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Abstract

In a similar fashion to estimates shown for Harmonic, Wachspress, and Sibson coordinates in
[Gillette et al., AiCM, to appear], we prove interpolation error estimates for the mean value
coordinates on convex polygons suitable for standard finite element analysis. Our analysis is based
on providing a uniform bound on the gradient of the mean value functions for all convex polygons
of diameter one satisfying certain simple geometric restrictions. This work makes rigorous an
observed practical advantage of the mean value coordinates: unlike Wachspress coordinates, the
gradient of the mean value coordinates does not become large as interior angles of the polygon
approach π.

Keywords

Barycentric coordinates; interpolation; finite element method

1 Introduction

Barycentric coordinates are a fundamental tool for a wide variety of applications employing
triangular meshes. In addition to providing a basis for the linear finite element, barycentric
coordinates also underlie the definition of higher-order basis functions, the Bézier triangle in
computer aided-design, and many interpolation and shading techniques in computer
graphics. The versatility of this construction has led to research attempting to extend the key
properties of barycentric coordinates to more general shapes; the resulting functions are
called generalized barycentric coordinates (GBCs). Barycentric coordinates are unique over
triangles [37], but many different GBCs exist for polygons with four or more sides. While
GBCs have been constructed for non-convex polygons [5,19,25] and smooth shapes
[7,13,24,38], the most complete theory and largest number of GBCs exist for convex
polygons.

Interpolation properties of barycentric coordinates over triangles have been fully
characterized [22,17]. Interpolation using GBCs, however, has a more complex dependence
on polygonal geometry. The earliest GBC construction, now called the Wachspress
coordinates [36], exhibits the subtleties of geometrical dependence: if the polygon contains
interior angles near π, gradients of the coordinates become very large. The more modern
mean value coordinates [11] seem to avoid this problem. Floater et al. exhibit a series of
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numerical experiments showing good behavior of the gradients of mean value coordinates
on polygons with interior angles close to π [12]. The difference in behavior can be observed
on a very simple polygon as shown in Figure 1. Combining well-behaved gradients with a
simple and explicit formula, the mean value coordinates have become quite popular in the
computer graphics community [18,23,9,30,29,28]. Additionally, they have been
implemented in finite element systems where they produce optimal convergence rates in
numerical experiments [33,34,39].

Our aim in this work is to mathematically justify the experimentally observed properties of
mean value coordinates by proving a bound on their gradients in terms of geometrical
properties of the polygonal domain. The gradient bound allows us to prove an optimal order
error estimate for finite element methods employing mean value coordinates over planar
polygonal meshes. Our approach follows that of our previous work [16], where we carried
out a similar program for other types of GBCs previously proposed for use in the finite
element context: Wachspress [36], Sibson [31,33,32,27], and Harmonic coordinates [20,26].
Note that gradients of a 1D rational interpolant with certain similarity to the mean value
coordinates have been shown in [14,1], but gradients of the mean value coordinates
themselves have not been analyzed previously.

Our error estimate is contingent upon the mesh satisfying two geometric quality bounds: a
maximum bound on element aspect ratio and a minimum bound on the length of any
element edge. These are the same hypotheses assumed for our prior analysis of Sibson
coordinates, placing the two coordinate types on par with regard to convergence in Sobolev
norms. For scientific computing purposes, however, the mean value coordinates have
several advantages. While Sibson coordinates are only C1 continuous on the interior of an
element [31,10], the mean value coordinates are C∞, reducing the complexity of numerical
quadrature schemes required for their use. Sibson coordinates also require the construction
of the Voronoi diagram while mean value coordinates are defined by an explicit rational
function. This straightforward definition also allows mean value coordinates to be computed
for non-convex polygons [18]; we comment on the applicability of our analysis in the non-
convex setting in the conclusion.

