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Interpolation formula between very low and intermediate-to-high damping Kramers escape rates
for single-domain ferromagnetic particles
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It is shown that the Mel’nikov-Meshkov formalism for bridging the very low damping~VLD ! and
intermediate-to-high damping~IHD! Kramers escape rates as a function of the dissipation parameter for
mechanical particles may be extended to the rotational Brownian motion of magnetic dipole moments of
single-domain ferromagnetic particles in nonaxially symmetric potentials of the magnetocrystalline anisotropy
so that both regimes of damping occur. The procedure is illustrated by considering the particular nonaxially
symmetric problem of superparamagnetic particles possessing uniaxial anisotropy subject to an external uni-
form field applied at an angle to the easy axis of magnetization. Here the Mel’nikov-Meshkov treatment is
found to be in good agreement with an exact calculation of the smallest eigenvalue of Brown’s Fokker-Planck
equation, provided the external field is large enough to ensure significant departure from axial symmetry, so
that the VLD and IHD formulas for escape rates of magnetic dipoles for nonaxially symmetric potentials are
valid.
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I. INTRODUCTION

Renewed interest in the Kramers theory of escape r
@1# has been stimulated by the recent success of Wernsd
et al. @2# in isolating single-domain ferromagnetic particl
and in measuring the time of reversal~for barriers signifi-
cantly greater than the thermal energy, the Kramers esc
rate! of the magnetization of these particles as a function
the damping parameter predicted by the Ne´el-Brown @3,4#
theory of superparamagnetic relaxation.

In effect, the latter theory is an adaptation of the Kram
theory of chemical reaction rates to longitudinal relaxation
the magnetization of single-domain ferromagnetic partic
The validation of that theory by experiment@2,5# further-
more confirms the Kramers conception of a thermal rel
ation process over a potential barrier. The Kramers theor
chemical reaction rates was initially adapted to longitudi
relaxation of spins~i.e., reversal of the direction of prece
sion of the magnetic moment over the internal anisotro
potential barrier! by Brown @4#. In his first calculations of
escape rates, however, he confined himself to axially s
metric potentials of the magnetocrystalline anisotropy@4#.
Hence no coupling between the longitudinal and the tra
verse modes of motion exists thus the longitudinal mode
governed by a single state variable, namely the colatitudeq,
the polar angle of the magnetization vector.

As a result of this consideration Brown was able to de
onstrate that the Kramers escape rate theory for particles
be easily adapted to yield an expression for the escape
for spins which is valid for all values of the damping para
eter in his Langevin equation and for any axially symmet
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potential of the magnetocrystalline anisotropy.
An important comment should be made concerning

fact that the axially asymptotic equation for the escape rat
valid for all values of the damping. First we remark that t
Fokker-Planck equation for the longitudinal relaxation
spins~the second state variable, namely, the azimuthal an
w of the magnetization vector manifests itself merely as
steady precession of that vector! is effectively a one-
dimensional Fokker-Planck equation~FPE!, since the inertia
of the particle plays no role, so that escape rates calcul
from it are valid for all values of the damping parameter.
the Kramers problem for mechanical particles, on the ot
hand, the underlying FPE in position and momentum as s
variables always has a two-dimensional state space an
reduction to a one-dimensional FPE~in this case the Smolu
chowski equation! can be achieved only through the stron
damping of the momentum. The particle problem may a
be reduced to a one-dimensional problem if the damping
very small by writing the FPE in angle-action variables, a
eraging over the fast angle variable and considering the s
diffusion of the~total! energy. Thus in the mechanical Kram
ers problem, the following three regimes of damping appe

~a! Intermediate-to-high damping~IHD!: the general pic-
ture in this case@6# being that inside the well the distributio
function is almost the Maxwell-Boltzmann distribution ob
taining in the depth of the well. However, near the barrier
distribution function deviates from the equilibrium distribu
tion due to the slow draining of particles across the barr
The barrier region is assumed to be so small that one m
approximate the potential in this region by an inverted p
rabola.

~b! Very low damping~VLD !: here the damping is so
small that the assumption in~a!, namely that the particles
approaching the barrier region from the depth of the w
have the Maxwell-Boltzmann distribution completely brea
©2001 The American Physical Society02-1
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down. Thus the region where deviations from that distrib
tion occur extends far beyond the interval where the poten
shape may be approximated by an inverted parabola. T
we may now, by transforming the FPE into an equation
the energy and phase variables, and by supposing tha
motion of a particle attempting to cross the barrier is alm
conservative, and is the librational motion in the well of
particle with energy equal to the barrier energy, derive
equation of diffusion in energy. We remark that the assum
tion of almost conservative behavior meaning that the ene
loss per cycle is almost negligible and is equal to the frict
times the action of the undamped motion at the barrier
ergy ensures that the Liouville term in the FPE vanish
~unlike in IHD where there is strong coupling between t
diffusive and Liouville term! so that one is left with only the
diffusion term in the energy variable. The dependence on
phase having been eliminated by averaging the distribu
function in energy-phase variables along a closed trajec
of the energy since we assume a librational motion in
well.

