)

where Φ(s,p) = (sE(p) − A(p))−1. In the following, we present an extension of
Lemma 3.2 to the parametric case.

Theorem 5.1. Consider the original parametric polynomial system as given in

(3.1). Let σi,pi, i ∈ {1, . . . , r̃} be interpolation points such that sE(p) − A(p) is

invertible for all s ∈ {σ1, . . . , σr̃}, p ∈ {p1, . . . ,pr̃}, and let bi ∈ R
m and ci ∈ R

q

i ∈ {1, . . . , r̃} be tangential directions. Moreover, let V and W be defined as follows:

VL =

r̃⋃

i=1

range (Φ(σi,pi)B(pi)bi) ,

VN =

d⋃

η=1

r̃⋃

i=1

range (Φ(σi,pi)Nη (Im ⊗ Φ(σi,pi)B(pi)bi ⊗ · · · ⊗ Φ(σi,pi)B(pi)bi)) ,

VH =

d⋃

ξ=2

r̃⋃

i=1

range (Φ(σi,pi)Hξ (Φ(σi,pi)B(pi)bi ⊗ · · · ⊗ Φ(σi,pi)B(pi)bi)) ,

WL =
r̃⋃

i=1

range
(
Φ(σi,pi)

TC(pi)
T ci
)

WN =

d⋃

η=1

r̃⋃

i=1

range
(
Φ(σi,pi) (Nη)(2) (Im ⊗ Φ(σi,pi)B(pi)bi ⊗ · · ·
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⊗ Φ(σi,pi)B(pi)bi ⊗ Φ(σi,pi)
TC(pi)

T ci

)
,

WH =

d⋃

ξ=2

r̃⋃

i=1

range
(
Φ(σi,pi) (Hξ)(2) (Φ(σi,pi)B(pi)bi ⊗ · · ·

⊗ Φ(σi,pi)B(pi)bi ⊗ Φ(σi,pi)
TC(pi)

T ci

)
,

V = range (VL, VN , VH) ,

W = range (WL,WN ,WH) .

If a reduced-order system is computed using the projection matrices V and W given

above, assuming V and W are full rank matrices, as follows:

(5.3)

Ê(p) = WTE(p)V, Â(p) = WTA(p)V, Ĥξ(p) = WTHξ(p)V
ξ , ξ ∈ {2, . . . , d},

B̂(p) = WTB(p), Ĉ(p) = C(p)V, N̂η(p) = WTNη(p)V
η , η ∈ {1, . . . , d}.

then the following interpolation conditions are fulfilled:

FL(σi,pi)bi = F̂L(σi,pi)bi,

cTi FL(σi,pi) = cTi F̂L(σi,pi),

d

ds1
cTi FL(σi,pi)bi =

d

s1
cTi F̂L(σi,pi)bi,

d

dp
cTi FL(σi,pi)bi =

d

dp
cTi F̂L(σi,pi)bi,

F
(η)
N (σi, . . . , σi,pi)

(
Im ⊗ b

η

i

)
= F̂

(η)
N (σi, . . . , σi,pi)

(
Im ⊗ b

η

i

)
,

cTi F
(η)
N (σi, . . . , σi,pi)

(
I 2

m ⊗ b
η−1

i

)
= cTi F̂

(η)
N (σi, . . . , σi,pi)

(
I 2

m ⊗ b
η−1

i

)

d

dsj
cTi F

(η)
N (σi, . . . , σi,pi)

(
Im ⊗ b

η

i

)
=

d

dsj
ĉTi F̂

(η)
N (σi, . . . , σi,pi)

(
Im ⊗ b

η

i

)
,

d

dp
cTi F

(η)
N (σi, . . . , σi,pi)

(
Im ⊗ b

η

i

)
=

d

dp
ĉTi F̂

(η)
N (σi, . . . , σi,pi)

(
Im ⊗ b

η

i

)
,

F
(ξ)
H (σi, . . . , σi,pi)b

ξ

i = F̂
(ξ)
H (σi, . . . , σi,pi)b

ξ

i ,

cTi F
(ξ)
H (σi, . . . , σi,pi)

(
Im ⊗ b

ξ−1

i

)
= cTi F̂

(ξ)
H (σi, . . . , σi,pi)

(
Im ⊗ b

ξ−1

i

)
,

d

dsj
cTi F

(ξ)
H (σi, . . . , σi,pi)b

ξ

i =
d

dsj
cTi F̂

(ξ)
H (σi, . . . , σi,pi)b

ξ

i ,

d

dp
cTi F

(ξ)
H (σi, . . . , σi,pi)b

ξ

i =
d

dp
cTi F̂

(ξ)
H (σi, . . . , σi,pi)b

ξ

i ,

where FL, F
(η)
N , F

(ξ)
H , F̂L, F̂

(η)
N , F̂

(ξ)
H are also assumed to be differentiable with respect

to sj and p.