The remainder of the paper is organized as follows. In Section 2, we fix notation and review
relevant background on polygonal geometry, mean value coordinates, and interpolation
theory in Sobolev spaces. In Section 3, we establish a number of initial estimates on various
quantities appearing in the definition of the mean value coordinates. Our main result is
Theorem 1 in Section 4 which gives a constant bound on the gradients of the mean value
coordinates given two specific geometric hypotheses. As established in Lemma 1, this
bound suffices to ensure the desired optimal convergence estimate, even when interior
angles are close to π. We give a simple numerical example and discuss applications of our
analysis in Section 5.

2 Background

2.1 Polygonal Geometry

Mean value coordinates will be analyzed in the same setting as [16]. We briefly outline the
primary notation and definitions. Let Ω be a generic convex polygon in ℝ2. The n vertices of
Ω are denoted by v1, v2, …, vn and let the interior angle at vi be βi; see Figure 2. The largest
distance between two points in Ω (the diameter of Ω) is denoted diam(Ω) and the radius of
the largest inscribed circle is denoted ρ(Ω). The aspect ratio (or chunkiness parameter) γ is
the ratio of the diameter to the radius of the largest inscribed circle, i.e., γ ≔ diam(Ω)/ρ(Ω).
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Interpolation error estimates involve constraints on polygon geometry. For triangles, the
most common restrictions bound the triangle aspect ratio or exclude triangles with angles
smaller/larger than a given threshold. Generalizing this idea to convex polygons leads to a
richer collection of potential geometric constrains, as many are no longer equivalent. For
example, a bound on polygon aspect ratio does not imply an upper bound on interior angles.
The two geometric constraints that we will require for establishing error estimates are listed
below.

G1. Bounded aspect ratio: There exists γ* ∈ ℝ such that γ < γ*.

G2. Minimum edge length: There exists d* ∈ ℝ such that |vi − vj | > d* > 0 for all i ≠ j.

A third constraint restricting the maximum interior angle was used in [16].

G3. Maximum interior angle: There exists β* ∈ ℝ such that βi < β* < π for all i.

While G3 was necessary in the analysis of Wachspress coordinates, we emphasize that
G3 is not used in our present analysis of mean value coordinates. In fact, insensitivity to
large interior angles is one of the primary motivations for using mean value coordinates
[15]. By establishing an error estimate without assuming G3 gives a stronger theoretical
justification for this original motivation. In [16] we showed that under G1 and G2, two
other closely related properties also hold.

G4. Minimum interior angle: There exists β* ∈ ℝ such that βi > β* > 0 for all i.

G5. Maximum vertex count: There exists n* ∈ ℝ such that n < n*.

Proposition 1 (Proposition 4 in [16]) Under G1 and G2, G4 and G5 hold as well.

Hence, when assuming only G1 and G2 for our analysis, we may also use G4 and G5 if
needed. Assuming G1 and G2, a small ball cannot intersect two non-adjacent segments as
stated precisely in the following proposition.

Proposition 2 (Proposition 9 in [16]) There exists h* > 0 such that for all unit diameter,
convex polygons satisfying G1 and G2 and for all x ∈ Ω, B(x, h*) does not intersect any
three edges or any two non-adjacent edges of Ω.

Remark 1 Restricting to only diameter one polygons in Proposition 2 is sufficient for our
analyses due to the (forthcoming) invariance property B3.

2.2 Generalized Barycentric Coordinates

Barycentric coordinates on general polygons are any set of functions satisfying certain key
properties of the regular barycentric functions for triangles.

Definition 1 Functions λi : Ω → ℝ, i = 1, …, n are barycentric coordinates on Ω if they
satisfy two properties.

B1. Non-negative: λi ≥ 0 on Ω.

B2. Linear Completeness: For any linear function L : Ω → ℝ, .

Most commonly used barycentric coordinates, including the mean value coordinates,
are invariant under rigid transformation and simple scaling which we state precisely.
Let T : ℝ2 → ℝ2 be a composition of rotation, translation, and uniform scaling

transformations and let  denote a set of barycentric coordinates on TΩ.