~c! An intermediate~crossover! region where neither IHD
nor VLD formulas apply: in this region neither of the a
proaches to the problem may be used. In contrast to the V
case the Liouville term in the FPE does not vanish mean
that one cannot average out the phase dependence o
distribution function which is ultimately taken account of b
constructing from the FPE an equation for the distribut
function with the energy and action as independent variab
This procedure allows one to express the energy distribu
function at a given action, which in this case may be mani
lated so as to pose the problem in terms of the energy
per cycle at the barrier energy as a Wiener-Hopf equa
yielding an integral formula the product of which with th
IHD escape rate yields an expression for the escape
which is valid for all values of the damping, so allowing th
complete solution of Kramers’s problem. The integral fo
mula derived from the Wiener-Hopf equation effectively a
lowing for the coupling between the Liouville and dissip
tive term in the Kramers equation when written in terms
energy-phase variables which is ignored in the VLD limit

However, as mentioned above the analogous spin prob
is fundamentally different in that the one-dimensional FPE
the single state variableq does not arise fromdamping of the
momentumbut rather fromaxial symmetry. Thus in order to
construct Kramers formulas—equivalent to that for mecha
cal particles—for spins, one has to consider in Brow
Fokker-Planck equation nonaxially symmetric potentials
the magnetocrystalline anisotropy, i.e., magnetic syste
with coupling between the two degrees of freedom.

We have mentioned that Kramers obtained two formu
for the escape rate, one valid in the so-called intermedi
to-high damping regime, and the other in the low damp
regime, where it is assumed in both cases that the en
barrier is much greater than the thermal energy so that
concept of an escape rate applies. He mentioned in his pa
however, that he could not find a general method of att
for the purpose of obtaining a formula which would be va
for any damping regime@see ~c! above# which was effec-
tively solved by Mel’nikov and Meshkov@7#.
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As far as single-domain ferromagnetic particles are c
cerned, the equivalent of the Kramers IHD formula for sp
was derived by Brown in 1979@8#, while the corresponding
LD formula was established in 1990 by Klik and Gunth
@9#. Furthermore, the latter authors emphasised that Brow
1979 IHD calculation was in effect a special case of Lange
treatment of the decay of metastable states@10#. In addition,
the LD formula of Klik and Gunther holds for escape from
single well, while in magnetic relaxation of single-doma
ferromagnetic particles, the Gibbs free energy has in gen
a bistable structure due to the anisotropy term. Hence t
formula does not take account of the possibility of recro
ings of the anisotropy barrier by the magnetic moments
the LD case.

For the sake of clarity, we recall that the original Krame
problem, referring to the undamped motion, is characteri
by the state variables, namely,q the position coordinate and
p the momentum of a particle of massm moving in a poten-
tial V(q). Thus the Hamiltonian is

E5
p2

2m
1V~q! ~1.1!

and the canonical variables~q, p! satisfy Hamilton’s equa-
tions, namely,

q̇5
]E

]p
, ṗ52

]E

]q
. ~1.2!

In the treatment of the escape rate given by Mel’nik
and Meshkov, which yields a formula valid for all values
the friction for systems governed by the Hamiltonian~1.1!, it
is assumed that one may write the escape rate as

k5AkTST, ~1.3!

wherekTST is the escape rate predicted by the transition s
theory ~TST! which for a double-well potential reads as

kTST5
v1

2p
exp~2E1 /kT!1

v2

2p
exp~2E2 /kT!. ~1.4!

Here, Ei is the energy barrier a given particle has to ov
come when it is in welli andv i is an attempt frequency in
well i ~which is the frequency of oscillation in that well!. In
Eq. ~1.3! A is a quantity termed the prefactor and conta
corrections to the TST rate, namely, the effects of the s
roundings of the particle.

Mel’nikov and Meshkov proceeded from the energ
action diffusion equation mentioned above by deriving
functional form forA in the LD limit, which bridges the two
Kramers formulas. They then obtained the escape rate in
whole damping range by multiplying their functional form
with the Kramers IHD prefactor.

The bridging between the two friction regimes has ho
ever never been effected for magnetic relaxation of sing
domain ferromagnetic particles. Such a bridging formula
important here because in the low-damping limit one of
encounters difficulties in implementing numerical simu
tions of the dynamics of the magnetization and longest liv
2-2
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INTERPOLATION FORMULA BETWEEN VERY LOW AND . . . PHYSICAL REVIEW E63 021102
relaxation mode for the purpose of reproducing the ex
solution for the escape rate@11#. It follows that a formula for
the escape rate valid for all values of the friction would
useful~a! in view of its relative ease of computation and~b!
as a check on the accuracy of numerical simulations as
formula, in principle, is able to qualitatively reproduce t
frictional behavior of escape rates.

