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INTERPOLATION BETWEEN SOBOLEV AND
BETWEEN LIPSCHITZ SPACES OF ANALYTIC FUNCTIONS

ON STARSHAPED DOMAINS

EMIL J. STRAUBE

Abstract. We show that on a starshaped domain Í2 in C" (actually on a
somewhat larger, biholomorphically invariant class) the .S^-Sobolev spaces of
analytic functions form an interpolation scale for both the real and complex
methods, for each p , 0 < p < oo . The case p = oo gives the Lipschitz scale;
here the functor (, )lel has to be considered (rather than (, )[ej).

1. Introduction and results

The intermediate spaces between Jz^-Sobolev and Lipschitz spaces of ana-
lytic functions obtained from the complex method have been identified recently
in a series of papers by Ligocka [Li 1-2] in the case where Q is a smoothly
bounded strictly pseudoconvex domain in C" and 1 < p. Certain weighted
spaces were considered in [Be]. Both [Li 1-2] and [Be] rely heavily on (strict)
pseudoconvexity and smoothness of the boundary via estimates for the Bergman
projection [Li 1-2] and Henkin-Ramirez type kernels [Be].

It is the purpose of this paper to initiate a study of such interpolation prob-
lems in situations where these tools are not available. We do this by studying
the case of starshaped Í2 with Lipschitz boundary (actually a somewhat larger,
biholomorphically invariant class of domains; compare Remark 1, this section),
and p fixed (but 0 < p < oo). We show that the Jz^-Sobolev and the Lipschitz
spaces (this is actually the case p = oo ; see below) form an interpolation scale
for the complex and the real methods. See Theorems 1 and 2 for the exact
statements. On the basis of Ligocka's results in the smooth, strictly pseudocon-
vex case, one may expect the i?p-Sobolev spaces of analytic functions to form
a double interpolation scale (i.e., interpolation also between different p 's) for
the complex method, but the present methods do not seem to give this. The
problem is that while in starshaped domains passage between different numbers
of derivatives is fairly easy (Lemma 8, §2), passage between different p 's is not
(fractional powers are multiple valued; regularity of the Bergman projection is
not available). Concerning the real method, we note that in a scale of Jz^-type
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654 E. J. STRAUBE

spaces (such as the As'p), the value of the second interpolation parameter (the
" q ") is dictated by the intermediate space. What makes things work here for p
fixed is the fact that one is essentially interpolating between the domain of the
kth power of an operator and the full space (see §4 for details). Finally, we point
out that the tools we use are elementary: we exploit the fact that membership in
the spaces in question is determined by the behavior of radial derivatives only,
together with the natural semigroup structure induced by z *-* e~ z.

Before we can state our results, we must introduce some notation. Let Q be
a bounded domain in C". Q is called starshaped with respect to a point Peü,
if any ray with origin P has a unique common point with bQ.. In what follows,
we assume P = 0. If we introduce polar coordinates (r, 6), then dû. is given
by r = r(6). We call Í2 starshaped with Lipschitz boundary if r(6) satisfies a
Lipschitz condition (as a function on the unit sphere S "~ ). It is easy to see
that this is equivalent to Q. being starshaped with respect to all points P in a
ball centered at 0 [M, §1.1.8]. In particular, all convex domains are starshaped
with Lipschitz boundary.

0(£l) denotes the space of analytic functions on Q (usually with locally
uniform convergence). Let 0 < p < œ, îeR. Denote by k(s) the smallest
nonnegative integer greater than or equal to 5. We denote by As'p(Cl) (or
simply As'p) the following space:

;i)   As'p(Cl):=\feO(Ci)/\\f\f s,p

k(s)-l

:= [ \skis)-V(i)/r +  T  \VJf(0)\<œ
Jn j=0

Here, ô denotes the distance to bQ., and VJ f denotes the vector of all deriva-
tives of order j. Then \\f\\s is a norm if 1 < p and a quasi-norm if
0 < p < 1 . Some comments are in order. First, for s e N k(s) = s, and
it follows easily from Lemma 1 below that As,p is the usual Sobolev space of
analytic functions whose derivatives through order s are p th power integrable.
Second, if s is a negative integer, k(s) = 0, and Lemmas 1 and 8 below imply
that the norm in AS'P(Q) is equivalent to the usual Sobolev norm for negative
integer index. Thus, for s integer, the spaces As'p(Ci) are the usual Sobolev
spaces of analytic functions. For 5 fractional, ( 1 ) gives a convenient intrinsic
description of the intermediate spaces that arise from interpolation.

For p = oo , we set

(2)   As'°°(Sl):={feO(Çl)/\\f\\s

k(s)
sk(s)+\-sr7k(s)+\:= sup |¿*W+'-V(,,+1/| + £ |VV(0)| < oo

-"eii ,=o
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For s > 0, denote by A (Q) the usual Lipschitz spaces on Í2 [K2, §8.8]. Then
AS'°°(ÇÎ) = AfSÎ) n O(Cl), and \\f\\s ̂  is equivalent to the Lipschitz-s norm;
i.e., As'°°(£l) is (for s > 0) the Lipschitz-s space of analytic functions in Q.
This is contained in Lemma 5 below. Note that A '°°(Q.) is the Bloch space
on il, not the space of bounded analytic functions. It is in fact for the case of
s e N that we need k(s) + 1 instead of k(s) in (2). This gives an asymmetry
in comparison to (1). This, however, is only superficial: Lemmas 1 and 2 show
that one can choose in (1) and (2) any integer k > k(s) as well and obtain an
equivalent norm. Thus the Lipschitz scale is truly the p = oo version of the
Sobolev scale (in the case of analytic functions).