B3. Invariance: .
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Remark 2 The invariance property can be easily passed through Sobolev norms and semi-
norms, allowing attention to be restricted to domains Ω with diameter one without loss of
generality. The essential case in our analysis is the H1-norm (defined more generally in

Section 2.4),  where ∇u = (∂u/∂x, ∂u/∂y)T is the vector of first partial
derivatives of u, and T is a uniform transformation, T (x) ≔ hx. Throughout our analysis, the
Euclidean norm of vectors will be denoted with single bars |·| without any subscript.
Applying the chain rule and change of variables in the integral gives the equality:

The scaling factor hd resulting from the Jacobian when changing variables is the same for
any Sobolev norm, while the factor of h−2 from the chain rule depends on the order of
differentiation in the norm (1, in this case) and the Lp semi-norm used (2, in this case).
When developing interpolation error estimates, which are ratios of Sobolev norms, the latter
term determines the convergence rate.

Several other familiar properties immediately result from the definition of generalized
barycentric coordinates (B1 and B2):

B4. Partition of unity: .

B5. Linear precision: .

B6. Interpolation: λi(vj) = δij.

Having outlined the generic properties of generalized barycentric coordinates, we can now
turn to the specific construction in question.

2.3 Mean Value Coordinates

The mean value coordinates were introduced by Floater [11] (see also [12] and the 3D
extension [15]). For a point x in the interior of Ω, define angles αi(x) ≔ ∠vixvi+1 and
distances ri(x) ≔ |x − vi|; see Figure 2. Then for vertex vi, a weight function wi(x) is given
by

where ti(x) ≔ tan(αi(x)/2) is used to simplify the notation. The mean value coordinates are
given by the relative ratio of weight functions of the different vertices:

(1)

As in [16], the primary task in developing interpolation estimates for a particular coordinate
is bounding the gradient of the coordinate functions. The primary challenge with mean value
coordinates stems from the fact that the weight functions wi are unbounded over the domain;
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when ri(x) approaches zero near vertex vi or αi(x) approaches π near boundary segment
, wi can be arbitrarily large. As we show in Theorem 1, however, this behavior is

always balanced by the summation of weight functions in the denominator of λi, resulting in
a bounded gradient.

2.4 Interpolation in Sobolev Spaces

We set out notation for multivariate calculus: for multi-index α = (α1, α2) and point x = (x,
y), define xα ≔ xα1yα2, α! ≔ α1α2, |α| ≔ α1+α2, and Dαu ≔ ∂|α|u/∂xα1∂yα2. In this
notation, the gradient, i.e. the vector of first partial derivatives, can be expressed by

The Sobolev semi-norms and norms over an open set Ω are defined by

The H0-norm is the L2-norm and will be denoted ‖·‖L2(Ω).

We aim to prove error estimates compatible with the standard analysis of the finite element
method; full details on the setting are available in a number of textbooks, e.g., [3,4,8,40] For
linear, Lagrange interpolants, the optimal error estimate that we seek has the form

(2)

where I is the interpolation operator Iu ≔ ∑i u(vi)λi(x) with the summation taken over the
element vertices.

Since we consider only invariant (B3) generalized barycentric coordinates, estimate (2) only
needs to be shown for domains of diameter one as passing simple scaling and rotation
operations through the Sobolev norms yields the factor of diam(Ω) for elements of any size.
More formally, assuming the estimate holds for all diameter one domains, the scaling
argument follows in a similar fashion as seen in Remark 2. Let Ω be a diameter one domain
and uT the function defined on TΩ where T is a uniform scaling to a different diameter. The
estimate is established by scaling to a uniform domain (where uT(T (x)) = u(x)), applying
the diameter one result, and scaling back:

The final equality has an additional power of diam(TΩ)2 compared to the equation from
Remark 2 since it involves the H2-norm and the chain rule applies.

Using barycentric coordinates satisfying B3 under geometric restrictions G1 and G5, it is
sufficient to bound the H1-norm of the barycentric coordinates.