The purpose of this work is to demonstrate how to brid
LD and IHD magnetic Kramers formulas by suitably ada
ing the Mel’nikov-Meshkov procedure. Such adaptations
necessary because, unlike mechanical particles, the
damped equation of motion of the magnetization of a sing
domain ferromagnetic particle is the gyromagnetic equat
Thus the Hamiltonian of the system is the Gibbs free ene
which is in general not separable in terms the canonical v
ables of the problem. Furthermore, the magnetic system
two degrees of freedom, namely, the polar and azimu
angles. This is in contrast with the original Kramers proble
characterized by one degree of freedom and a t
dimensional state space. Again, unlike that problem the
ertia of the particle plays no role with the result that ev
though the magnetic system has inherently two degree
freedom, it still has a two-dimensional state space as in
Kramers problem. Having taken account of these consid
ations, the results obtained for single-domain ferromagn
particles with uniaxial anisotropy when a uniform magne
field is applied at an angle to the easy axis are compare
an exact solution in terms of matrix continued fractions. T
range of applicability of this formula as the axially symme
ric limit is approached will also be discussed.

II. PROBABILITY DENSITY DIFFUSION EQUATION FOR
SPINS IN TERMS OF ENERGY-ACTION VARIABLES

The starting point of our investigation is the gyromagne
equation

dM

dt
5g~M3H!, ~2.1!

whereg is the gyromagnetic ratio,M is the magnetization
vector of a single-domain ferromagnetic particle, and
field H which may comprise the field due to the magne
crystalline anisotropy and external applied fields is

H52
]V

]M
. ~2.2!

HereV is the Gibbs free energy density.
The equations of motion of the magnetization vec

namely ~2.1! may be written as an equation for the rate
change of the angular momentumP of a spin namely

Ṗ5u̇
Ms

g
5u3h, ~2.3!

where

u5
M

Ms
,h52

]V

]u
, ~2.4!
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andMs is the magnetic moment magnitude of a nonrelax
particle. Equation~2.3!, by introducing the orientations~q,
w! of the magnetization vectorM may in turn be written as

Ms

g
q̇5

1

sinq

]V

]w
~q,w!, ~2.5!

ẇ sinq52
g

Ms

]V

]q
~q,w!. ~2.6!

If we now introduce as variablex5cosq, Eqs. ~2.5! and
~2.6! assume the form of Hamilton’s canonical equationsviz.

ẋ52
g

Ms

]V

]w
~x,w!52

]E

]w
~x,w!, ~2.7!

ẇ5
g

Ms

]V

]x
~x,w!5

]E

]x
~x,w!, ~2.8!

where E(x,w)5(g/Ms)V(x,w) is the Hamiltonian of the
system. The set$w,x%[$q,p% constitutes the canonical var
ables of the magnetic problem and consequently genera
two-dimensional state space as in Kramers’s problem~1.1!–
~1.2! ~again referring to the undamped motion! with the dif-
ference that unlike mechanical particles the Hamilton
E(q,p) is no longer separable. Equations~2.7! and~2.8! de-
scribe the undamped motion of the system in the absenc
thermal agitation and may be used to sketch the phase s
trajectories. We also note in passing that the distributionW
in phase space obeys Liouville’s theorem of conservation
density in phase, namely~d/dt denoting a hydrodynamica
derivative!:

dW

dt
5

]W

]t
1 ẋ

]W

]x
1ẇ

]W

]w
50, ~2.9!

which, by virtue of Eqs.~2.7!–~2.8! reads as

dW

dt
5

]W

]t
1

g

Ms
F]V

]x

]W

]w
2

]V

]w

]W

]x G50. ~2.10!

If we include thermal agitation by regarding the Landa
Lifshitz equation as the Langevin equation of the system
~2.1! becomes@12#

dM

dt
5g~M3H!1

ag

Ms
~M3H!3M , ~2.11!

where this time

h52
]V

]u
1hr~ t !, ~2.12!

with hr(t) being the normalizedd-correlated white-noise
force due to thermal fluctuations, anda is a dimensionless
damping constant. Now, Eq.~2.11! accounts for orientation
changes of the magnetization only, so that the FPE obta
from Eqs.~2.11!–~2.12! will govern the distribution function
of magnetization orientations on the unit sphere. Hence,
have Brown’s FPE@12,13#
2-3
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DÉJARDIN, CROTHERS, COFFEY, AND McCARTHY PHYSICAL REVIEW E63 021102
2tN

]W

]t
5L2W1

b

sinq

]

]q Fsinq
]V

]q
W2

1

a

]V

]w
WG

1
b

sinq

]

]w F 1

sinq

]V

]w
W1

1

a

]V

]q
WG , ~2.13!

where in Eq.~2.13!,

L25
1

sinq

]

]q S sinq
]

]q D1
1

sin2 q

]2

]w2 ~2.14!

