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Interpolation by Bivariate Splines
on Crosscut Partitions

G. Nürnberger, O. V. Davydov, G. Walz, and F. Zeilfelder

Abstract. We give a survey of recent methods to construct Lagrange inter-
polation points for splines of arbitrary smoothness rand degree q on general
crosscut partitions in IR2. For certain regular types of partitions, also results on
Hermite interpolation sets and on the approximation order of the corresponding
interpolating splines are given.

1. Introduction

We consider bivariate spline spaces of the following type. Let a convex compact
region D E :IR2 be given, which is subdivided by a finite number of straight lines
(crosscuts) into convex subregions {T}, called a partition .6. of D. The space of
all functions s E Cr(D), whose restriction to each T is a bivariate polynomial of
degree q, is denoted as the spline space s; (.6.).

In Section 2, a construction method for point sets {Z1,"', zdim S~(.6.)} on a
general partition D, which admit unique Lagrange interpolation W.r.t. S;(.6.), is
described.

The construction of Hermite interpolation sets (which can be considered as
limits of Lagrange interpolation sets) for certain rectangular types of partitions
.6., denoted as .6.1 resp . .6.2 partitions, is given in Section 3. Here, .6.1 denotes the
partitions where to each subrectangle the same diagonal is added, while .6.2 means
that both diagonals are added.

We also give results on the approximation order of the interpolating spline
function. The approximation order for S;(.6.1) equals q + 1 (which is optimal), if
q ~ 3.5r + 1, r ~ 1, and q, if r = 1 and q = 4. For S~(.6.2), we get the optimal
order q + 1, if q ~ 4, and the order q, if q = 2,3.
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2. Construction of Lagrange Interpolation Sets
for Crosscut Partitions

Let n c lR2 be a convex compact domain. Any finite set of straight lines (called
crosscuts) h, ... ,lM having nonempty intersections with the interior of n, produces
a partition .0. of n into convex compact subregions (called cells) with pairwise
disjoint interiors. We denote by T the set of all cells. The straight line boundaries
of each cell are called edges and their endpoints .vertices. Let {VI,'" , VL} be the
set of all interior vertices of thepartition .0.. Thus, each Vi is an intersection point
of two or more crosscuts which lies in the interior of n.

The space of polynomial splines of degree q and smoothness '1', 0 ~ r < q,
with respect to the partition .0. is defined by

S~(.0.) :={s E CT(n): slT E fIq, TE T},

where
ITq :=span{xiyj: i ~0, j ~ 0, i+j ~ q}

is the space of bivariate polynomials of total degree q.
The dimension of S~(.0.) was determined by Chui & Wang [6].
We consider the following problem. Determine points ZI, ... , ZN in n, where

N = dirn S~(.0.), such that for any f E C(n), the Lagrange interpolation problem
S(Zi) = f(zd, i = 1, ... ,N, has a unique solution s in S~(.0.). Such sets {ZI,"', ZN}

are called Lagrange interpolation sets for S~ (.0.). (Sometimes we say that ZI, ... , ZN

are Lagrange interpolation points for S~ (.0.).)
First we describe bases and interpolation points for three types of subspaces

of S~(.0.) and then show how these points can be combined into an interpolation
set for the whole space.

- -A. The space of bivariate polynomials IIq• It is well known that dirn IIq =
(qt2), and a basis of ITq is given by

{ X iyj: i ~0, j ~0, i+ j ~q} .
Interpolation sets for ITq can be obtained in the following way (see, for example,
Nürnberger [11]).Let "(0, ... , "(q be distinct parallellines and Zi,O, ... , Zi,q-i distinct
points on "(i, i = 0, ... , q (see Fig. 2.1). Then

{Zo,o, ... , ZO,q, ... , Zq-I,O, Zq-I,I, Zq,o}

is a Lagrange interpolation set for fIq, and the points are called interpolation points
of type A.

B. The space of truncated power functions. Let l be any crosscut di-
viding n into two subdornains no and nI. We consider the following space:
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IYo .

Fig. 2.1. Interpolation points of type A.
J'

Suppose
l = {(x, Y) E IR?: ax + by + c = o} ,

such that
ax + by + c > 0, (x, y) Eint 01.