Lemma 1 ([16]) For convex, diameter one domains satisfying G1 and G5, the optimal error
estimate (2) holds whenever there exists a constant Cλ such that
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(3)

Lemma 1 is essentially the standard application of the Bramble-Hilbert lemma [2] in the
analysis of the finite element method. While simplicial meshes only require a single estimate
over the reference element, generalized barycentric coordinates need uniform estimates over
all convex domains. Fortunately, the Bramble-Hilbert estimates can be shown uniformly
over the set of unit diameter convex sets [35,6] and thus the standard techniques apply. For a
complete discussion of the framework and details of Lemma 1, we refer the reader to [16].
Recalling that G5 follows from G1 and G2, the remainder of the paper is dedicated to
verifying (3) for the mean value coordinates under G1 and G2 on a domain of diameter one.

3 Preliminary Estimates

First, we consider a simple fact about the constant h* in Proposition 2.

Corollary 1 Under G1 and G2, h* < |vi − vi−1|/2 for all i.

Proof Suppose the bound fails for some i. Then the ball B ((vi + vi−1)/2, h*) intersects three
edges of the polygon contradicting Proposition 2; see Figure 3.

The next two results apply Proposition 2 to show that ri(x) is small for at most one index i
and αi(x) is large (i.e, near π) for at most one index i.

Corollary 2 Under G1 and G2, if ri(x) < h* then rj (x) > h* for all j ≠ i.

Proof Suppose ri(x) < h*. Then B(x, h*) intersects the two segments which meet at vi. If rj(x)
< h*, then B(x, h*) would also intersect the two segments which meet at vj and thus B(x, h*)
would intersect a total of at least three segments contradicting Proposition 2.

In Proposition 3 we show that under our geometric restrictions, at most one angle αi(x) can
be large for a given x.

Proposition 3 Under G1 and G2, if  then αj (x)
< α* for all j ≠ i.

Proof Fix x and suppose that αi(x) > α*.

Case 1: j ∈ {i − 1, i + 1}. For the j = i − 1 case, consider the quad with vertices x, vi−1, vi,
and vi+1 (see Figure 2, right). By condition G4 and the fact that the sum of angles in a quad
is 2π, we have

Rewriting, we have that αj (x) < 2π − β* − αi(x). This estimate for αj (x) also holds when j
= i + 1 by a similar argument for the quad with vertices x, vi, vi+1, and vi+2. By hypothesis,
αi(x) > π − β*/2, whence αj (x) < π − β*/2 ≤ α*.

Case 2: j ∉ {i − 1, i + 1}. Divide the triangle Δvivi+1x into two right triangles as shown in
Figure 4. For the right triangle containing the vertex furthest from x, we adopt the notation
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of the figure: let θi be the angle incident to x and let hi and ℓi to be the lengths of the two
sides depicted. By choosing the furthest vertex, θi ≥ αi(x)/2. Since tan θi = ℓi/hi,

The final inequality above results from our assumption that . So B(x, h*)
must intersect the segment between vi and vi+1. By Proposition 2, B(x, h*) cannot intersect
the segment between vj and vj+1 (because that segment is not incident to vi or vi+1).

Now define θj, ℓj and hj in a similar fashion to θi, ℓi, and hi, except corresponding to the

segment between vj and vj+1. Since B(x, h*) doesn’t intersect , hj > h*. Then αj (x) ≤
2θj and

Thus .

The next two results prove some intuitive notions about the size of αi(x) when x is near the
boundary of Ω. The first (Proposition 4) says that a ‘big’ αi value and ‘small’ rj value can
only occur simultaneously if vi and vj are identical or adjacent. The second (Proposition 5)
shows that if x is close to a vertex, the two αj angles defined by the vertex have a ‘large’
sum.

Proposition 4 Under G1 and G2, if αi(x) > α* and rj(x) < h* then j ∈ {i, i + 1}.

Proof As we saw in Proposition 3, if αi(x) > α* then B(x, h*) intersects the line segment
between vi and vi+1. Thus Proposition 2 ensures that B(x, h*) cannot contain vj for j ∉ {i, i +
1}.

Proposition 5 Under G1 and G2, if ri(x) < h* then αi−1(x) + αi(x) > 2π/3.