Proof. The proof of the lemma can be proven along the lines of the proof of
Theorem 3.1. Therefore, for the sake of brevity of the paper, we skip the proof.

In the above, we have assumed a general parametric structure for the system matrices,
e.g., E(p), A(p), and the corresponding reduced-order system can be computed as
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shown in (5.3). However, if we assume an affine parametric structure of the system
matrices as follows:

(5.5)

E(p) =

te∑

i=1

α(i)
e (p)E(i), A(p) =

ta∑

i=1

α(i)
a (p)A(i), Hξ(p) =

thξ∑

i=1

α
(i)
hξ
(p)H

(i)
ξ ,

B(p) =

tb∑

i=1

α
(i)
b (p)B(i), C(p) =

tc∑

i=1

α(i)
c (p)C(i), Nη(p) =

tnη∑

i=1

α(i)
nη
(p)N (i)

η ,

then the resulting reduced-order system can be determined, having the same structure

(5.6)

Ê(p) =

te∑

i=1

α(i)
e (p)Ê(i), Â(p) =

ta∑

i=1

α(i)
a (p)Â(i), Ĥξ(p) =

thxi∑

i=1

α
(i)
hξ
(p)Ĥ

(i)
ξ ,

B̂(p) =

tb∑

i=1

α
(i)
b (p)B̂(i), Ĉ(p) =

tc∑

i=1

α(i)
c (p)Ĉ(i), N̂η(p) =

tnη∑

i=1

α(i)
nη
(p)N̂ (i)

η ,

where the original matrices are projected by the standard projection for given projec-
tion matrices; for example:

(5.7)
Ê(1) = WTE(1)V, Â(1) = WTA(1)V, Ĥ

(1)
ξ = WTH

(1)
ξ V ξ , ξ ∈ {2, . . . , d},

B̂(1) = WTB(1), Ĉ(1) = C(1)V, N̂ (1)
η = WTN (1)

η V η , η ∈ {1, . . . , d}.

Furthermore, like in the non-parametric case, we can easily develop the connec-
tion to the Loewner and shifted-Loewner type system, assuming we have sufficient
interpolation points for frequency and parameter variables. In Algorithm 5.1, we out-
line all the steps to construct reduced-order systems for the parametric case, which is
again inspired by the Loewner-type MOR.

6. Numerical Results. In this section, we illustrate the efficiency of the pro-
posed methods by means of two nonlinear PDE examples and their variants. All the
simulations were done on an Intel® Core™i7-6700 CPU@3.40GHz, 8 MB cache, 8
GB RAM, Ubuntu 16.04, MATLAB Version 9.1.0.441655(R2016b) 64-bit(glnxa64).
In the following, we note some details used in the numerical simulations:

• All original and reduced-order systems are integrated by the routine ode15s

in MATLAB with relative error and absolute error tolerances of 10−10.
• We measure the output at 500 equidistant points within the time interval
[0, T ], where T is the end time.

• We choose interpolation points for the frequency (s) in a logarithmic scale
for a given frequency range, and interpolation points for parameters (p) are
chosen randomly using the rand command. To ensure reproducibility, we use
randn(‘seed’,0) to initialize a random number generator.

6.1. Chafee-Infante equation. In our first example, we deal with a widely con-
sidered one-dimensional Chafee-Infante equation. Its governing equation and bound-
ary conditions are given as follows:

(6.1)
v̇(t) = vxx + v(1− v2), x ∈ (0, L)× (0, T ), v(0, ·) = u(t), (0, T ),

vx(L, ·) = 0, (0, T ), v(x, 0) = 0, (0, L).

MOR of this example has been considered in various papers [8, 10, 11, 15], where
the authors have proposed different methods to reduce it. The governing equation
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Algorithm 5.1 Model Reduction for Parametric Polynomial Systems (1.1).

Input: The original system (1.1) with the affine structure as in (5.5), and a
set of interpolation points for the frequency and parameters, i.e., σi and pi, i ∈
{1, . . . , r̃}.
Output: A reduced-order system given as in (5.6).