A basis for T; is given by truncated powers rnultiplied with polynornials,

{ (ax + by + c)~+1xi yj: i 2: 0, j 2: 0, i+ j :S q - r - I} ,
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where

Therefore,

{
wk

Wk .- ,+.- 0,
w 2: 0,
W < o.

dirn T; = (q - ; + 1) .

In order to deterrnine interpolation sets for T;, we choose q - r parallel lines
"10' ... ,"Iq-r-l intersecting land put q - r - i distinct points Zi,O, ... , Zi,q-r-l-i

on "Ii n (01 \ l), i = 0, ... , q - r - 1 (see Fig. 2.2). Then

{Zo,o, ... , ZO,q-r-l, ... , Zq-r-2,0, Zq-r-2,1, Zq-r-l,O}

is a Lagrange interpolation set for T;, and the points are called interpolation points
01 type B.

Fig. 2.2. Interpolation points of type B.
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C. The space of cone splines. Let v be any interior vertex such that
m crosscuts ll,'" , lm intersect at v. Thus, 2m rays originate at v. We take m
consecutive rays r1, ... , rm (so that all m crosscuts are involved) and divide D
into m subdomains Do, D1, ... ,Dm-1 as in Fig. 2.3.

Fig. 2.3.

The space of cone splines K~ is defined as follows.

K~:={SEcr(D): sloo=O, SIOiEITq, i=1, ... ,m-1}.

Thus, all splines in K~ are zero outside the cone U::~lDi. We now define a basis
for K~. We choose a line "/ which intersects all the rays r1, ... , rm, with v tj. "/ (see
Fig. 2.3). For n = q, q - 1, ... , we consider the univariate spline spaces K~I"Y on
"/ such that dimK~I"Y > O. Then we extend each univariate B-spline B in K~I"Y
to a function in K~ as follows. Let B(z) _ 0, z E Do. For each ray r in D \ Do
passing through v, we define B to be the univariate truncated power function ft.
multiplied with an appropriate constant. More precisely, let z E D \ Do and let Zo
be the intersection point of "/ and the line through v and z (see Fig. 2.3). Then
B(z) := B(zo) Iz - vln /Izo - vln. All the bivariate splines in K~, n = q, q - 1, ... ,
obtained in this way (called cone splines), form a basis of K~ (see Chui & Wang
[6] and Dahmen & Micchelli [7]). Therefore,

dimK; = L dimK~I"Y'
n~q

We now describe interpolation points for K;. Let "/0, ... , "/p be parallel lines
which intersect the rays r1, ... , rm and do not pass through the vertex v, where
p is determined by the conditions dirn K;-pl"Y > 0 and dirn K~-P-11"Y = O. We
choose dimK;_il"Y points on "/in (D \ Do), i = 0, ... ,p, so that these points sat-
isfy Schoenberg- Whitney condition for the univariate spline space K~_i l"Yi(see
Fig. 2.4, a)).



Bivariate Splines on Crossc'Ut Partitions 5

v
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v

b)

Fig. 2.4. Interpolation points of type C.

In other words, we take a point in a support of each univariate B-spline in
K~-il,),i' It was shown by Nürnberger & Riessinger [14] that each set of points
obtained in this way admits unique Lagrange interpolation from K~. We call them
interpolation points of type C.

A more general scheme of constructing interpolation points of type C (see
Fig. 2.4, b)) was also proposed in [14]. The cone formed by rl and rm can be
divided into several subcones. Then the points are chosen on line segments inside
the subcones according to some Schoenberg- Whitney type conditions for the spaces
K~ restricted to the line segments as in Fig. 2.4, b). (For details see [14].) Another
configuration of interpolation points of type C was given by Adam [1], where the
points are lying on certain rays.

Now we are able to describe a basis for S~(tl) which is due to Chui & Wang
[6] and Dahmen & Micchelli [7].

Theorem 2.1. A basis oi S~(tl) is given by the iollowing iunctions:
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A. Polynomial basis functions xiyj, i 2': 0, j 2': 0, i+ j S; q.
B. Truncated power functions, for each crosscut Li, i = 1, ... ,lvI.
C. Cone splines, as described above, for each interior vertex Vi, i = 1, ... ,L.