Finally, we denote by (As° '", As> 'p)e p , (As° '" , ASl 'p)[f)], and (As° *, ASi 'p)m
the intermediate spaces obtained by the real ( , )g     functor and the complex
( , ).g. and ( , )     functors, respectively. For notation and definitions we refer

the reader to [B-L]. Although (A0,Ax).g] and (A0,Axy ] are not defined for
general pairs of quasi-Banach spaces, there is no problem here: the construction
is meaningful also in the case 0 < p < 1 (and leads to interpolation theorems,
since the relevant quantities are subharmonic).

We can now state our main results.

Theorem 1. Let Q be starshaped with Lipschitz boundary, let -oo < s0, sx <
oo, 0 < p < oo, and 0 < 6 < 1. Then
(3) (AS0 * , As> 'p)g p = (ASo 'p , ASl 'p)m = (ASo '" , As> 'pf] = AS>",

with equivalent norms, where s = (1 - 9)s0 + 9sx .

Theorem 2. Let £2 as above, -oo < s0, sx < oo, and 0 < 6 < 1. Then

(4) (ASo'°° ,ASl'°°)e!00 = (ASo'°° >As"°°f] = As'°°,

with equivalent norms, where s = ( 1 - 6)s0 + 6sx.
Remark 1. The conclusions of Theorems 1 and 2 automatically hold for do-
mains which are biholomorphic images (under biholomorphisms smooth up to
the boundary) of starshaped domains (since then the As'p are isomorphic). Such
domains need not be starshaped. It turns out that somewhat stronger versions
of Theorems 1 and 2 hold, where the assumptions are invariant under biholo-
morphisms which are smooth up to the boundary: assume there is a vector field
X of type (1,0) with coefficients analytic in Í2 and smooth on Q, such that
X + X points inside Q everywhere on bfAl (assume here that b£l is C1 for
simplicity). Then the proofs will go through; the contractions z i-> e~'z have
to be replaced by zu exp(-t(X + X))(z). In particular, Theorems 1 and 2
remain true for the domains considered in [Ba]. Note that in the starshaped
case, X = Yfs=xz]d/dzr

On the other hand, the case where these conditions are readily verified is that
of a starshaped domain, or of a biholomorphic image of a starshaped domain,
and so we have stated our theorems for this case.
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Remark 2. Theorems 1 and 2 also hold for the corresponding spaces of harmonic
functions (here, Q c R" ) ; the proofs go through verbatim. For 0 < p <
1, one has to use that \u\p , although no longer subharmonic, still satisfies a
subaveraging inequality with a suitable constant on the right-hand side; see [G,
Lemma 3.7, Chapter III] and [F-S, Lemma 2, p. 172].

Remark 3. In Theorem 2 let sQ < sx .   Then  (As°'°° ,AS' '°°)iei = As'°° ^
, •»• gvuvicu, cin^e ASl '°° is dense in (As° '°°, As' '°°),g,,

[6]

(ASo'°° ,As''00).g, in general, since ASl'°° is dense in (ASo'°° ,AS' '°°),g], but not

in As'°°.   In [Li 1-2],  ( , ).fll  was considered for the As* '  scale, where
denotes completion with respect to As°'°° [K-P-S, Chapter IV, §1.6]. It is not
hard to see that in our case also (As°'°° ,AS' '°°)l6] = (ASo'°°,As> •°°)[g].

The remainder of the paper is organized as follows. In §2, we collect some
auxiliary results and study a family of operators R,, Ç G C. These operators
are needed in the proofs, given in §3, of the results concerning the complex
methods. In §4 we give the proofs concerning the real method. §5 contains
versions of Hardy's inequalities when 0 < p < 1 . These are needed to obtain
crucial properties of the operators R^, as well as in the proofs in §4.

Acknowledgment. The author is indebted to H. P. Boas for numerous discus-
sions concerning Sobolev norms of analytic functions.

2. Auxiliary results

In this section we collect various facts and results needed in connection with
Theorems 1 and 2. The first part is concerned with Sobolev and Lipschitz norms
of analytic functions.

Lemma 1. Let ilcC" be a bounded, starshaped domain with Lipschitz bound-
ary, 0 < p < oo, q > -I, and s e N. There is a constant C such that for
every analytic function f in Q we have

s—l

(i)    c"1 / âq\ssvsf\p < f âq\f\p <c  i ôq\âsvsf\p + Tiv7(0)|
Jci Jo. 7o_ j=0

where S = S(z) denotes the distance to the boundary, and Vs denotes the vector
of all derivatives of order s.
Proof. It is enough to prove (1) when 5=1 (by induction). The left inequality
is a standard consequence of the subaveraging properties of |V/|P (see, e.g.,
the proof of Lemma 1 in [D]).

