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INTERPOLATION BETWEEN LOGARITHMIC SOBOLEV AND

POINCARÉ INEQUALITIES∗

ANTON ARNOLD† , JEAN-PHILIPPE BARTIER‡ , AND JEAN DOLBEAULT§

Abstract. This paper is concerned with intermediate inequalities which interpolate between
the logarithmic Sobolev (LSI) and the Poincaré inequalities. Assuming that a given probability
measure gives rise to a LSI, we derive generalized Poincaré inequalities, improving upon the known
constants from the literature. We also analyze the special case when these inequalities are restricted
to functions with zero components for the first eigenspaces of the corresponding evolution operator.
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1. Introduction

In 1989 W. Beckner [7] derived a family of generalized Poincaré inequalities
(GPIs) for the Gaussian measure that yield a sharp interpolation between the classical
Poincaré inequality and the logarithmic Sobolev inequality (LSI) of L. Gross [10]. For
any 1 ≤ p < 2 these GPIs read

1

2 − p

[

∫

Rd

f2 dµ0 −

(∫

Rd

|f |p dµ0

)2/p
]

≤

∫

Rd

|∇f |2 dµ0 ∀f ∈ H1(dµ0), (1.1)

where µ0(x) denotes the normal-centered Gaussian distribution on R
d:

µ0(x) := (2π)−d/2 e−
1
2
|x|2 .

For p = 1, the GPI (1.1) becomes the Poincaré inequality, and in the limit p → 2 it
yields the LSI. Theorem 2.4(b) improves upon (1.1) for functions f that are in the
orthogonal complement of the first eigenspaces of the Ornstein-Uhlenbeck operator
N := −∆ + x · ∇. Moreover, we extend this result to more general measures dν.

Generalizations of (1.1) to other probability measures and the quest for “sharpest”
constants in such inequalities have attracted much interest in recent years ([2, 5, 6,
11, 15]). In [3] GPIs have been derived for strictly log-concave distribution functions
ν(x):

1

2 − p

[

∫

Rd

f2 dν −

(∫

Rd

|f |p dν

)2/p
]

≤
1

κ

∫

Rd

|∇f |2 dν ∀f ∈ H1(dν), (1.2)
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‡Ceremade (UMR CNRS no. 7534), Université Paris-Dauphine, place de Lattre de Tassigny,
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972 CONVEX SOBOLEV INEQUALITIES

where κ is the uniform convexity bound of − log ν(x), i.e., Hess(− log ν(x)) ≥ κ ∀x ∈
R

d. This Bakry-Emery condition [4] also implies a LSI with constant CLS = 1
κ , i.e.,

1

2

∫

Rd

f2 log

(

f2

∫

Rd f2 dν

)

dν ≤ CLS

∫

Rd

|∇f |2 dν ∀ f ∈ H1(dν), (1.3)

which is a special case (p → 2 limit) of (1.2).
Lata la and Oleszkiewicz (see [11]; Lemma 1, Corollary 1) derived such GPIs under

the weaker assumption that ν(x) satisfies a LSI with constant 0 < CLS < ∞. Under
Assumption (1.3) they proved for 1 ≤ p < 2 that

1

2 − p

[

∫

Rd

f2 dν −

(∫

Rd

|f |p dν

)2/p
]

≤ CLS min

{

2

p
,

1

2 − p

}∫

Rd

|∇f |2 dν. (1.4)

In the limit p → 2 one recovers again the LSI (1.3). Since this LSI implies a Poincaré
inequality (with constant CLS), the second constant in the above min just follows

from Hölder’s inequality
(∫

Rd f dν
)2

≤
(∫

Rd |f |
p dν

)2/p
= ‖f‖2

Lp(dν) (cf. §3 in [2] and

[11]). For the special case of even distributions on R with ν(x) > 0 and finite second
moment, they also proved that the minimum on the right hand side of (1.4) can be
replaced by 1 (cf. Lemma 2 in [11]; its proof is related to our Theorem 2.4(a) below).

Theorem 2.4(a) improves upon the p-dependent constant on the right hand side
of (1.4).

While (1.2), (1.4), and Theorem 2.4 deal with linear Beckner-type inequalities,
§3 is concerned with nonlinear refinements. Such improvements are interesting for
1 < p < 2, as there exist no minimal functions that would make (1.2) an equality. As
our third result we shall derive in Theorem 3.1 “refined convex Sobolev inequalities”
under the assumption that ν(x) satisfies a LSI. These kinds of inequalities were intro-
duced in [2] under the (more restrictive) Bakry-Emery condition. Our new result in
Theorem 3.1 is stronger than Inequality (1.2) in the sense of improving the functional
dependance of the left hand side of (1.2) on the term ‖f‖L2(dν)/‖f‖Lp(dν).