We note that there is some freedom in choosing basis functions in B. and C.
of Theorem 2.1 since there are two possible spaces of truncated powers T; with
respect to a given crosscut, and also the rays which define cone splines can be
choosen differently. On the other hand, the interpolation points of type A, Band
C cannot be freely combined to obtain a Lagrange interpolation set for S~(L~).
A method to assign a type A, B or C to each cell of the partition so that the
combination of corresponding interpolation points on the cells is an interpolation
set for the whole spline space was proposed by Nürnberger & Riessinger [13,14] for
reet angular partitions with diagonals and extended to arbitrary crosscut partitions
by Adam [1]. Their construction depends upon an order of the cells which is the
natural ordering with respect to rows and columns in the case of reet angular
partitions. Wenow describe this order in the general case of crosscut partitions
(see Adam [1]).

The lexicogmphical order of the points in :IR2 is defined as follows. Given two
points z' = (x', y'), Z" = (x", y") E :IR2 we say that z' S; Z" if

X' < X" or (X' = X" and y' S; y") .

As usual, z' < Z" if z' S; Z" and z' i- Z". For any compact set K C :IR2, m(K) E
:IR2 denotes the minimal point of K with respect to the lexicographical order.

The total order of cells T E T of the partition Ll is defined as follows. In the
case when m(T') < m(T") (in lexicographical order), T', T" E T, we set T' < T".
In the case when several cells have the same minimal point m, they are situated
to the right of m and separated from each other by ray segments originating at m.
Therefore, they can be ordered either clockwise or counterclockwise. We choose
every time one of these two orders according to the following rule:

Case 1. m = m(O) or mEint O. The cells {T E T: m(T) = m} are ordered
counierclockwise (see Fig. 2.5).

Fig. 2.5. m = m(O) or mEint n.
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Case 2. m E an \ {m(n)}. The cells {T E T: m(T) = m} are ordered
clockwise if m = min (0, n ~m) and counterclockwise if m = max (n n ~m), where
~m is the vertical line through m (see Fig. 2.6).

(2.1)

Fig. 2.6. m E an \ {m(n)}.

Thus, a total order for the elements of T has been defined, and we can write

T = {Tl, ... , Tn} , where Ti < Ti+l , i = 1, ... , n - 1.

We now assign a type A, B or C to each cell Ti and then choose interpolation
points on T/s according to their types. Namely, Tl is the only cell 0/ type A (since
m(Tl) = m(n)), Ti is a cell 0/ type B if m(Ti) E an \ {m(n)}, and a cell 0/ type
C if m(Ti) Eint n. We put interpolation points of type A (as in Fig. 2.1) on Tl'
It is easy to see that if Ti is of type B, then

is a nondegenerate line segment with an endpoint at m(Ti). We choose interpola-
tion points of type B on Ti, as in Fig. 2.2, where Ti C nl, u~:iTj c no, Ii c l.

Let now Ti, Ti+l, ... , Tk be a family of cells of type C with the same minimal
point mEint 0" so that m(Ti-l) < m, m(Ti) = m(Ti+l) = ... = m(Tk) = m,
m(Tk+d > m. Then U;=l Tj is a subset ofa cone, and we choose interpolation
points of type C (as in Fig. 2.4, a) or b)) on it.

Theorem 2.2. [1] The set of all points chosen on the cells Ti, i = 1, ... ,n, as
described above, is a Lagrange interpolation set for S~ (ß).

We briefiy describe the idea of the proof of Theorem 2.2. Let Zl, ... , ZN be
all the points chosen on the cells in accordance with the above procedure. Then it
follows from Theorem 2.1 that N = dirn S~(ß). Therefore, in order to prove that
{Zl, ... , ZN} is a Lagrange interpolation set for S~ (ß) it is sufficient to check that
for any s E S~(ß),
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implies
8(Z)=0, forany zEn.