is the angular part of the Laplacian and

tN5
bMs

2ag
~2.15!

is the diffusion relaxation time,b5n/kT, andn is the vol-
ume of a single-domain ferromagnetic particle. In the pr
ence of thermal agitation, Liouville’s theorem of conserv
tion of density in phase no longer holds, so that one has

dW

dt
5

]W

]t
1

g

Ms
F]V

]x

]W

]w
2

]V

]w

]W

]x G5DW, ~2.16!

whereD denotes a dissipation operator. We remark that if
set x5cosq and make the transformationq→x in Eq.
~2.13!, then the termDW assumes the form

DW5
ag

bMs
H ]

]x F ~12x2!S ]W

]x
1bW

]V

]x D G
1

1

12x2

]

]w F S ]W

]w
1bW

]V

]w D G J , ~2.17!

which is the form ofD corresponding to the Langevin Eq
~2.11!. We remark that we have split Brown’s FPE into th
two equations namely

dW

dt
5

]W

]t
1

g

Ms
F]V

]x

]W

]w
2

]V

]w

]W

]x G ~2.18!

which describes the undamped precessional motion an
entirely equivalent to Eq.~2.1! or ~2.5!–~2.8!, and
-
-

e

is

dW

dt
5

ag

bMs
H ]

]x F ~12x2!S ]W

]x
1bW

]V

]x D G
1

1

12x2

]

]w F S ]W

]w
1bW

]V

]w D G J . ~2.19!

Equation~2.19! expresses the irreversible total rate of chan
of the distribution function, i.e., irreversible evolution of th
system from one phase point to an other.

In order to adapt the Mel’nikov-Meshkov approach f
mechanical particles to the problem at hand, we must c
sider the quasistationary regime where

]W

]t
'0. ~2.20!

Equation~2.18! then becomes

dW

dt
5

g

Ms
F]V

]x

]W

]w
2

]V

]w

]W

]x G . ~2.21!

We proceed by introducing the reduced energy variable

«5bV~x,w! ~2.22!

and transform Eqs.~2.19! and ~2.21! into energy-azimuthal
angle variables~«, w! by using the chain rule. We have

S ]W

]x D
w

5S ]«

]xD
w
S ]W

]« D
w

, ~2.23!

S ]W

]w D
x

5S ]W

]w D
«

1S ]«

]w D
x
S ]W

]« D
w

, ~2.24!

~where for simplicity we do not use a new symbol for th
transformed distribution function! so that according to Eqs
~2.23! and ~2.24! the dissipative term Eq.~2.19! becomes
dW

dt
5

ag

bMs
S ]«

]xD
w

]

]« H ~12x2!S ]«

]xD
w
FW1S ]W

]« D
w
G J

w

1
ag

bMs

1

12x2 H ]

]w F S ]W

]w D
w

1WS ]«

]w D
x
G J

«

1
ag

bMs

1

12x2 H ]

]w F S ]W

]« D
w
S ]«

]w D
x
G J

«

1
ag

bMs

1

12x2 S ]«

]w D
x
H ]

]« F S ]W

]w D
«
G J

w

1
ag

bMs

1

12x2 S ]«

]w D
x

]

]« H S ]«

]w D
x
FW1S ]W

]« D
w
G J

w

, ~2.25!

021102-4
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and the Liouville term Eq.~2.21! reads as

dW

dt
5

g

bMs
S ]«

]xD
w
S ]W

]w D
«

. ~2.26!

Now we have seen thatx ~effectively the magnetic momen
tum! andw ~the azimuthal angle! are canonical conjugate i
the zero damping limit@13,14#. In this limit, the energy
V(x,w) is a constant of the motion which is completely d
scribed by Eqs.~2.7! and ~2.8!. Regarding the damped mo
tion, the energy is no longer conserved. However, in
crossover region the dissipation process may be perceive
consisting of small changes in the energy of the system,
in the crossover dissipation process,« is a slow variable~at
givenw! while w ~keeping the energy fixed! is a fast variable.
This means that in the first approximation we may negl
the effect of the operators (]/]w)« in the dissipative term Eq
~2.25!. However, the anglew is maintained in Eq.~2.26!
because unlike the case of very low damping one need
retain in first approximation the effect of the coupling b
tween the Liouville and dissipation terms which must
taken into account if we wish to describe accurately
crossover region. Hence the dissipation operator cont
only derivatives with respect to« and Eq.~2.25! becomes

dW

dt
5

ag

bMs
S ]«

]xD
w

]

]« H ~12x2!S ]«

]xD
w
FW1S ]W

]« D
w
G J

w

1
ag

bMs

1

12x2 S ]«

]w D
x

]

]« H S ]«

]w D
x
FW1S ]W

]« D
w
G J

w

.

~2.27!