To prove the right-hand inequality (for 5=1) one can adapt the proof of
Proposition 1 in [D], replacing integration in the y direction by integration
in the radial direction. Note that the Lipschitz condition on bQ. implies that
the boundary distance and the distance to the boundary measured along the
radial direction compare. An alternative argument is as follows. Write / as
an w-fold integral in the radial direction of Vm/, where m is chosen so that
q + mp > 0. To estimate this integral, replace |Vm/(z)| by |Vm/(z)|*  (see
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(3) below) if 0 < p < 1, to get a monotone function, and then apply Hardy's
inequality (see Lemma 1, §5) m times (compare the proof of Lemma 8 for
details). Since q + mp > 0, we can apply Lemma 3 below (with q + mp in
place of q), to get rid of the *. Finally, the left-hand inequality in (1) already
established allows us to trade m - 1 powers of V against p(m- 1) powers of
S , and the right-hand inequality in (1) follows (for s = 1).   D

Lemma 2. Let Q be as above, s e N, and q > 0. There is a constant C such
that for every analytic function f in Q we have

(2)      C    sup ¿9|<fv7|< supcT i/i <c
n o

sup75?|aV/| + 2^|VJ/(0)|
j=o

Proof. The left inequality follows by a standard argument, placing a ball of
radius comparable to S(z) at z eü.. The right inequality follows by repeated
integration in the radial direction (since q > 0).   D

If g is a function on Q, we set

(3) g*(z):=sup\g(e~'z)\;
7>0

i.e., the * denotes the radial maximal function. We will need (for 0 < p < 1)
continuity of the '-operator in (volume!) p-norms on analytic functions. Under
suitable smoothness assumptions on ¿?Q (C would do), this follows easily
from subharmonicity of \f\p' and the usual estimates for the nontangential
maximal function on the boundary of a domain. With only Lipschitz boundaries
such estimates are available [Da], but the proofs are indirect arguments and it is
not clear how the constants involved depend on the domain. Fortunately, what
we need here is much more elementary.

Lemma 3. Let Q as above, 0 < p < oo, and q > 0. Then there is a constant
C such that

(4) f ôq(\f\*)p <C [ ô9\f\pJn Ja
for all analytic functions f in Q.
Proof. Starting with a Whitney decomposition ([Ste, p. 167]; see also [C-W,
Theorem 3.2 in the context of general homogeneous spaces]) one can find a
sequence of balls B(z.,r.) with radius r. and center zefl such that (for
example) 20^ < ô(zf) < lOOr, each point of Q is contained in at least one
of the B(Zj,rf , and no point of Q is contained in more than 2002" of the
larger balls B(zj, 2rf). Denote by x¡ the characteristic function of B(z., r) .
Then

(5) \/{\f\pf<Y.\/^ff\p)*
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(by Fatou's lemma), x ,-|/|P is supported on (the closure of) B(z.,rf. Since r
compares to S(zf, (xÁfff is supported on a set whose measure is dominated
by r". Moreover, on that set, ô is dominated by r. (and so aq < rq , since
4 > 0), and (xffff is at most equal to sup{|/(z)|p | z e B(z., r.)} . Thus

(6) jjq(xffff Zr2f+qsup{\f(z)\p \zeB(zj,rj)}

*tjf     imfzf     sq\f\p.
JB(Zj,2r,) JB(z,,2rl)

Here we have used that for z e B(z.,r.),

\fWf S rf2n f       \ff<rf2"f \ff.
JB(z,rj) JB(Zj,2r¡)

We have also used that on B(z., 2r )  ô compares to r.. (4) now follows from
(5) and (6) (since no point of Q is contained in more than 200 " of the balls
B(zj,2rf).    D

We denote by X the vector field Yfj=\ z-d/dz.. Note that on analytic
functions X is essentially differentiation in the radial direction. Proposition
4 shows that membership in A5'p (p < oo) is determined by the behavior of
the radial derivative. Q is still starshaped (with respect to 0) with Lipschitz
boundary.

Proposition 4. Let 0 < p < oo, q > -I, and s e N. Then there are a compact
subset K of Q and a constant C such that for every analytic function f in fi
we have

(7) ¡JQ\Vsf\p < C ̂ ôq\Xsf\p + j l/l") .
Proof. By induction (note that Xf is also analytic), it suffices to consider the
case s = 1. Thus one must show that

(8) fôq\Vf\p< [ôq\Xf\p+ f \f\p.
Ja Ja Jk

This follows by slightly modifying the arguments in [D]. We also sketch a some-
what different argument. We can write V/ as an integral in the radial direction
of XVf. Dominating |AV/| by |VA/| + |V/| (since [A,V] is first order)
and applying Hardy's inequality (Lemma 1, §5) to the integral in the radial
direction, one obtains (see again the proof of Lemma 8 for details)

(9) I Sq\Vf\p < f ô"(ô\VXf\y + [ ôq(ô\Vf\*)p + f \f\p.
Ja Ja Ja Jk

If q + p > 0, we apply Lemma 3 and the left-hand inequality of Lemma 1,
and repeat the same kind of argument for ¡nSq\f\p to obtain (8). In general,
we have to choose m so that q + mp > 0 and then write V/ as an iterated
m-fold integral of XmVf.   u
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Membership in A (Q) n O(Q) is equivalent to a growth condition on the
derivatives of /. This is known, but a proof for the case of Lipschitz boundary
seems to be hard to find in the literature; for the case of C -boundary (but
harmonic functions) compare, however, [Kl, Proposition 4.1].