Proof Define ξi ≔ ∠xvi−1vi, ζi ≔ ∠xvi+1vi, and recall βi ≔ ∠vi−1vivi+1; see Figure 5. By
Corollary 1, we have ri < h* < |vi−1 − vi| /2. By the law of sines,

Hence, . Similarly ζi < αi/2. Summing the interior angles of
the quadrilateral with vertices x, vi−1, vi, and vi+1 gives

Since βi ≤ π, we have αi−1 + αi + ξi + ζi ≥ π. Applying the inequalities on ξi and ζi gives
the result.
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Thus far, we have given bounds on the size of angles for a fixed x value. In the next section,
we will also need estimates of how fast αi(x) is changing, i.e., estimates of |∇αi(x)|. The
next proposition provides an estimate on this term.

Proposition 6 .

Proof Without loss of generality, let vi = (0, 0) and let vi+1 = (d, 0). We will establish this
estimate for any d. Also let (x, y) ≔ x. Define θi, ηi as shown in Figure 6 so that αi(x) = θi +

ηi with . Differentiating θi with respect to x and y, we find that

Since ri(x)2 = x2 + y2, it follows that . Similarly, . We
note that these estimates on θi and ηi are independent of the edge length d: they only depend
on the locations of vi and vi+1, respectively. As ∇αi(x) = ∇θi + ∇ηi, the triangle inequality
completes the proof.

Since ri increases radially from vi, we also have a simple bound on the gradient of ri.

Proposition 7  and hence |∇ri(x)| = 1.

Our final result of this section is a conservative uniform lower bound on the sum of the
weights wi at an arbitrary point x. This ensures that the denominator of the mean value
coordinates {λi} never approaches zero.

Proposition 8 .

Proof Since our domain has diameter 1 (see Remark 2), we have ri(x) ≤ 1. Thus

4 Main Theorem

Our main result, Theorem 1, is a uniform bound on the norm of the gradient of the mean
value coordinate functions under G1 and G2. The proof works by writing

where N1 and N2 are given in terms of {tj} and {rj}. The summands in N1 and N2 are
bounded by constant multiples of (∑j wj)

2, as shown in Lemma 2 and Lemma 3,
respectively.

Rand et al. Page 8

Adv Comput Math. Author manuscript; available in PMC 2013 September 09.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Lemma 2 Under conditions G1 and G2 and for a ≠ b, there is a constant C1 such that

(4)

for all x ∈ Ω.

Proof Fix x ∈ Ω. The argument is separated into two cases based on the distance from x to
va; see Figure 7. We will make use of the facts that for any index i,

by the diameter 1 domain assumption and Proposition 7, respectively. For readability, we
omit the dependencies on x from the explanations.

Case 1. ra(x) ≥ h*, i.e. x away from va.

Since

it follows that

Case 2. ra(x) < h*, i.e. x close to va.

By Corollary 2 and Propositions 3, 4, and 5, we conclude:

(5)

(6)

(7)

(8)

Let m ≔ max (αa−1(x), αa(x)). We break into subcases based on the size of m relative to α*

(as defined in Proposition 3).

Subcase 2a: m > α*.

By (6), (7), and the subcase hypothesis, we have αi < m for any i. Since m = αa−1 or m = αa,
we have tan(m/2) < ta−1 + ta. Hence
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Using this and (5), we conclude that

Subcase 2b: m ≤ α*.

By (6), (7), and the subcase hypothesis, we have αi ≤ α* for any i. By (8), tan(π/6) < tan(m/
2) and hence tan(π/6) < ta−1 + ta. Putting these facts together, we have that

Using this and (5), we conclude that

In both subcases, the observation that  completes the result.

Lemma 3 Under conditions G1 and G2 and for i ≠ j and a ≠ b, there is a constant C2 such
that

(9)

for all x ∈ Ω.

Proof Fix x ∈ Ω. For readability, we will often omit the dependencies on x from the
explanations. By Corollary 2, at least one of {ra, rb} is bigger than h*. Without loss of
generality, assume that ra ≤ rb. Similarly, by Proposition 3, at least one of {αi, αj} is smaller
than α*.