In order to derive the energy-action diffusion equation o
has to show thatx depends onw only. This is readily dem-
onstrated by noting that the energy is supposed quasi
stant, so that we have

d«~x,w!5S ]«

]xD
w

~x,w!dx1S ]«

]w D
x

~x,w!dw'0,

~2.28!

leading to the differential equation of the phase space tra
tories

dx

dw
'2

S ]«

]w D
x

S ]«

]xD
w

. ~2.29!

This equation, by imposing a suitable boundary condit
~the value ofx at the saddle point in general! and solving for
x guarantees thatx dependsexplicitly on w only, and not on
« ~see Appendix!. This means that we can rewrite Eq.~2.27!
as
02110
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dW

dt
5

ag

bMs
F ~12x2!S ]«

]xD
w

2

1
1

12x2 S ]«

]w D
x

2G
3H ]

]« FW1S ]W

]« D
w
G J

w

. ~2.30!

On equating the right-hand sides of Eqs.~2.25! and~2.30! we
obtain finally

S ]W

]w D
«

'aF ~12x2!S ]«

]xD
w

2
1

12x2 S ]«

]w D
x

dx

dwG
3H ]

]« FW1S ]W

]« D
w
G J

w

, ~2.31!

where we have used Eq.~2.29!. By introducing the dimen-
sionless actions via the differential equation

ds

dw
5~12x2!S ]«

]xD
w

2
1

12x2 S ]«

]w D dx

dw
, ~2.32!

and using the chain rule again, we arrive at the energy-ac
diffusion equation

]W

]s
5a

]

]« S W1
]W

]« D , ~2.33!

where we have suppressed the subscripts of the deriva
as their meaning is now obvious. The action variable is

s5E
«5constant

~12x2!S ]«

]xDdw2
1

12x2

]«

]w
dx.

~2.34!

Here, we are interested in the critical energy trajector
which are given by

«5«c , ~2.35!

where«c defines the energy contour through the saddle po
of the energy from which the moments may overcome
barrier. When the energy of the system attains this value«c ,
the magnetization may leave the initial well, i.e., can rever
In addition, we remark that Eq.~2.35! constitutes a boundary
condition for Eq.~2.29! whence it follows that the action
variable~2.34! is to be evaluated on the critical energy co
tour. We emphasise that the solutionW of Eq. ~2.33! will
effectively assume the Maxwell-Boltzmann distributio
deep in the wells and will change in a relatively narro
region about the top of the barrier, the behavior being ana
gous to that in the VLD case with the difference that t
azimuthal dependence ofW which in this case is describe
by the left-hand side of Eq.~2.33! may not be neglected nea
the top of the barrier. We further remark that Eq.~2.34!
defines an action variable analogous to that introduced
Mel’nikov and Meshkov for mechanical particles. It is mo
complicated, however, because we reiterate that unlike
chanical systems, magnetic ones are not completely s
rable ~the Hamiltonian is not additive inx and w!, so that
2-5
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with the exception of time, one cannot separate the varia
in the correponding~deterministic! Hamilton-Jacobi equa
tion. As Eq.~2.33! is of the same form as the energy actio
diffusion equation of Ref.@7# ~details of the derivation of the
Mel’nikov-Meshkov theory is given in Ref.@17#!, it follows
that the magnetic prefactor has a form identical to that
mechanical particles. For a double-well potential, this pr
actor in the intermediate-to-low damping~ILD ! limit ~cross-
over region! where neither IHD nor VLD treatments apply
@7#

A~as1 ,as2!5
A~as1!A~as2!

A~as11as2!
, ~2.36!

where

A~z!5expH 1

p E
0

`

ln~12e2z~z211/4!!
dz

z211/4J
~2.37!

is the prefactor for a single escape path,z5asi is the energy
loss per cycle in welli @justified following Eq.~3.4! below#
and

si5E
«5«ci

~12x2!
]«

]x
dw2

1

12x2

]«

]w
dx, i 51,2

~2.38!

is the magnetic action in the welli. The line integral is taken
along the direction of precession in welli.

Equation~2.36! is an accurate formula for the magnet
prefactor in the crossover region. In order to write down
formula for the magnetic prefactor which is valid for all va
ues of the damping, we recall that the IHD prefactor deriv
by Brown has essentially the same form as that for mech
cal particles and is@8,13,15# ~the details of derivation of this
prefactor which are rather lengthy are given in Geoghe
et al. @15# and also derived in detail using Langer’s meth
@10# in Ref. @17#!:

1

2vCtN
F S vC

2 1
a2~c2

C2c1
C!2

4 D 1/2

2
~c2

C1c1
C!a

2 G ,
~2.39!

whereci
C is the coefficient of the second term in the Tayl

expansion of the potential energy about the saddle poin
terms of the magnetization direction cosines, and@8,13#

vC}A2c1
Cc2

C ~2.40!

so that the product of Eqs.~2.23! and~2.26! yields the mag-
netic prefactor in the whole damping range. It follows tha
formula for the escape rate of magnetic moments across
anisotropy potential barrier which is valid for all values
the damping is
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1

2vCtN
F S vC

2 1
a2~c2

C2c1
C!2

4 D 1/2

2
~c2

C1c1
C!a

2 G A~as1!A~as2!

A~as11as2!
kTST. ~2.41!