Lemma 5. Let 0 < 5 < oo, k an integer > s. An analytic function f belongs
to AfQ) if and only if

(10) sup(y*-i(z)|vV(z)|<oo.
zea

(11) sup/-í(z)|vV(^l + ElVV(0)|
zea

Moreover,
k-\

'V(z)| + 5

provides a norm which is equivalent to the Lipschitz-s norm on AfQ) n 0(Q).
Proof. We indicate how to adapt the proof of Zygmund's original result (essen-
tially Lemma 5 for the unit disk) given in Duren's book [Du, proof of Theorem
5.3]. The fact that / e AfQ.) implies (10) follows by placing a ball of ra-
dius S(z)/2 at z e Q and then using the symmetries of the Poisson kernel for
this ball; otherwise the argument is as in [Du]. For the reverse direction, the
argument is almost the same as in [Du]; again the Lipschitz condition on bQ.
implies that the (true) boundary distance and the one measured along the radial
direction compare. The fact that our norms are over the interior is no essential
complication.   D

We next show that in (10) and (11) it suffices to consider radial derivatives
(this is the analog of Proposition 1.4). For the case of C boundary, compare
again [Kl, Theorem 7.5].

Lemma 6. Let Q be as above, k e N, and q > 0. There exist a constant C
and a compact subset K of Q such that for all analytic functions f in Cl

(12) sup{S(z)q\Vkf(z)\} < C (supâ(z)q\Xkf(z)\ + sup|/(z)|) .
zea \zea zeK )

Proof. The proof is by induction on k . First, let k = 1 . Let K be any compact
subset of Q that contains a neighborhood of 0. Set M := siyp   ^{^[Xf\\ +
supreA-{|/|} . Then \Xf(z)\ < M/6(z)q , and so (since S(r6) « ~r(6) - r)

+ 1 ) ,    î#l,
(13) \f(z)\z{ " \ö(z)«-1

M(\logâ(z)\ + l),      q=l.
Therefore, in either case of ( 13),

(14) |V/(x)|<      M   ,.i   -M   >\     S{z)q+X
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Also,

(15) |AV/(z)| < |VA/(z)| + |V/(z)| < M/ô(z)q+l+M/ô(z)q+l ,

since Xf is analytic (for the first term) and in view of (14) (for the second
term). (15) gives the desired conclusion upon integration in the radial direction
(note that X = rd/dr on analytic functions).

Next, let k > 1 and assume the lemma holds for all integers up to k - 1.
By the induction hypothesis (note again that X "'/ is analytic)

supl^lvVl) S sup^V'-'v/D + suplV/l
zea zea zeK

< sup{^|VAA-'/|} + sup{ôq\Vk-lf\} + sup |V/|
zea zea zeK

(16) <sup{¿V\/l} + sup|,r*-7l
zea zeK'

+ snp{ôq\Xk-lf\}+ sup |/| + sup|V/|
zea zeK" zeK

< snp{ôq\Xk f\} + sup l/l,
zea zeK"1

where K.'" is sufficiently large. In the last inequality in (16), we have again
used integration in the radial direction to estimate X ~x f from the bound on
Xkf (similar to (13)).    D
Remark 1. Lemmas 5 and 6 together show in particular that if an analytic
function is in As for all 1-dimensional complex slices through 0, with A^-norm
bounded independently of the slice, then / is in A$ on £2.

On 0(Çl), we now define a one-parameter family of operators; here, the
parameter Ç is in C. The operator will depend analytically on £. For Ç
given, choose a nonnegative integer m such that Re Ç + m > 0. Then we set

Here T(-) denotes the gamma function. Integration by parts shows that the
right-hand side of (17) is independent of the choice of m ; also note that since
Re £ + m - 1 > -1, the integral in ( 17) is absolutely convergent. For / e 0(£2),
fixed, RA depends analytically on Ç (in the topology of locally uniform con-
vergence). For a general Ç, we find after performing the m-fold differentiation
with respect to /,

"8)     RA^--ñf^)íf'^-\tfm1)x'ne~'2)d''
Note that if xt is the semigroup on A°'p defined by xtf(z) := f(e~'z), then its
generator is -X, and 7?f is essentially the Çth power of (1 + X)~ . (See [H-
Ph] for the functional calculus for the resolvent of a semigroup, via the Laplace
transform.)
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Lemma 7. 7?0 is the identity, i.e., R0f = f, and
(19) 7?, Rr = Rr Rr = Rr j» .V ' íl       Í2 Í2       í\ Í1+Í2

Proof. That 7?0/ = / is immediate from (17); choose m = I. To prove (19),
first let Re Cj > 0, Re Ç2 > 0 (in order to simplify (17)). A direct computation,
using the fact that

,/;
l<l-af-V>->d«-r^™

,o r(c, + c2)'
then shows that

(20) WW = Vr/i*) = \hJW-
Keeping / and z e Q fixed, (20) extends to all Çx, Ç2 by analytic continua-
tion.   D
Remark 2. Note in particular that 7?, and R r are inverses of each other.

Remark 3. Note further that R_x = 1 + X, hence R_k = (1 + X)k . This is
immediate from (17), but it should of course be viewed in the context of the
remarks made before the statement of Lemma 7.

Lemma 8. Let 0 < p < oo, s eR, Ç e C. Then R^ is an isomorphism from
As'p(fl) onto As+ReC'p(Cl). Moreover, ifa<ReÇ<b, there are constants Cx =
Cx(a,b,s,p) and C2 = C2(a,b) suchthat || V"||J+ReCj, < C,cC2|Imil||/||Jf,.
Proof. It suffices to show continuity of Rr (all Ç). The fact that Rr is then
actually an isomorphism follows from Lemma 7. The proof will give the re-
quired control on the constants. We first do the case 0 < p < oo. Choose an
integer k > max{0,5,5 + ReÇ}. Then, by Lemma 1 and Proposition 4.