1: Determine V and W as shown in Theorem 5.1.
2: Based on E(p) and A(p) in (5.5), define

L
(i) = WTE(i)V, i ∈ {1, . . . , te}, L

(i)
s = WTA(i)V, i ∈ {1, . . . , ta}

[
L
(1), . . . ,L(te),L

(1)
s , . . . ,L

(ta)
s

]
= Y1Σ1X

T
1(5.8)




L
(1)

...
L
(te)

L
(1)
s

...

L
(ta)
s




= Y2Σ2X
T
2 .(5.9)

3: Define Yr := Y1(:, 1 : r) and Xr := X2(:, 1 : r).
4: Determine the compact projection matrices:

V := orth(V Xr) and W := orth(WYr).
5: Determine a reduced-order system as shown in (5.6).

has cubic nonlinearity. In the literature, a common approach to reduce such a cubic
nonlinear system via system-theoretic MOR is twofold. First, it is to rewrite the
cubic system into a QB system by introducing auxiliary variables. Thereafter, one
can reduce it by employing a MOR scheme for QB systems such as balanced truncation
[10], and interpolation based approaches, e.g., [2, 8, 11]. However, in this process, we
lose the original cubic nonlinearity structure in the reduced-order system. On the
other hand, the proposed method, in this paper, allows us to reduce a cubic system
directly, having preserved the nonlinearity in the reduced-order system.

We set the domain length L = 1. The system of equations (6.1) is discretized
using a finite-difference method by taking k = 500 grid points. Next, we aim at
constructing a reduced cubic system by applying Algorithm 3.1. For this purpose,
we consider the frequency range

[
10−3, 103

]
. For comparison, we also rewrite the

cubic system into the QB form, which results in an equivalent QB system of order
nqb = 2 · 500 = 1000. We consider the same frequency range in order to employ
Algorithm 3.1 to construct a reduced QB system.

First, in Figure 6.1, we observe the decay of the singular values, obtained from
the Loewner pencil (L − sLs). As one can expect, the singular values related to the
original cubic system decay faster as compared to its equivalent QB form. Hence, for
the same order of the reduced-order system, we can anticipate a better quality reduced
system. Next, we construct the reduced cubic and QB systems of order r = 10.
To test the quality of both reduced cubic and QB systems, we perform time-domain
simulations using control inputs u(1)(t) = 10(sin(πt)+1) and u(2)(t) = 5 (te−t), which
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Cubic system Quadratic-bilinear system

0 5 10 15 20 25 30
10−20

10−10

100

Figure 6.1: Relative decay of singular values based on the Loewner pencils, obtained
using the original cubic system and its equivalent transformed QB system.

Original system Cubic system Quadratic-bilinear system
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Figure 6.2: Chafee-Infante equation: a comparison of the original and reduced-order
systems for the input u(1) = 10 (sin(πt) + 1).

are compared in Figures 6.2 and 6.3 by showing the responses and relative errors. As
can be seen from these figures, the cubic reduced-order system captures the dynamics
of the original system much better as compared to the QB system; precisely, we gain
up to 3 orders of magnitude better accuracy using the new method.

6.2. The FitzHugh-Nagumo(FHN) model. As a second non-parametric ex-
ample, we consider the FHN system, which describes basic neuronal dynamics. This is
a coupled cubic nonlinear system, whose governing equations and boundary conditions
are as follows:

(6.2)
ǫvt = ǫ2vxx + v(v − 0.1)(1− v)− w + q,

wt = hv − γw + q

with boundary conditions

v(x, 0) = 0, w(x, 0) = 0, x ∈ (0, L),

vx(0, t) = i0(t), vx(1, t) = 0, t ≥ 0,
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Original system Cubic system Quadratic-bilinear system
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Figure 6.3: Chafee-Infante equation: a comparison of the original and reduced-order
systems for the input u(2) = 5 (te−t).
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Figure 6.4: FHN model: relative decay of singular values based on the Loewner
pencils, obtained via one-sided and two-sided projection of the corresponding systems.

where h = 0.05, γ = 2, q = 0.05, L = 0.1 and i0 acts an actuating control input which
takes the values 5 ·104t3e−t, and briefly mentioning, the variables v and w denote the
activation and de-activation of a neuron, respectively. We discretize the governing
equation using a finite difference method, having taken 100 grid points. This leads to
a cubic system of order n = 200. We use the same output setting as used, e.g., in [11].
The system has two inputs and two outputs, thus, is a MIMO system. The MOR
problem related to the FHN system has been considered by several researchers, see,
e.g., [10, 11, 13]. Similar to the previous example, system-theoretic MOR of the FHN
system has also been considered by first rewriting it into a QB system and employing
MOR schemes such as interpolation-based and balanced truncation to reduce it. Thus,
we obtain an equivalent QB system of order nqb = 300. However, by doing so, we lose
the original nonlinear structure.