To this end we start from Tl and see that (2.1) implies that

8(Z)=0, forany ZETl,

(2.2)

since {Zl,"', ZN} n Tl is a Lagrange interpolation set for ITq. Then we pass from
T2 t~ Tn and see that for any i E {2, ... , n} such that Ti is a ceH of type B,

i-I

8(Z) = 0, for any Z E U Tj and Z E {Zl,"', ZN} n Ti,
j=l

implies
8(Z) = 0, for any z E Ti ,

since {Zl, ... , ZN} nTi is a Lagrange interpolation set for the corresponding space
of truncated power functions T;. Similarly, if Ti, Ti+l, ... , Tk is a family of ceHs
of type C with the same minimal point mEint n, so that m(Ti-d < m, m(Ti) =
m(Ti+d = ... = m(Tk) = m, m(Tk+l) > m, then

implies

8(Z) = 0,
i-I

for any Z E U Tj
j=l

k

and Z E {Zl,"', ZN} n U Tj ,
J=2

k

8(Z) = 0, for any Z E U Tj ,
j=i

since {Zl, ... , ZN} n U;=i Tj is a Lagrange interpolation set for the corresponding
space of cone splines K;. Thus, (2.2) foHows by induetion.

3. Approximation Order of Bivariate Spline Interpolation

In this seetion we consider spaees of bivariate splines with respect to special
crosscut partitions .6.1 and .6.2. Let a reet angle n = [a, b] x [c, d] and points
a = Xa < Xl < ... < xn1 = b, c = Ya < Yl < ... < Yn2 = d such that
Xi -Xi-l = hl, i = 1, ... ,nl; Yj -Yj-l = h2, j = 1, ... ,n2, be given. We
set h = max{hl,h2}. By defining Ri,j = [Xi-l,Xi] X [Yj-l,Yj], i = 1, ... ,nl;
j = 1, ... , n2, we obtain a partition of n into subrectangles Ri,j. If the diagonal
from the lower left to the upper right vertex is added to eaeh subrectangle Ri,j,
then we denote the resulting partition by .6.1. If we add both diagonals to eaeh
subrectangle, then the resulting partition is denoted by .6.2.

Since both .6.1 and .6.2 are crosscut partitions, a basis for the spline spaces
8;(.6.1-'-), f-L = 1,2, is given in Theorem 2.1. Similarly, the applieation of Theo-
rem 2.2 to 8;(.6.1-'-), f-L = 1,2, yields Lagrange interpolation sets of Nürnberger &



Biva1'iate Splines on Crosscut Partitions 9

Riessinger [13,14]. We first describe these Lagrange interpolation sets for S~(~l).
Then, by "taking limits" , some Hermite interpolation sets are obtained, such that
interpolation at them yields (nearly) optimal approximation order, under some
restrictions on l' and q.

For constructing Lagrange interpolation sets for S~'(~l ), q 2': 4, we describe
four basic steps. For an arbitrary subtriangle T of the partition ~ I, one of the
following steps will be applied to T. (If the number of lines in Step C or D below
is non-positive, then no points are chosen.) .

Step A. (Starting step) Choose q + 1 disjoint line segments al, ... , aq+l in T. For
i = 1, ... , q + 1, choose q + 2 - i distinct points on ai.

Step B. Choose q - l' disjoint line segments b1, ... ,bq-r in T. For i = 1, ... ,q - 1',

choose q + 1 - l' - i distinct points on bi.

Step C. Choose q - 21' + [~]disjoint line segments Cl, ... , Cq-2r+[,r,] in T. For i =
1, ... , q - 21', choose q + 1 - l' - i distinct points on Ci änd for i = q -
21' + 1, ... ,q - 21' + [~]choose 2(q - i) - 31' + 1 distinct points on Ci. (Here
[b] := max{a E 7l: a::; b}.)

Step D. Choose q - 21' - 1 disjoint line segments d1, ... , dq-2r-1 in T. For i =
1, ... ,q - 21' - 1, choose q - 21' - i distinct points on di.

Given a partition ~ I, we apply the above steps to the subtriangles of ~ I

as indicated in Fig. 3.2, where we choose horizontal, vertical and diagonal line
segments as indicated in Fig. 3.1.