(2i) hvi£+Rec ~ / (¿*"î-Re V VD'+ E I?'V(o)f+ / i*c/ip-
Ja j=0 Jk

It is implicit in the proofs of Lemma 1 and Proposition 4 that the constant in
(21) can be chosen independently of Ç, as long as a < ReÇ < b. The last
two contributions in (21) can be estimated by sup^ |7<i/l for a suitably large
compact subset K of Q, and hence by the sup-norm of derivatives of / over a
(possibly larger) compact subset of Q . These in turn are estimated by „
It remains to estimate the integral in (21).

To this end, choose a nonnegative integer m such that a + m > 1. Then

<22>  xkRA^ = wér)ff'Hm~''~'(t(n;)^kf(e-'^ di.
We consider the term in (22) corresponding to f = m; the other terms can
be treated similarly (and in fact behave even better). Fix z0 e bCl, and let
z = e~xz0 , and set

(23) i/   \ I       X+m-\   -t v-m+k r,   -(7+.v)     ,   ,^h(x) ■= \    v        e   X      f(e zA)dt.
Jo
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Then (note that Re C + m - 1 > 0)
/•oo

i   -x i /    m  ^    I       ,Rei+7?î-l   -(t+x), „m+k r,   -(t+x)      ,.   • „k    Ä(*)l <  /     t e       '\X      f(e z )\dt
Jo'0

fOCroo
< A   (/ + x)Reí+m-'e-('+JÍ,|Am+7(^('+;C)^)l^

(24) Jo
=  /    cTRef+m-^-CT|Am+V(^^o)^

roo
.     I Re f+771-1    -rr. vm+k r,*,   -a     ,    ,< /     a e    \X      f\ (e    z0)da,

J X

where the * is to be interpreted as a null symbol when p > 1 (i.e., \Xm+kf\* =
\Xm+ f\ in this case) and as denoting the maximum of |Am+ f\ on the line
segment joining 0 and z = e~az0 otherwise. The point is that |A'"+ f\* and
hence e~a\Xm+ f(e~azQ)\* are nonincreasing. This allows us to apply Hardy's
inequality (see Lemma 1, §5) even for 0 < p < 1 . The result is

/•OO
/    (xk-s-Keie-x\h(x)\)pdx
Jo

/•OO
< /    (xk-s-RelxRei+me-x\Xm+kf\*(e-xz0))pdx

(25) Jo
I      ,   k+m—s   —x, „m+k r.» ,   —x     ,,p   ,= /    (x e    \X     f\ (e    z0)fdx

Jo

-f\xk+m-s\Xm+kf\\e-xzü))pdx + \\f\\fp.

In the last inequality we have used to fact that for x > 1, f(e~xzQ) is domi-
nated independently of x and zQ e bQ, by \\f\\s , since then e~xzQ is con-
tained in a fixed compact subset of £2.

As mentioned above, the terms in (22) arising for 0 < j < m - 1  can be
treated similarly, and the resulting estimate for X R.f becomes
(26)

f(xk-s-*ei\XkR,f(e-xz0)\)p dx < ) r(xk-s-ReCe-x\h(x)\)pdx
Jo 4 1 (Q + my Jo

1
S J>

f   .   k+m-s, vm+k r,*,   —x     .,p   ,~T(C + m)p[J0iX lX      fl{e    Z°))dX +

Noting that to estimate the integral in (21), it suffices to estimate the integral
over £2\7\", for an arbitrary compact subset K, and that ô(z) compares to
r(0) - r (z = rO), we get from (26) (by splitting the integration over slices and
radial direction)

j {Sk-s-Re<     kR        P s 1 i j {sk+m-s      k+mfly +
(21)    Ja 4 T(Ç + mf [Ja

sfrâ[/y™"^™^-.»
p
s .p
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The last inequality in (27) (nontrivial only for 0 < p < 1) follows from Lemma
3. (27) proves Lemma 8 (for p < oo), except for the behavior of l/T(Ç + m).
But Stirling's formula (for example [H, Theorems 8.5b and 8.5a]) shows that
l/r(í + m)<C1é>C2|Imíl with C, and C2 as required.

The case p = oo can be done using Lemmas 2, 5, and 6. Since only sup-norms
have to be estimated, the situation is considerably simpler: it suffices in (24) to
estimate \Xm+k f(e~a zQ)\ by \\f\\s p/ok+m~s to get the required estimate, i.e.,

\e~xh(x)\ < U/H, p/xk~s~Re!:. We leave the details to the reader.
This completes the proof of Lemma 8.     □

We will also need that 7?,/, for / fixed, is analytic in Ç as a function with
values in some of the (quasi) Banach spaces that we are considering. This is
contained in the next lemma.

Lemma 9. Fix f e A ,p(£2), 0 < p < oo. Then R^f is an analytic A 'p(£2)-
valued function in {ReÇ > 0}. If p < oo, this function is continuous on
{ReC > 0}, with Ris = Rx+[S(f + Xf), seR.
Proof. For analyticity, it suffices to consider A¡.f(z) := ff° I e~'f(e~'z) dt.
Then (d/dO(A¡.f(z)) = ff° log t • f~l e~ ' f(e~'z) dt (for z e £2 fixed). But the
arguments used in the proof of Lemma 8 show that (â/dÇ)(Ai.f(z)) e A 'P(Q)
and that the difference quotients converge not only for z fixed, but in A 'p(£2)
(use that logt ■ tRe '    is bounded near 0).