In order to apply Algorithm 3.1 to obtain reduced-order systems for the original
cubic and its equivalent QB systems, we choose 200 points in the frequency range[
10−2, 102

]
. In Figure 6.4, we first show the relative decay of the singular values

for the Loewner pencils (denoted by cubic sys. (two-sided) and QB sys. (two-sided)).
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Therein, as expected, we observe that the singular values of the cubic system decay
faster as compared to its equivalent QB system. Next, we construct reduced cubic
and QB systems of order r = 20. To determine the quality of the reduced systems,
we perform time-domain simulations and plot the result in Figure 6.5. We observe
that the obtained cubic reduced system captures the dynamics of the original system
very well, whereas the reduced QB system is unstable. This illustrates a common
shortcoming of Algorithm 3.1 (the Loewner approach) that it does not always result
in a stable reduced system.

As a remedy, we propose to obtain a reduced-order system using Galerkin (one-
sided) projection. For this, we determine the matrix V at Step 1 in Algorithm 3.1
and set W = V . This is followed by determining Xr as shown in Step 4 of the
algorithm and determine the projection matrix Veff . Subsequently, we set Weff = Veff

and compute a reduced-order system. As a result, we have a reduced-order system
by Galerkin projection instead of Petrov-Galerkin projection. An advantage of doing
Galerkin projection is the (local) stability of the reduced-order system in some cases.
Next, we compute reduced systems of order r = 20 using the cubic and its equivalent
QB form, using Galerkin projection.

First, we observe the decay of singular values in Figure 6.4, showing that for
Galerkin projection as well, the decay is faster for cubic systems as compared to
the equivalent QB systems. Furthermore, we compare the transient response of the
reduced-order systems obtained from Galerkin projection in Figure 6.5, which shows
that the cubic reduced-order system performs much better as compared to the QB
reduced systems. Interestingly, we also observe that the reduced cubic systems, using
Petrov-Galerkin and Galerkin projection, tend to perform equally good as the time
progresses but in the beginning, the reduced system, obtained using Petrov-Galerkin
projection, performs better.

Furthermore, we mention that the same order of accuracy as the reduced QB
system (one-sided) of order r = 20 can be obtained from the reduced cubic order
r = 6 only. Surprisingly, we also observe that the typical limit-cycles behavior of the
system can be captured by the reduced cubic system of order as low as r = 2. On the
other hand, the reduced QB could not capture the typical limit cycles behavior below
the order r = 15. This is a profound observation, which illustrates that keeping the
original structure of nonlinearity can lead to much better reduced-order systems.

6.3. Parametric Chafee-Infante equation. As our parametric example, we
consider the following parametric Chafee-Infante equation:

(6.3) v̇(t) = vxx + v(p− v2), x ∈ (0, L)× (0, T ),

where p ∈ [0.25, 2]. The boundary and initial conditions are the same as given in Sub-
section 6.1, and the domain length and discretization scheme are also chosen the same
as in Subsection 6.1. Next, we aim at constructing a reduced cubic parametric system
using Algorithm 5.1. For this, we take 200 points in the frequency range

[
10−3, 103

]

and the equal number of points for the parameter in the considered interval.
First, in Figure 6.6, we plot the decay of the singular values based on the Loewner

pencil, which decays exponentially. Subsequently, we determine a reduced parametric
system of order r = 5. To compare the quality of the reduced-order system, we
simulate for the same inputs as used in Subsection 6.1 and for p = {0.25, 1, 2}. We
plot the transient response and relative errors in Figures 6.7 and 6.8, illustrating that
the reduced parametric system can capture the dynamics of the system for different
inputs and different parameter.
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Ori. sys. Cubic sys. (two-sided r = 20)

Cubic sys. (one-sided r = 20) QB sys. (one-sided r = 20)
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Figure 6.5: FHN model: a comparison of the original and reduced cubic and QB
systems using one-sided and two-sided projections, having employed Algorithm 3.1.
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Figure 6.6: Parametric Chafee-Infante equation: relative decay of singular values
based on the Loewner pencil.

6.4. Usage of CUR in ROM. In this section, we illustrate the usage of the
CUR matrix approximation to further approximate the nonlinear reduced terms. For
this, we again consider the Chafee-Infante equation as considered in Subsection 6.1.
Using the same setting as shown in Subsection 6.1, we aim at determining reduced
cubic systems using one-sided and two-sided projections. First, in Figure 6.9, we plot
the relative decay of the singular values based on the Loewner pencil, obtained using
the one-sided and two-sided projection matrices. We observe that the singular values
based on the two-sided projection decay fast as compared to the one-sided projection.