We note that the frequenciesv1 andv2 in each well are here
respectively given by

v i5Ac1
i c2

i , i 51,2. ~2.42!

III. APPLICATION TO THE PROBLEM OF RELAXATION
OF A SYSTEM HAVING UNIAXIAL ANISOTROPY

WITH A UNIFORM FIELD AT AN ANGLE TO THE
ANISOTROPY AXIS

We now apply the above considerations to the calculat
of the greatest relaxation time of single-domain ferroma
netic particles having uniaxial anisotropy when an exter
uniform magnetic field is applied at an angle to the easy a
@i.e., in the~x, z! plane#. The dimensionless free Gibbs en
ergy is given by

«~x,w!52sx22jx cosc2jA12x2 sinc cosw,
~3.1!

where c is the angle the direction of the magnetic fie
makes with the easy axis of magnetization. This potential
a saddle point in the Greenwich meridianw50 ~zero longi-
tude! and an absolute maximum atw5p. Furthermore, in
Eq. ~3.1! we have introduced the notations~reduced barrier
height and reduced field parameter!:

s5
Kn

kT
, j5

MsH

kT
. ~3.2!

Here,K is the anisotropy constant,Ms the saturation magne
tization, andH is the external uniform magnetic field. Befor
proceeding, we note that it is customary to introduce
reduced field parameterh defined as@16#

h5
j

2s
. ~3.3!

In order to evaluate the escape rate~2.41! for this prob-
lem, one must first numerically evaluate the action integr
~2.38! as well as Eq.~2.24!. The quantityA(z) is best cal-
culated by using its rerpresentation in terms of the comp
mentary error functionviz. @7#

A~z!5expH 2 (
p51

`
erfc~Apz/2!

p J .

We evaluate the action integrals~2.38! by reiterating that in
the VLD limit, the free energy will be almost a constant
the motion. Hence, on using Eq.~2.29! viz. the fact that the
energy is almost conserved and the Hamiltonian Eq.~3.1!,
we have the differential equation
2-6
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dx

dw
5

h~12x2!sinc sinw

xA12x21h coscA12x22hx sinc cosw
.

~3.4!

This differential equation must be integrated subjected to
boundary condition

x~0!5xC , ~3.5!

since the saddle point of the free energy surface is atw50.
This boundary condition is needed since we are require
evaluate the action integral on the critical energy trajecto
We remark that the solution of Eq.~3.4! with the boundary
condition ~3.5! is unique on the interval@0,2p#. This proce-
dure avoids solving the usual quartic equation involved@17#
in the determination ofx as a function ofw, together with all
its disadvantages~selection of the correct root in particular!.
Having solved this equation numerically forx(w), one may
calculate the actions in each well. Here, these integrals
equal because the regions contributing to the action varia
in each well are symmetric. The contours of integration
delimitated by noting that the solution of Eq.~3.4! is periodic
with period 2p and exhibits a maximum atw5p for any
value ofh and the anglec ~see Fig. 1!. This fact may be used
to define the regions of integration, namely, 0<w<p for the
action variable in the first well, andp<w<2p in the sec-
ond. To put this in another way, the same arc length is
volved in the calculation of the two action variables cor
sponding to the two wells, so that the energy loss per cycl
each well is the same. The actual calculation of the l
integrals~transformed into ordinary integrals! is usually per-
formed numerically. The sole exception to this is the cal
lation of the action variables when a small field is appli
perpendicular to the easy axis and is illustrated in sectio
of the present paper.

Having evaluated the escape rate rendered by Eq.~2.41!
as described above, we compare the result with that obta
by calculating the escape rate exactly. In order to accomp
this, one expands the time-dependent probability density
the basis of the spherical harmonics, namely,

FIG. 1. The phase space (x,w) for s510 andc5p/6, andh
50.25 ~solid line!; c5p/4, and h50.33 ~small dashed line!; c
5p/3, andh50.4 ~large dashed line!.
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W~x,w,t !5(
l 50

`

(
m52 l

l

al ,m~ t !Nl ,mPl
m~x!eimw, ~3.6!

where

Nl ,m5~21!mA~2l 11!~ l 2m!!

4p~ l 1m!!
, m.0, ~3.7!

and thePl
m(x) are the associated Legendre functions@18#.

We also have@19#

Pl
2m~x!5~21!m

~ l 2m!!

~ l 1m!!
Pl

m~x!.