Apart from improving upon known inequalities, an additional motivation of this
work stems from studying the large-time behavior of parabolic PDEs (like in [3]). In
this context one is interested in best possible decay estimates for the time-dependent
solution to the steady state—seeking best rates, sharp constants, and exact decay
functions. So, questions like tensorization or additional information on the concen-
tration properties of the measure are not our focus here.

2. Generalized Poincaré inequalities

Consider a probability measure on R
d with density

ν(x) := e−V (x)

with respect to Lebesgue’s measure, that gives rise to a LSI (1.3) with a positive
constant CLS . Here and in the sequel we assume V ∈ W 2,1

loc (Rd). The corresponding
(positive) operator N := −∆+∇V ·∇ then has the non-degenerate eigenvalue λ0 = 0
and a spectral gap λ1 > 0. This yields the sharp Poincaré constant CP := 1/λ1, which
satisfies

CP ≤ CLS .

This is easily recovered by taking f = 1 + εg in (1.3) and letting ε → 0. As a
special case, we can for instance consider the case of the Gaussian measure ν = µ0
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corresponding to V (x) = |x|2/2 up to an additive constant. In this case the eigenvalues
of N are λk = k. For the subsequent analysis we make the following assumption:

(H) The eigenfunctions of the operator N form a basis of L2(dν).

We shall denote its (nonnegative) eigenvalues by λk, k ∈ N0. Eigenvalues with mul-
tiplicity larger than 1 are only counted once.

Remark 2.1. We now give two simple conditions for (H) to hold:

1. Let N, defined on C∞
0 (Rd), be essentially self-adjoint on L2(dν) and implying

a LSI. Then it has a pure point spectrum without accumulation points, see
Theorem 2.1 of [16]. Since λk ր ∞, (H) holds, see Theorem XIII.64 in [14].

2. With the following transformation, N can be rewritten as a Schrödinger op-
erator as follows: define g := f e−V/2 so that

∫

Rd |f |
2 dν =

∫

Rd |g|
2 dx and

∫

Rd |∇f |2 dν =
∫

Rd(|∇g|2 + V1 |g|
2) dx with V1 := 1

4 |∇V |2 − 1
2∆V . Assume

V1 ∈ L1
loc(Rd), bounded from below, and lim|x|−→∞ V1(x) = ∞. Then the

eigenfunctions of the operator −∆ + V1 form a basis of L2(dx) and (H) holds
(see Theorem XIII.67 of [14]).

Under the assumptions (H) and that N is a closed operator, we now make a
spectral decomposition of any function f ∈ H1(dν) on the eigenspaces associated to
λk. With f =

∑

k∈N0
fk, ak := ‖fk‖

2
L2(dν), one obtains:

‖f‖2
L2(dν) =

∑

k∈N0

ak, ‖∇f‖2
L2(dν) =

∑

k∈N0

λk ak, ‖e−tNf‖2
L2(dν) =

∑

k∈N0

e−2 λktak.

With these notations, we can now prove the first preliminary result, which gen-
eralizes the one stated in [7] for the Gaussian measure in the case k0 = 1.

Lemma 2.2. Let f ∈ H1(dν). If fk = 0 for 1 ≤ k < k0 for some k0 ≥ 1, then

∫

Rd

|f |2 dν −

∫

Rd

∣

∣e−t N f
∣

∣

2
dν ≤

1 − e−2λk0
t

λk0

∫

Rd

|∇f |2 dν.

Notice that the (constant) component f0 of f does not contribute to the inequality.

Proof. We use the decomposition on the eigenspaces of N. For any fk, k ≥ k0,
we have

∫

Rd

|fk|
2 dν −

∫

Rd

∣

∣e−t N fk

∣

∣

2
dν =

(

1 − e−2 λk t
)

ak.

For any fixed t > 0, the function λ 7→ (1−e−2 λ t)/λ is monotone decreasing: if k ≥ k0,
then

1 − e−2 λk t ≤
1 − e−2 λk0

t

λk0

λk.