Now let p < oo. Fix £0 with Re Ç0 = 0, and let £„ —► C0 as « —> oo.
Integration by parts shows that R,f = 7x\+1 (f+Xf), for Re Ç > 0. Therefore,

(28) limR   f = R      (f + Xf),
71—»OO        ''" "T1

provided / e A[,P(Q.) (so that Xf e ^°'p(£2)), by what we have already
shown. But A 'p is dense in A 'p (use dilatations), and the norms of 7?f (as
operators on A 'p) are bounded independently of n (Lemma 8). It follows
that (28) holds for all / e A0'" (note that / i-> R¡.   X(f + Xf) is a continuous
operator on A '" , according to Lemma 8). This completes the proof of Lemma
9.   D

3. The complex method

We begin by showing that
(l) (As°'p,ASl'p)wx = As'p,       p<oo,

where

(2) s = (l-6)s0 + 6sx.

Without loss of generality, let s0 < sx . First, let / e (As°,p, As' 'p)[g]. Fix f >
0. Then there is an analytic (that is, the complex derivative exists at each point
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C of S) function F(Q in the strip S := {C € C | 0 < ReC < 1} , with values
in As° 'p, bounded and continuous on the closure S of S, with the following
additional properties. The value of F at Ö is /; i.e., F(6) = feAs°'p. The
functions t h-> F(j + it) (j = 0,1) are continuous functions from the real line
into As¡ 'p , which tend to zero as \t\ —► oo . Finally,

max{sup||F(/0||w, sup||F(l + «)\fj < \\f\\ie] + &-

Here, ||/||[ö] denotes the norm of / in (As°'p ,As,,p)[g,. Choose a positive
integer k > sx , and consider

(3) h(Q:= [   \Sk-{,-Qs°-isfz)VkF(r,z)\pdV(z),
7nr

where Vr denotes the gradient with respect to z, F(Ç,z) is F(Q evaluated at
z e £2, and £2r := {z e £2 | ô(z) > <§*} . Then h(Q is bounded and continuous
on S and subharmonic on S. Moreover

(4) |A(l + /f)|=   f   (S(z)k-s'\Vk_F(l + it,z)\)pdV(z)
Jas

^(\\F(l + it)\fp)p^(\f\\m + ̂ )p,
by Lemma 1 (with constant independent of I* since fn   < fa) ■ Similarly,

(5) I*(i0l S (11^(10^/S (||/||[fl] + r)J'.
The three-line theorem yields (in view of (4), (5))

(6) |A(ö)|S(||/||[fl] + rA
Since the constant in (6) does not depend on %, letting f tend to zero yields

(7) j \ô(z)k~sVkzF(r, z)\p dV(z) < (\\f\\mf ,

which is the desired conclusion (5Z;=o \^J f(®)f is similarly seen to be bounded
by ll/ILi + S') • A similar argument occurs in [Be] in the proof of Theorem 1.3.

Next, assume that / e As'p . Set

(8) F(r,z):=e?-b R(Si_sMC_gJ(z).

For C e 5 fixed, F(Q e ^+<"-*<»(**í-<»./> = ¿*+(*-*)ReCj» by Lemma 8.
Thus F has values in As° 'p . Also, as a function with values in As° 'p , F is
analytic in S ; in view of Lemma 8, this follows from Lemma 9.  Of course,
F(G) = f. And

7-2     fl2i  — r
(9) H-^i^) IU0+Re C(i, -j0) ,p ~ \e 111-^(5,-i0)(C-e)-'llío+Reí(

-(Im{)2   C|ImCI,
u »sj> '
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thus F is bounded on S (as an As° 'p-valued function). Lemma 9 (again in
view of Lemma 8) also shows that F is continuous on S. (9) further shows
that for j = 1,2, F(j + it) -> 0 as (t) -> oo, and finally that

(10) max{sup||F(/OIIJo,p, sup||F(l + ¿OU,,,,} S \\f\\s,-
This completes the proof of ( 1 ) above.

Next, note that in general (A0,Ax).g. c (A0,AX)[ '. The argument in [B-
L] (proof of Theorem 4.3.1) also works for 0 < p < 1 (if instead of the
quasi-norm ||/||      one considers the distance to the origin d(0,f)). To see
that (ASo'p ,As,ff] c As'p, choose G(Ç), analytic in S (values in As°'p),
continuous on S, with ||C7(OIIJo p < C(l + |C|), such that

(11)
max   sup

\ fl ,'2

G(itx)-G(it2)
tx-t2

, sup
Aso J>     'i -'2

G(l + zí.)-C7(l + /í2)
*1       *2 yí'l'í

For any integer k > sx , consider

(12)      h(Q:= [
Ja

< \\G {0)\\{A¡oj>tA¡lj>)m + <^-

G(r,z)-G(Ç + it,z)^<pS(z)k~{l~í)So~''s'T7k dV(z).

With (11) and the three-line theorem, and using Fatou's lemma to let t
we find (after also letting I? -* 0)

0,

\\G'(e)\\sp<c\\G'(e)\\{A10,P^.P)m.

This completes the proof of the assertions concerning the complex methods in
Theorem 1.   D

We now prove the assertions concerning the complex method in Theorem 2.
To show that (As°'°° ,ASl '°°)iei is (continuously) contained in A5'°° , consider
the auxiliary function

ô..k-(i-C)so-Cslvk (G(C, z) - G(C + it, z)\(13) MO :=
for z e £2 fixed. The rest of the argument is as above.