The time-dependent Fokker-Planck equation may be redu
to the set of differential recurrence relations

ȧl ,m~ t !5 (
r 522

2

(
s52r

r

dl ,m,l 1r ,m1sal 1r ,m1s~ t !, ~3.8!

where thedl ,m,l 8,m8 are the elements of Brown’s Fokke
Planck operator and have been given in detail elsewh
@20#. The thirteen-term differential recurrence relation~3.8!
now may be cast into the tridiagonal form@20#:

Ċl~ t !5Ql
2Cl 21~ t !1QlCl~ t !1Ql

1Cl 11~ t !, ~3.9!

whereCl(t) is the column vector given by

Cl~ t !5S a2l ,22l~ t !
a2l ,22l 11~ t !

]

a2l ,2l~ t !
a2l 21,22l 11~ t !

]

a2l 21,2l 21~ t !

D , ~3.10!

and the elements of the matricesQl
6 andQl are expressed in

terms of thedl ,m,l 8,m8 @21#. The smallest eigenvalue of th
Fokker-Planck operator may be calculated by calculating
smallest eigenvalue of the (838) matrix @20#

S52
@Q12Q1

1D2Q2
2#

F I1 (
n52

` S )
m51

n21

Qm
1D S )

k51

n21

Dn2k11
2 Qn2k11

2 D G ,

~3.11!

whereI is the (838) identity matrix andDn is the infinite
matrix continued fraction@20#

Dn5
I

2Qn2Qn
1

I

2Qn112Qn11
1

I

2Qn122¯

Qn12
2

Qn11
2

.

~3.12!

This procedure allows us to compute the escape rate of
magnetization from a stable state of orientations for a w
range of anisotropy parameterss anda and avoids the solu-
2-7
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DÉJARDIN, CROTHERS, COFFEY, AND McCARTHY PHYSICAL REVIEW E63 021102
tion of a high order polynomial, provided that the smalle
eigenvalue of Brown’s Fokker-Planck operator is sign
cantly lower than all the other eigenvalues.

We note that in order to be able to compare the rate gi
by Eq.~2.41! and those obtained from the diagonalization
Eq. ~3.12!, all approximate formulas given in this pap
should be divided bya. In fact, on considering Eq.~2.13!
and converting it to an eigenvalue problem we have

2ltNW1
1

a S ]«

]x

]W

]w
2

]«

]w

]W

]x D
5

]

]x F ~12x2!S ]W

]x
1bW

]V

]x D G
1

1

12x2

]

]w F S ]W

]w
1bW

]V

]w D G , ~3.14!

where we have again setx5cosq in Eq. ~2.13!. This eigen-
value problem is solved in terms of the matrix continu
fraction ~3.12!. However, in deriving Eq.~2.33! we have
multiplied Eq.~3.14! by a. Thus we have implicitly consid-
ered the following eigenvalue problem

2l8tNW1S ]«

]x

]W

]w
2

]«

]w

]W

]x D
5a

]

]x F ~12x2!S ]W

]x
1bW

]V

]x D G
1

a

12x2

]

]w F S ]W

]w
1bW

]V

]w D G , ~3.15!

with l85al ~we note in passing that sincea.0,l185al1

will still be the smallest nonvanishing eigenvalue!. This
means that in order to compare Kalmykov’s solution with,
particular, our formula~2.41! we have to divide it bya,
including the generalization of the Klik and Gunther LD fo
mula for a double-well potential, namely,

kLDtN5
as1

4
kTST, ~3.16!

where we have taken into account that the actions in e
well are equal,s15s2 .

In addition, in the context of numerical calculations, w
emphasize that care must also be taken in solving the di
ential equation~3.4!. Namely, this equation is valid in so fa
as the concept of an escape rate has a meaning. In partic
according to the Stoner-Wohlfarth calculation of the critic
reduced fieldhc @12,22#, one must be aware that the esca
rate problem is meaningful only if

h<
1

~cos2/3c1sin2/3c!3/2, ~3.17!

which guarantees that the Hamiltonian~3.1! retains its
bistable structure, so that the concept of an escape rate c
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applied. Indeed, if this condition is violated, the only proce
involved is fast relaxation inside the only remaining well a
not barrier crossing.

IV. LIMITING CASES

In order to check our formula~2.41!, we study below
known limiting cases which are~a! the explicit evaluation of
the escape rate in the VLD regime for escape from a sin
well already considered by Klik and Gunther and~b! the
calculation of the energy loss per cycle for a transverse
plied field as already obtained by Garaninet al. @23#.

First, we show how to obtain the Klik and Gunther fo
mula from the single-well version of Eq.~2.41!. For a single
well, we have

k5
1

2vCtN
F S vC

2 1
a2~c2

C2c1
C!2

4 D 1/2

2
~c2

C1c1
C!a

2 GA~as!kTST, ~4.1!

where only one term is retained in the expression~1.4! for
kTST since there is only one well. In the limit of smalla, Eq.
~4.1! becomes

k5
1

2tN
A~as!kTST. ~4.2!