Thus we get

∫

Rd

|fk|
2 dν −

∫

Rd

∣

∣e−t N fk

∣

∣

2
dν ≤

1 − e−2 λk0
t

λk0

∫

Rd

|∇fk|
2 dν,
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which proves the result by summation.

The second ingredient is Nelson’s hypercontractive estimate, see [13]:

Lemma 2.3. For any f ∈ Lp(dν), p ∈ (1, 2),

∥

∥e−tNf
∥

∥

L2(dν)
≤ ‖f‖Lp(dν) ∀ t ≥ −

CLS

2
log(p − 1).

To make this note self-contained we include a sketch of the proof given in [10].

We set F (t) :=
(∫

Rd |u(t)|q(t) dν
)1/q(t)

, with q(t) to be chosen later, and u(x, t) :=
(e−tNf)(x). A direct computation gives

F ′(t)

F (t)
=

q′(t)

q2(t)

∫

Rd

|u|q

F q
log

(

|u|q

F q

)

dν −
4

F q

q − 1

q2

∫

Rd

∣

∣

∣
∇
(

|u|q/2
)∣

∣

∣

2

dν.

We set v := |u|q/2, use the LSI (1.3) and choose q such that 4 (q − 1) = 2 CLS q′,
q(0) = p and q(t) = 2. This implies that F ′(t) ≤ 0, and the result holds with
2 = q(t) = 1 + (p − 1) e2t/CLS .

A combination of Lemmas 2.2 and 2.3 gives the following new result.

Theorem 2.4. Let ν satisfy the LSI (1.3) with the positive constant CLS (hence
having a Poincaré constant 0 < CP ≤ CLS) and assume (H).

(a) Then

1

2 − p

[

∫

Rd

f2 dν −

(∫

Rd

|f |p dν

)2/p
]

≤ C(p)

∫

Rd

|∇f |2 dν ∀f ∈ H1(dν) (2.1)

holds for 1 ≤ p < 2, with

C(p) :=
1 − (p − 1)α

(2 − p)
CP , α :=

CLS

CP
≥ 1. (2.2)

(b) Moreover, if f satisfies fk = 0 for 1 ≤ k < k0 for some k0 ≥ 2, then the constant
in (2.1) improves to

C(p) :=
1 − (p − 1)α

λk0
(2 − p)

, α := λk0
CLS ≥

λ2

λ1
> 1. (2.3)

Remark 2.5. (On case (a).)

1. In part (a) of this theorem, the constant C(p) depends on both CLS and CP ,
while the estimate (1.4) (obtained in [11]) only depends on CLS. The resulting
improvement of our Theorem 2.4(a) compared to(1.4) is illustrated in Figure
2.1: It shows the p-dependent constant C(p)/CLS for several values of α.

2. If the logarithmic Sobolev constant takes its minimal value CLS = CP (i.e.,
α = 1), we have C(p) = CLS, for all p ∈ [1, 2] which is the optimal constant
(consider f = 1 + εg with ε → 0 in (2.1)). However, even for the Gaussian
measure, Inequality (2.1) does not admit a non-trivial minimal function for
any 1 < p < 2 (proved in §3.5 of [3]). This motivates the interest in nonlinear
improvements of (2.1), cf. §3 below.
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Th. 2.4, α=4/3
Th. 2.4, α=2
Th. 2.4, α=4
Estimate (1.4)

Fig. 2.1. Comparison of the constants in the GPI for the known estimate (1.4) and the new
estimates of Theorem 2.4 for various values of α.

3. For fixed α ≥ 1, C(p) takes the sharp limiting values for the Poincaré in-
equality (p = 1) and the LSI (p = 2): C(1) = CP and limp→2 C(p) = CLS

(this also holds for (2.3)).

4. For α > 1, C(p) is monotone increasing in p since it is a difference quotient
of the convex function p 7→ (p−1)α. Hence, C(p) < CLS for p < 2 and α > 1,
and Theorem 2.4 strictly improves upon the constants of estimate (1.4).

5. The best constant, c(p), on the right hand side of (2.1) satisfies CP ≤ c(p) ≤
C(p), for any p ∈ (1, 2) (consider again f = 1 + εg, ε → 0).

6. Finally, Inequality (2.1) with (2.2) also gives the correct estimate for a dis-
tribution ν that only satisfies a Poincaré inequality (with constant CP ) but no
LSI, which formally corresponds to α → ∞: for fixed p we have from (2.2)

lim
α→∞

C(p) =
CP

(2 − p)
,

which corresponds to the second constant in the min of inequality (1.4) (cf.
also Theorem 4 in [2] and §2.2 in [9]).