Since the left side of (9) is not symmetric in i and j, we must break into a number of cases
based on both the comparisons of αi and αj to α* and the comparison of ra to h*. The
regions where each case holds are shown in Figs. 8 and 9.

Note that in many of the cases, we will make use of the fact that α* > π/2. This is confirmed
by starting with the trivial bound β* < π and then deriving π/2 < π − β*/2 ≤ α*. We will
also frequently make use of the following bound on ∇ti(x). Observe that
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Using the bound on |∇αi| from Proposition 6, we get the bound

(10)

Finally, we will make use of an additional index k defined by

(11)

i.e. rk is the shorter of ri and ri+1.

Case 1. αi(x) > α* and ra(x) < h*.

We immediately have αj < α* and rb > h*, and hence

(12)

Since π > αi > α* > π/2, we have  or, equivalently, 1 < 2 sin2(αi/
2). This fact, along with (10), gives us the bound

By Proposition 4, i ∈ {a − 1, a} meaning ti < ta + ta−1 = wara. Thus . Combining
this estimate with (12), we have

Case 2. αj (x) > α* and ra(x) < h*.

Proposition 3 and Corollary 2 imply that αi < α* and rb > h* > ra. Since 0 < αi < α* < π, we
have 1 > cos(αi/2) > cos(α*/2) > 0. Combining these facts with (10) gives

Since α* > π/2, we have tj > tan(α*/2) > 1. By Proposition 4, j ∈ {a − 1, a}, allowing the

bound . Putting all this together, we have that

Case 3. αi(x) > α* and ra(x) ≥ h*.

As in Case 1, we have 1 < 2 sin2(αi/2) so that
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Since rk < diam(Ω) = 1, |rk|2 < 1. As k ∈ {i, i+1}, we have .
Thus,

Case 4. αj (x) > α* and ra(x) ≥ h*.

By the same arguments as in Case 2, we have

Subcase 4a. rk ≥ h*. Since αj > α*, . Thus,

Subcase 4b. rk < h*. Proposition 4 implies k ∈ {j, j + 1} and hence .
Thus,

Case 5. αi ≤ α*, αj ≤ α*, and ra < h*.

As before, we begin recalling that Corollary 2 implies ra ≤ rk. By Proposition 5, ta−1 + ta > 2
tan(π/6) > 1. (Note: tan is a convex function function on (0, π/2) and thus the smallest value
occurs when αa−1 ≈ αa ≈ π/6.) Then using (10), we estimate

Case 6. αi ≤ α*, αj ≤ α*, and ra ≥ h*.

First, following similar estimates to previous cases yields,

Subcase 6a. rk ≥ h*. By Proposition 8, we have that
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Subcase 6b. rk < h*. By Proposition 5, tk−1 + tk > 2 tan(π/6) > 1. Thus,

In each case/subcase, the desired estimate holds. Taking the maximum constant over each
case completes the proof.

Theorem 1 Under conditions G1 and G2, there exists a constant C such that

Proof For readability, we omit the dependencies on x from the explanations. By the quotient
rule, the gradient of a weight function wk can be expressed as

(13)

Similarly, the gradient of λi can be expressed as

(14)

Plugging (13) into (14), we partition the summands of the numerator according to whether
or not they involve some ∇rk factor. We thus write (∑j wj)

2 |∇λi| = N1+N2 where

To bound N1, note that the i = j terms cancel and there are at most 2n* terms in the
summation. Thus Lemma 2 applies and we have

To bound N2, note that it can be expanded into at most 8n* terms of the form
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The terms with k = l or a = b cancel each other out meaning Lemma 3 applies. Thus,

Putting these together, we have

which is the desired bound.

Finally, note that Theorem 1 implies ((3): for a diameter one domain,

where here |Ω| denote the area of Ω. Thus, by Lemma 1, Theorem 1 guarantees that the
optimal interpolation error estimate (2) holds.