Fig. 3.1. Fig. 3.2.
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The following construction of Hermite interpolation sets for S:z'(Ll1), which
yields (nearly) optimal order approximation, was given by Nürnberger [12] for
r = 1 and by Davydov, Nürnberger & Zeilfelder [8] for r 2 2.

Let a sufficiently differentiable function j E C(O) be given. In order to define
Hermite interpolation conditions for a spline s E S;(i~l), where q 2 4 if r = 1,
and q 2 3.5r + 1 if r 2 2, we describe four basic conditions. Let T be an arbitrary
subtriangle of tlIe partition Ll1. If T is not the first from the left triangle in the
top row, then T denotes the adjacent subtriangle left of T in the same row if it
exists, and up of T otherwJse. We impose one of the following four conditions on
the polynomial p = s IT E IIq.

Condition A. (Starting condition) DWp(z) = DW j(z), w = 0, ... , q, where z is a
vertex of T.

Condition B. DWp(z) = DW j(z), w = 0, ... , q - r - 1, where z is the vertex of T
not belonging to T.

Condition C. Pxayß(z) = jxays(z), a 2 0, ß 2 0, a + ß ::; q - r - 1, a + 2ß ::;
2q - 3r - 2, where z is the vertex of T not belonging to T.

Condition D. DWp(z) = DW j(z), w = 0, ... , q - 2r - 2, where z is the midpoint
of the diagonal of T.

Note that while Conditions A, Band D are symmetrie with respect to x and y, this
is not the fact for Condition C. Fig. 3.3 presents the domain in which all integer
points (a, ß) should be taken in order to define Condition C.

ß

q-1.5r-l

q-2r-l

(0,0) r

Fig. 3.3. Condition C.

q-r-l
a

Given a partition Ll1 , the distribution of the Hermite interpolation conditions
to the subtriangles is the same as for Lagrange interpolation and is indicated in
Fig. 3.2.

In Theorems 3.1, 3.2 and 3.4 below, the norm denotes the maximum of the
uniform norm over all subtriangles of the partition (w.r.t. the polynomial pieces).
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By using 8ernstein-8ezier techniques, several authors proved results similar
to those of Theorems 3.1 and 3.4 below for the special spline spaces Sj(~1) (Sha
[16]) and Sl(~2) (Chui & He [4]' Sha [17]' Zedek [18]). Moreover, Jeeawock-Zedek
[9] proved that interpolation by Sj(~2) yields approximation order two.

Theorem 3.1. [12] For each function 1E cq+1(n), there exists a constant K > 0
such that for the unique spline 8 E s~(~1) which satisnes the above Hermite
interpolation conditions, the following statements hold: For all i 6 {O, ... , p - 1},
IID'i(J - 8)11 ~ KhP-'i, where p = 4 if q = 4, and p = q+ 1 if q ~ 5. (The constant
K > 0 depends on IIDq+1111 and is independent of h.)

Theorem 3.2. [8] Let integers r ~ 2 and q ~ 3.5r + 1 be given. For each function
1 E cq+1(n), there exists a constant K > 0 such that for the unique spline
8 E s~(~1) which satisnes the above Hermite interpolation conditions,

IIDi(J - 8 )11 ~ Khq+1-i, i = 0, ... , q.

(The constant K > 0 depends on IIDq+l111 and is independent of h.)

In view of Theorem 3.2 it is interesting to note that the approximation order
of the spline space S;(~) is optimal (i.e., q + 1), if q ~ 3r + 2 (see de Boor &
Höllig [2]' Chui, Hong & Jia [5]' and Lai & Schumaker [10]). On the other hand,
it was proved by de Boor & Jia [3] that this is not true, if q < 3r + 2, even for the
~ I-partition.

Remark 3.3. The method ofproofin [12] can be applied to spline spaces S~(.6.1),
q ~ 5, where ,6.1 is a "deformation" of partition ~ 1, by which we mean an arbi-
trary rectilinear embedding of the same triangulation in lR?, as in Fig. 3.4. Under

" some restrictions on the angles between adjacent edges, corresponding Hermite
interpolation scheme possesses optimal approximation order hq+1, where h is the
maximal sidelength of the subtriangles.