Remark 2.6. (On case (b).) Even in the Gaussian case ν = µ0, Theorem 2.4(b)
improves on Beckner’s result for any k0 ≥ 2.
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Example 2.7.

1. CLS = CP clearly holds for the Gaussian distribution µ0.

2. An example for CLS > CP is obtained by the distribution ν(x) := cε exp(−|x|−
ε x2), x ∈ R with ε → 0, which was kindly suggested to us by Michel Ledoux.
While CP is bounded for ε ∈ [0, 1], CLS blows up like O(1/ε), which can be
estimated with Theorem 1.1 of [8] (also see [6] for a simplified approach and
§3 of [12] for a review of applications in geometry).

3. A refined interpolation inequality

While (1.2) is a linear inequality between the p-entropy (or p-variance) on the
left hand side and the energy on the right hand side, we shall now derive nonlinear
improvements of it. An inequality stronger than (1.2) has been shown by the first and
the third author in [2]. Under the Bakry-Emery condition on the measure dν, they
proved that for all p ∈ [1, 2):

1

(2 − p)2

[

∫

Rd

f2 dν −

(∫

Rd

|f |p dν

)2( 2
p
−1)(∫

Rd

f2 dν

)p−1
]

≤
1

κ

∫

Rd

|∇f |2 dν

(3.1)
for any f ∈ H1(dν), where κ is the uniform convexity bound of − log ν(x). The
estimate (1.2) is a consequence of this inequality (and hence weaker). This can

be shown using Hölder’s inequality,
(∫

Rd |f |
p dν

)2/p
≤
∫

Rd f2 dν and the inequality
(

1 − t2−p
)

/(2− p) ≥ 1− t for any t ∈ [0, 1], p ∈ (1, 2). With the same notations as in
Section 2, we can prove the following new result:

Theorem 3.1. Let ν satisfy the LSI (1.3) with the positive constant CLS and assume
(H). If f ∈ H1(dν) is such that fk = 0 for 1 ≤ k < k0 for some k0 ≥ 1, then

λk0
max

{

‖f‖2
L2(dν)−‖f‖2

Lp(dν)

1−(p − 1)α
,

‖f‖2
L2(dν)

| log(p − 1)α|
log

(

‖f‖2
L2(dν)

‖f‖2
Lp(dν)

)}

≤ ‖∇f‖2
L2(dν)

(3.2)
holds for 1 ≤ p < 2, with α := λk0

CLS ≥ 1.

Proof. We shall proceed in two steps and derive first for all γ ∈ (0, 2) the following
inequality, which is inspired by (3.1):

1

(2 − p)2

[

∫

Rd

f2 dν −

(∫

Rd

|f |p dν

)
γ
p
(∫

Rd

f2 dν

)
2−γ

2

]

≤ Kp(γ)

∫

Rd

|∇f |2 dν,

(3.3)
with

Kp(γ) :=
1 − (p − 1)αγ/2

λk0
(2 − p)2

.

Step 1: The computations are analogous to the ones of Theorem 2.4. With the same

notations as above, the squared bracket of (3.3) can be bounded from above by

N := ‖f‖2
L2(dν) −

∥

∥e−tNf
∥

∥

γ

L2(dν)
‖f‖2−γ

L2(dν)

= a0 +
∑

k≥k0

ak −



a0 +
∑

k≥k0

ak e−2λkt





γ
2


a0 +
∑

k≥k0

ak





2−γ
2
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for any t ≥ −CLS

2 log(p − 1) as in Lemma 2.3. By Hölder’s inequality, we get

a0 +
∑

k≥k0

ak e−γλkt = a0 +
∑

k≥k0

(

ak e−2λkt
)

γ
2 · a

2−γ
2

k

≤



a0 +
∑

k≥k0

ak e−2λkt





γ
2


a0 +
∑

k≥k0

ak





2−γ
2

.

Then

N ≤
∑

k≥k0

ak

(

1 − e−γλkt
)

can be bounded as in the proof of Theorem 2.4:

N ≤
1 − e−γλk0

t

λk0

∑

k≥k0

λk ak =
1 − e−γλk0

t

λk0

∫

Rd

|∇f |2 dν,

using the decay of λ 7→
(

1 − e−γλt
)

/λ. The result then holds with

e−γλk0
t = (p − 1)γλk0

CLS/2.