Next, assume f e As'°° , and set

(14)
and

(15)

F(C,z):=e" R (si-so)(C-e)-,/(*)

G(r,z):= f F(o,z)do.
Je

Note that for z e £2 fixed, F(Ç,z) is analytic on 5" (it is in fact entire). In
view of Lemma 8 and Lemma 9, F as an As° ,00-valued function is analytic
in S and bounded by \\f\\s œ . Also, F (I + it,z) as a function of / with
values in As' '03 is bounded by ||/||      .   From these observations it follows
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that G is in the class of functions considered for the ( , ) functor, and that
f(z) = (dG/dQ(6,z) e (^•O0,/4i"0O)[ei with its norm in (As°'°° ,^"°°)[ei
dominated by \\f\\s ^ . This completes the proof of Theorem 2, as far as the
complex method is concerned.   □

4. The real method

In this section, we prove the statements in Theorems 1 and 2 concerning the
real method. We first turn to Theorem 1. By a standard reiteration argument,
we may assume that both s0 and sx are integers. In view of Lemma 8, we can
assume that sQ = 0 and sx = k > 0  (k e N). Thus we must show that
/1\ /  jO,p      .k,px .kd ,p r,(1) (A      ,A     )gj)=A        , 0<p <oo.

First, assume / e (A 'p ,A 'p)g . For each t, there exist f0(t) e A '" , fx(t) e
Ak '" , such that / = f0(t) + fx (t) and such that

(2) \\f0(t)\\o,P + tk\\fft)Wk,P<2K(tk>f)-
(Here, K(t,f) is the standard 7\"-functional used for the real interpolation
method.) Let / e C°°(£2) n 0(£2). We will denote by "as." terms that are
supported in a compact subset of £2. Such terms are estimated by any one of
the norms involved (by standard arguments). Then

(3) (ll/IU/= /V-'V/iy + cs.* f f   S'k-ek)p\Vkf\pdtdo, + c.s.
'v       Ja Jo Jba,

Here, do, is surface measure on £2; := e~l£l (note that bCl, is Lipschitz). The
last quantity in (3) is dominated by (note that S(z) « t)

f tk"-ek" [    |v7f do, dt + es. < f fp-6kp ( [  \Vkf\pdV(z)) % + c.s.
Jo Jba, Jo \Ja, /   l

by integration by parts (note that we are not claiming equality; the relevant
density terms are bounded from above and below)

s  f'f-^ f (\Vkf0(t)\p + \Vkfx(t)\p)dV(z)^ +es.
Jo Ja, '

~ Ior9kP (la ¿VVoWf ̂ (z) + r**£ \*kfx(t)\pdV(z)} *L + C.S.

(4) s yolr"'((ii/o(OlloJ,)p + (ífcll/i(OII*,)')Y+cs.

'\-ekp(K(tk,f))p^+c.s

Dp.j,,.   j-sspdt

f t~ekp((\\f0(t)\\0p)P + (tk\\fx(t)
Jo

Jo

= i/k[lrep(K(t,f))p^ + c.s.
Jo

~ (ll/II^Oj.^*J>)      )   ■
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Since C°°(£2)nO(£2) is dense in Ak'p , and hence in (A°'p ,A 'p)g   , the above

estimate implies that (A°'p ,A 'p)g imbeds continuously into A 'p (use that
point evaluations are continuous in all the norms involved).

Before proceeding to prove the reverse imbedding, we would like to point out
the following. For 1 < p, the spaces under consideration are Banach spaces, and
Ak'p = 2¡(Xk), the domain of Xk , by Proposition 4 and Lemma 6 (recall that
Xf = Yfj=i zj df/dzf . Also recall the semigroup x,, with x,f(z) := f(e~'z).
Then -A is the generator of this semigroup. So we are interpolating between
the Banach space A0 'p and the domain of the kth power of the generator of the
semigroup x,. This situation is well understood, and there are explicit formulas
(in terms of X and the semigroup) for the norms of the intermediate spaces
(e.g., see [Bu-Be, §3.5] or [T, §1.14.5]). Note that the Lipschitz condition on
bQ. implies that the semigroup x, is analytic: x¡.f(z) := f(e z) gives an
analytic extension into an angular region. From these explicit formulas, it is
not hard to see (by arguments analogous to the ones above) that the norm on
the intermediate space is equivalent to | \\gk . The case 0 < p < 1 is not
covered by this, however. Again by using the radial maximal function (so as to
be able to use a "monotone" version of a Hardy-inequality), one can treat this
case as well.

Thus, let / 6 0(£2) n C°°(£2). For / > 0, we must find decompositions
/ = /0(0 + A (0 , /0(0 e A°'p , fx (t) eAk'p, such that

/•OO J f

(5) Jo r*{\\fo(t)\\o, + t\W)hJj s ll/C,,.
First note that the integral in (5) equals

(6) fcj[oor9*J'(ii/0(i*)ii0>J, + /*ii/1(/fc)iiJfc/y.

We will estimate (6); this keeps the notation somewhat simpler. Again,

(7) x,f(z) := f(e-'z).

We set

(8) f0(tk)(z) := t^ï jf /"'(Tj _ iff(z) ds

and

(9) fx(tk)(z) = f(z)-f0(f)(z) = kJ2(-i)J+][))jl^k-l(xsff(z)ds.