Next, we construct reduced-order systems of order r = 10 using one-sided and
two-sided projections using Algorithm 3.1, preserving the cubic nonlinear terms. As
discussed in Section 4, we can approximate these terms by making use of CUR matrix
approximation. For CUR matrix approximation, we choose 60 rows and 60 columns
of V (defined in (4.6)), which are chosen based on an adaptive sampling proposed in
[29]. We would like to mention that the number 60 for row and columns is determined
based on a trial and error method. An appropriate automatic method for CUR matrix
approximation, being suitable for MOR, needs further research. To this end, we have
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Ori. sys. (p = 0.25) Ori. sys. (p = 1.0) Ori. sys. (p = 2.0)
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Figure 6.7: Parametric Chafee-Infante equation: a comparison of the original and
reduced-order systems for the input u(1) = 10 (sin(πt) + 1) and for different parameter
values.
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Figure 6.8: Parametric Chafee-Infante equation: a comparison of the original and
reduced-order systems for the input u(2) = 5 (e−tt) and for different parameter values.

four reduced systems as follows:
• One-sided projection (OneSProj)
• One-sided projection, combined with CUR matrix approximation

(OneSProj + CUR)
• Two-sided projection (TwoSProj)
• Two-sided projection, combined with CUR matrix approximation

(TwoSProj + CUR)
To compare the quality of these reduced-order systems, we perform the time-domain
simulations of these systems with the original systems for two control inputs, the same
as considered in Subsection 6.1. We observe that two-sided projection yields the best
reduced-order systems among the four reduced-order systems. Furthermore, when
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Two-sided projection One-sided projection
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Figure 6.9: Chafee-Infante equation: relative decay of singular values using the
Loewner pencil, obtained via one-sided and two-sided projections.
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Figure 6.10: Chafee-Infante equation: a comparison of the original and (CUR com-
bined) reduced-order systems for the input u(1) = 10 (sin(πt) + 1).

the two-sided reduced-order system is combined with CUR matrix approximation,
then we notice that the quality of the reduced-order system decreases a little but
still provides a very good approximation of the original system. Interestingly, we also
notice that CUR matrix approximation applied to the one-sided reduced-order system
also performs really good, where the reduction in quality of OsP is very slim.

7. Conclusions. In this paper, we have discussed the construction of interpo-
lating reduced-order systems for a parametric polynomial system. For this purpose,
we have introduced generalized multi-variate transfer functions for the systems. Fur-
thermore, we have proposed algorithms, inspired by the Loewner approach, to gener-
ate good quality reduced-order systems in an automatic way. Furthermore, we have
discussed related computational issues and also the usage of the CUR matrix approx-
imation in the simulations of reduced systems which may be helpful in some case. We
have illustrated the efficiency of the approaches via several numerical experiments,
where we have observed that preserving the original structure of the nonlinearity in
reduced-order systems can lead to much better reduced-order systems.
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Figure 6.11: Chafee-Infante equation: a comparison of the original and (CUR com-
bined) reduced-order systems for the input u(2) = 5 (e−tt).

So far, in our numerical experiments, we have logarithmically or randomly chosen
interpolation points in given intervals for frequency and parameters in order to apply
Algorithms 3.1 and 5.1. However, choosing these interpolation points wisely, instead
of logarithmically or randomly, can ease the computational burden. In this direction,
H2-optimal framework [11] and an adaptive choice of interpolation points based on
an error estimate [1] can be extended from quadratic-bilinear systems to polynomial
systems. Moreover, in Section 4, we have discussed the computational aspect related
to Ĥξx̂

ξ which can be eased with the help of CUR matrix approximation. However,
we do not take the projection matrix W into account for an approximation of the
latter term. Thus, it would be valuable to employ the projection matrix W as well,
which could improve the approximation quality. Also, an appropriate choice of CUR
matrix approximation for MOR still demands some more investigation. Last but not
least, it will be of a great interest to the MOR community to extend the proposed
methodology to other classes of nonlinear systems such as rational nonlinear systems,
i.e., those systems containing nonlinear functions e.g., 1

1+x or e−1/x. Such systems,
for example, arise, in batch chromatography reactors [19] and rector models [21].
However, we remark that such systems can be rewritten as a polynomial system by
introducing auxiliary variables as discussed in Subsection 2.1, but the goal would be
to preserve the original structure of the nonlinearity in the reduced-order systems.
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