Step 2: Next we shall optimize Inequality (3.3) w.r.t. γ ∈ (0, 2). After dividing
the left hand side of (3.3) by Kp(γ), we have to find the maximum of the function

γ 7→ h(γ) :=
1 − aγ

1 − bγ
, with a =

‖f‖Lp(dν)

‖f‖L2(dν)
≤ 1, b = (p − 1)α/2 ≤ 1

on γ ∈ [0, 2]. We write h(γ) = g(bγ) with

g(y) :=
1 − y

log a
log b

1 − y
.

For a < b < 1 the function g(y) is monotone increasing (since it is a difference quotient
of the convex function ylog a/ log b). Hence, h(γ) is monotone decreasing. Analogously,
h is monotone increasing for b < a < 1. Hence, the maximum of the function h(γ) on
[0, 2] is either h(2) (if a > b) or limγ→0 h(γ) (in the case a < b). This yields the two
terms in the max of (3.2).

Remark 3.2.

1. The limiting cases of (3.2) are the sharp Poincaré inequality (p → 1, for
k0 = 1) and the LSI (p → 2).

2. Note that the first term in the max of (3.2) exactly corresponds to the linear
inequality (2.1). Hence, the statement of Theorem 3.1 is always at least as
strong as Theorem 2.4. The second term in this max is dominant iff

‖f‖Lp(dν)

‖f‖L2(dν)
< (p − 1)α/2 ,

as is seen from the above proof. In this case Inequality (3.2) strictly improves
upon (2.1).
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3. For the special case when α = 1 and k0 = 1, we now compare the new
theorem, Theorem 3.1, to the known inequality (3.1). Since the latter was
obtained in [2] under the more restrictive Bakry-Emery condition, we assume
here CP = CLS = 1/κ, which makes this comparison very conservative.
For ‖f‖Lp(dν)/ ‖f‖L2(dν) “large” (i.e., a > b), (3.2) coincides with the linear
inequality (1.2), and (3.1) is strictly stronger. On the other hand, for “small”
‖f‖Lp(dν)/ ‖f‖L2(dν), the new estimate (3.2) is stronger than (3.1).

0 1 2 3 4 5 6
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

GPI: nonlinear refinements, p = 1.5

Ineq. (3.1), k1(e)/e

Ineq. (3.2), k2(e)/e

k
1
(e

)/
e,

k
2
(e

)/
e

e

Fig. 3.1. Comparison of the nonlinear refinements of the GPI (1.2) for α = 1 and p = 1.5:
The estimate (3.1) is known from [2] and estimate (3.2) is new.

In Figure 3.1 we illustrate this comparison (still in the case α = 1 and CLS =
1/κ) between the inequalities (1.2), (3.1), and (3.2). To this end we rewrite
them in terms of the non-negative functionals

ep[f ] :=
‖f‖2

L2(dν)

‖f‖2
Lp(dν)

− 1, Ip[f ] :=
2(2 − p)

‖f‖2
Lp(dν)

‖∇f‖2
L2(dν).

Note that ep[f ] is a scaled version of the p–entropy on the left hand side of
(1.2). The GPI (1.2) is then the following linear lower bound for Ip[f ]:

ep[f ] ≤
1

2κ
Ip[f ],

while (3.1) and (3.2) are the nonlinear refinements:

k1(ep[f ]) ≤
1

2κ
Ip[f ], k1(e) :=

1

2 − p
[e + 1 − (e + 1)p−1] ≥ e,



A. ARNOLD, J.P. BARTIER AND J. DOLBEAULT 979

and, respectively,

k2(ep[f ]) ≤
1

2κ
Ip[f ], k2(e) := max

{

e,
2 − p

| log(p − 1)|
(e + 1) log(e + 1)

}

≥ e.

We remark that for the logarithmic entropy similar nonlinear estimates are dis-
cussed in §§1.3, 4.3 of [12].
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[1] C. Ané, S. Blachère, D. Chafäı, P. Fougères, I. Gentil, F. Malrieu, C. Roberto and G. Schef-
fer, Sur les inégalités de Sobolev logarithmiques, Société Mathématique de France,
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[15] F.Y. Wang, A generalization of Poincaré and log-Sobolev inequalities, Potential Analysis,

22, 1–15, 2005.
[16] F.Y. Wang, Functional inequalities for empty essential spectrum, J. Functional Analysis,

170(1), 219–245, 2001.