5 Numerical Example and Concluding Remarks

By bounding gradients of the mean value coordinates uniformly over the class of polygons,
we have formally justified one of the key motivations for the use of the coordinates.
Moreover, this bound is the essential ingredient in the optimal interpolation error estimate.
We briefly demonstrate that our interpolation result translates to standard convergence of a
finite element method using a mean value interplant operator. To demonstrate success of the
mean value basis in the presence of large interior angles, a mesh is constructed of
“degenerate octagons”, squares with additional nodes in the middle of each side; see Figure
10. With a basis of mean value coordinates, we solve Poisson’s equation with Dirichlet
boundary conditions corresponding to the solution u(x, y) = sin(x)ey. As shown in Figure 11,
the expected convergence rate from our theoretical analysis (2) is observed, namely, linear
convergence in the H1-norm. The quadratic convergence in the L2-norm is also expected
from the Aubin-Nitsche lemma; see e.g. [3].

Another advantage of mean value coordinates is the fact that the formula can be evaluated
for non-convex polygons, while some other coordinates (e.g., Wachspress) are not defined.
While mean value coordinates can become negative for certain non-convex polygons
(especially in the presence of interior angles near 2π), the interpolants are satisfactory in
some applications [18]. To get the gradient bound in Theorem 1, convexity is only used in a
few places. Specifically, Proposition 2 is not true for general non-convex sets. Instead,
analysis in this setting should be restricted to the class of non-convex polygons for which a
constant h* > 0 exists such that B(x, h*) does not intersect three polygon edges.
Additionally, Proposition 3 fails: a point may form large angles with two adjacent edges
when the edges form a large (near 2π) interior angle. While pinning down precise geometric
restrictions for bounded gradients on non-convex polygons becomes overly complex, our
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analysis does give some intuition as to why mean value coordinates succeed in many
common applications involving non-convex regions.

Finally, mean value coordinates can be defined for 3D simplicial polytopes [15] (in addition
to a Wachspress-like construction [21]). While we expect that a similar analysis of
interpolation properties can be performed in this setting, there are two primary obstacles.
First, precise 3D geometric restrictions must be posed which can become rather complex;
dihedral angles must be considered in addition to the quality of all simplicial facets. Naïve
hypotheses can lead to an overly restrictive setting. Second, the 3D analysis will involve
many more cases than the already involved 2D analysis. A better approach may be to
identify new generalizations that simplify the existing proof before extending the results to
3D.
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Fig. 1.
Comparison of Wachspress and mean value coordinates over two pentagons with vertices
(−1, 1), (−1, −1), (1, −1), (1, 1), and (0, x) where the value x is indicated in the figure. The
coordinate for the final vertex (0, x) is plotted. For x = 1.5, the polygon contains no large
interior angles and the gradient of both coordinates is well-behaved. As x approaches 1, the
interior angle at (0, x) approaches π and the Wachspress coordinate becomes very steep
while the mean value coordinate has a bounded gradient.
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Fig. 2.
Notation used in the paper. Vertices are always denoted in boldface.
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Fig. 3.
Notation for Corollary 1.

Rand et al. Page 19

Adv Comput Math. Author manuscript; available in PMC 2013 September 09.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 4.
Notation for Proposition 3, Case 2.
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Fig. 5.
Notation for Proposition 5.
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Fig. 6.
Notation for Proposition 6.
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Fig. 7.
Division into cases for Lemma 2.
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Fig. 8.
The proof of Lemma 3 is broken into numbered cases according to where x lies relative to
vertex va. The middle arc is the radius h* ball around va. Inside the other arcs either αa−1 or
αa is bigger than α*.
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Fig. 9.
Example configurations of vertices for different subcases in Lemma 3.
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Fig. 10.
A simple computational example is given for a mesh of “degenerate octagons”, i.e., squares
with mid-side nodes (left). Basis functions corresponding to a corner node (center) and a
mid-side node (right) are shown.
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Fig. 11.
Uniform refinement of a sequence of degenerate octagonal meshes yields the expected
convergence rate using mean value basis functions. Meshes of n2 elements are shown for n =
2 (left) and n = 4 (center). Tabulated results (right) for the solution of Poisson’s equation
with Dirichlet boundary conditions demonstrate second-order convergence in the L2-norm
and first order convergence in the H1-seminorm.
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