Formulas (8) and (9) are closely related to well-known formulas in the theory
of interpolation of semigroups (1 <p); compare [Bu-Be, p. 193].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



668 E. J. STRAUBE

We now estimate the contribution to (6) coming from \\fQ(t )||q   . We have
:io)

r rek" [ \f0(,k)(z)\"dV(z)^
Jo Ja t

roo /- I i    rl
/    r6k"     ¡Tic      sk-l(xs-I)kf(z)ds
Jo Ja 11  Jo

P äv(2)d4

r     roc rt rs fs
/   /     /-«*"-*"     /  sk~l       ■••/   \Xkf(e-("<+-+aAz)\dox---do-kds
Ja Jo Jo        Jo      Jo

dt dV(z)

*:-fold

<  (  f°° rBkP-kP íftk~l Í ■■■ Í \Xkf(e-{a^-+aAz)\d<jx---dok)   —dV(z)

(11)        <  Í  T rek" if"' sk-l\Xk(e-sz)\'ds\" ̂ -dl!V(z).

Here, the * denotes again the radial maximal function when 0 < p < 1 and the
null symbol when 1 <p (i.e., \g(z)\* = supt>0\g(e~'z)\). Applying the first
inequality from Lemma 1 of §5 to the integration in / (also changing variables
kt —> t), the last term above is dominated by

/  f° rekptptkp-p(\Xkf(e-'z)\*)p-dV(:
Ja Jo t

;i2) f°°tkP-8kP ¡t[Xkf,e-'z)\ydVtz)dl
Jo Ja l

f tkp-ekp j (\Xkf(z)\*)pdV(z)^-
Jo Ja, i

+ c.s.

Again, c.s.   denotes compactly supported terms.   Then, by an integration by
parts trick similar to that in (4)

(13)
/  S  [ (ôk ek\Xkf\*)pdV(z) + c.s.
Jo      Ja

<   ¡ (ôk~ek\Xkf\)p dV(z) +c.s. í
Ja

)p8k,p>   '

by Lemma 3 (note that X f is analytic).

Next, we estimate the contribution in (6) coming from /,(/). It turns out
that the contribution of each term in (9) is actually bounded by (||/||ei: pf ■
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The contribution from the /'th term is dominated (by Proposition 4)

dt

(14)

<lal0°Orekp^sk-l\Xkf(e-Jsz)rdsJ^dV(z)

</  H t-6kpftkp-p(\Xkf(e-Jtz)\y~dV(z)   (Lemma 1, §5)
Ja Jo l

= (°° rekp+kp f(\Xkf(e-Jlz)\*)pdV(z)-
Jo Ja t

< [ (Sk~ek\Xk f(z)\*)p dV(z) + c.s.
Ja

S f (ôk-ek\Xkf(z)\)pdV(z) + c.s. < (||/||9,   f ,
Ja

with by now familiar arguments. We have thus shown that (6) is dominated
by (WfWgk P)P ■ This completes the proof of Theorem 1 (by the same density
argument as in the first part).   D

It remains to finish the proof of Theorem 2. Again, this reduces to proving
that

7ir-\ / ¿0,oo      .t,oo, .8k ,00
(15) {A      ,A      )giOB = A

This proof is analogous to the previous one, so we omit the details (the density
argument is not needed here, since the norms involved are sup-norms, and so
integration by parts is not required).   D

5. Appendix: Hardy's inequalities for 0 < p < 1

The following pair of inequalities, usually referred to as Hardy's inequalities,
is well known (see, e.g., [Ste, Appendix A.4]):

(2)  (If (!fmdf'x'~,dxT £ -r (f WWrV" *-)"
where / > 0, p > 1, and r > 0.

(1) and (2) fail for 0 < p < 1 in general. However, if attention is restricted
to functions of the form f(y) = yqh(y), with h(y) nonincreasing, (1) and
(2) remain true. We mention that inequalities of this type are implicit in [B].
Also, a special case occurs in [B-L, p. 10] with the same idea of proof, namely
discretization of the integrals.
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Lemma 1. Let q e R,  h(y) > 0 and nonincreasing,  r > 0, and 0 < p < 1 .
Then

(3) (^°° ^l%qh(y)dyjx-r-ldx^j   '
i-OO \   \/P

and

<C(p,q,r)^'(yq+[h(y))py--ldy

p \ i/p
(4) ^ ^yqh(y)dy^j  x'~x dx^j

<C(p,q,r)^(yq+lh(y))pyr-ldy
1//7

Remark 1. It is part of the lemma that finiteness of the right-hand side implies
finiteness of the left-hand side.

Proof. We give the proof of (3); (4) is proved similarly; C(p ,q ,r) may as usual
vary from occurrence to occurrence.

It suffices to consider the case q > 0 (if q < 0, yqh(y) is decreasing, so
apply the q = 0 case). Discretizing the integrals, using the monotonicity of the
integrands involved and the fact that 0 < p < 1, gives
(5)

/■oo  /   r.x \P +oo     /     k r2'+'
/   (/ yqh(y)dy) x~r-ldx< J2    £ ^)/   y"dy
J°       ̂ ° A * = -ooV = -oo h'

~ — rk

■,J\^P~,JP(q + l) V"^ ->-»*<C(p,q,r)  Y,(h(2J))P2Jplq+l)Jf2
j=-oo k=j

+oo
J\\P~,JP(<l+l)-jr

•2>

<C(p,q,r)  ¿2 (h(2J))p2

Now

i¿\ iJP(<l+i)—jr        ^, ,    / (q+l)p-r-\   j(6) 2jyyH =C(p,q,r) /     yy dy

(also for (q + l)p - r = 0). (6) shows that the last term in (5) is dominated
by the pth power of the right-hand side of (3) (since h is nonincreasing). The
lemma is proved.   D
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