We now describe in a similar way the construction of Lagrange and Hermite
interpolation sets for S~(~2) (Results for S;(~2), r ~ 2, are not yet available).
As above, it turns out that interpolation at these points yields (nearly) optimal
approximation order.

For constructing Lagrange interpolation sets for S~(~2), q ~ 2, we again
describe four basic steps.

Step A. (Starting step) Choose q + 1 disjoint line segments al, ... , aq+l in T. For
i = 1, ... , q + 1, choose q + 2 - i distinct points on ai.

Step B. Choose q - 1 disjoint line segments b1, ... , bq-1 in T. For i = 1, ... , q - 1,
choose q - i distinct points on bi.

Step C. Choose q - 3 disjoint line segments Cl, ... , Cq-3 in T. For i = 1, ... , q - 3,
choose q - 2 - i distinct points on Ci.

Step D. Choose q - 2 disjoint line segments d1, ... , dq-2 in T. For i = 1, ... , q - 2,
choose q - i distinct points on di .

•
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Fig. 3.4. An example of partition ,6,1.

Given a partition .6.2, we apply the above steps to the subtriangles of .6.2
as indicated in Fig. 3.6, where we choose horizontal, vertical and diagonal line
segments as indicated in Fig. 3.5 .

•

Fig. 3.5. Fig. 3.6.

The following construction of Hermite interpolation sets for SJ(.6.2), which
differs in some parts from the one described above for .6.1, was given by Nürnberger
& Walz [15].
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Let a sufficiently differentiable function 1 E C(O) be given. We again have to
describe four basic conditions. Let T be an arbitrary subtriangle of the partition
6.2. We impose one of the following four conditions on the polynomial p = slT E

IIq, where z is a vertex resp. amidpoint of an edge of T as described below (cf. also
Fig.3.7).

Condition A. (Starting condition) DWp(z) = DW I(z), w = 0, ... , q, where z is a
vertex of T.

Condition B. DWp(z) = DW I(z), w = 0, ... , q - 2, where z is a vertex of T not
adjacent to the subtriangles already considered, e.g. Z4 or Z6.

Condition C. DWp(z) = DW I(z), w = 0, ... , q - 4, where z is the midpoint of
the edge of T which is not adjacent to the subtriangles already
considered, e.g. Z5.

Condition D. PeQ7jß(z) = leQ7jß(z), Q 2: 0, ß 2: 0, Q + ß ~ q - 2, ß =I- q - 2, where
(2= ((21, (22) is the unit vector in direction of the diagonal of 6.1, and
Q = (- (21, (22), and where z is the crossing point of the two diagonals
in one subrectangle, e.g. Z7'

Given a partition 6.2, we apply the above steps to the subtriangles of 6.2 as
indicated in Fig. 3.7. Note that the configuration of Hermite conditions is different
from that of Lagrange conditions (cp. Fig. 3.6 and Fig. 3.7).

Fig. 3.7.

Theorem 3.4. [15] For each function 1 E Cq+1(O), there exists a constant K > 0
such that for the unique spline 8 E S~(6.2) which satisfies the above Hermite
interpolation conditions, the following statements hold: For all i E {O, ... , p - I},
IIDi(J - 8)11 ~ Khp-i, where p = q if q E {2,3}, and p = q + 1 if q 2: 4. (The
constant K > 0 depends on IIDq+1111 and is independent of h.)

We briefiy mention that these results can also be used for fitting of scattered
data by using a two-step method, originally developed in [12]. The method is as
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..

I

follows: Let a (possibly non-reet angular) domain n, points Wi E n and corre-
sponding data fi be given. In the first step, we approximate the data Ji by any
local method, e.g. interpolation by a piecewise polynomial 8 of degree q such that
Ilf - 811 = O(hq+l) if fi = f( Wi) and f E cq+l(n). In general, piecewise polyno-
mial interpolation is a simpler problem than spline interpolation and in any case,
this is always possible if the data is regularly distributed over n. In the second
step, we interpolate the resulting function 8 (which may not even be continuous)
by a smooth spline s as described in this paper. As in Theorems 3.1, 3.2 and 3.4,
it can be shown that IJi - s(wi)1 = O(hq) or O(hq+l). More details on this and
several numerical examples can be found in [12] and [15].
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