Now, the behavior ofA(z) for smallz will be demonstrated.
In that limit, the exponential in Eq.~2.37! may be expanded
to first order inz to yield

A~z!'expH 1

p F ln zE
0

` dz

z211/4
1E

0

` ln~z211/4!

z211/4
dzG J .

~4.3!

Now @24#

E
0

` ln~z211/4!

z211/4
dz50, ~4.4!

so that Eq.~4.3! becomes

A~z!'expF 1

p
~p ln z!G

'z, ~4.5!

and Eq.~4.2! finally reads

k5
as

2tN
kTST, ~4.6!

which is, in our notation, the formula of Klik and Gunther
Here we evaluate the action integral in Eq.~2.38! for a

small uniform transverse applied field, yet large enough
ensure departure from axial symmetry. This is the only c
in which the calculation may be carried out explicitly with
out encountering severe algebraic difficulties. It will al
2-8
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INTERPOLATION FORMULA BETWEEN VERY LOW AND . . . PHYSICAL REVIEW E63 021102
serve to illustrate the difference between the action inte
used by Garaninet al. which is evaluated by expressingx
directly as a function ofw and the action integral used in th
present problem which is calculated by using the differen
Eq. ~3.4! of the trajectories in the (x,w) space. We remark
that Garaninet al. @23#, by noting that the potential due to
transverse field is a symmetric bistable potential, show
how the action integral may be calculated by considering
result for a single potential well only. Here, we will dete
mine the action integrals in each well separately and we s
show how the action integral may be reduced to that of G
ranin et al. We first note that Eq.~3.4! with c5p/2 is

dx

dw
5h

~12x2!sinw

x~A12x22h cosw!
. ~4.7!

This equation is singular at the equatorx50. If c5p/2 the
boundary condition for Eq.~4.7! is xc50 ~because the saddl
point is at the equatorq5p/2 for a transverse field!, thus we
make the change of variableu5x2 and transform Eq.~4.7!
into an equation foru

du

dw
52h

~12u!sinw

~A12u2h cosw!
, ~4.8!

with the boundary condition

u~0!50. ~4.9!

Now, the field is relatively small so that, following Garan
et al. @23#, when h→0, we may ignore terms of the orde
h3/2. We may also write in the vicinity of the saddle point

12u'1. ~4.10!

Hence Eq.~4.8! becomes

du

dw
~w!52h sinw, ~4.11!

which may be readily integrated between 0 andw to yield

u~w!52h~12cosw!, ~4.12!

leading to the two possible solutions forx(w)

x~w!562Ah sin
w

2
. ~4.13!

The two phase trajectories are equally possible. In phys
terms, the solution with the plus sign corresponds to sp
rotating clockwise, the minus sign to spins rotating an
clockwise. We note that for a transverse uniform appl
field, this is always so, as the solution of Eq.~4.7! cannot be
carried out without Eq.~4.9! which involves the square o
the magnetic momentum.

Having expressedx in terms ofw one may evaluate the
line integrals as follows. As the actions in each well a
equal, it suffices to calculate the action variable in the fi
02110
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well only. As the reduced field parameterh is small and as
on the critical energy curve we still have 12u'1, we may
rewrite Eq.~2.38! as

s1'E
«5«C

]«

]x
dw2

]«

]w
dx. ~4.14!

Following Garaninet al. @23# and Coffeyet al. @27#, one can
ignore the second term in this integral as it is of the ord
h3/2 so that, accounting for the two phase paths given by
~4.13! we have

s1'E
«5«C

1

]«

]x
dw1E

«5«C
2

]«

]x
dw, ~4.15!

where«C
1 and «C

2 denote the critical energy values asso
ated with the two phase paths~4.13!. These two values are
equal. We have simply introduced the notation«C

1 , «C
2 in

order to emphasise the difference between the respec
contributions of the two possible integration paths.

Again, following Garaninet al. @23# we utilize the fact
that

]«

]x
'22sx, ~4.16!

so that Eq.~4.15! can be finally evaluated to yield

s1524sAhF E
0

p

2sin
w

2
dw1E

p

0

sin
w

2
dwG

'16sAh. ~4.17!

Sinces15s2 and that the prefactorA(z) Eq. ~2.37! behaves
asz in the limit of small energy losses per cycle, we find,
evaluating the prefactor for the double-well potential E
~2.36!,

A~as1 ,as2!'
a2s1

2

2as1
5a

s1

2
58asAh, ~4.18!

in agreement with the calculation of Garaninet al. @23#. We
reiterate that the splitting of the action integral in Eq.~4.15!
arises because the differential equation~4.7! admits of two
solutions corresponding to the two possible phase traje
ries. Such a separation in the precession directions is, in
eral, not possible for arbitraryc ~Þ0! because the solution o
Eq. ~3.4! with boundary condition~3.5! is then unique.

V. RESULTS AND CONCLUSIONS

We have indicated above how a formula~2.41! for the
escape rate for single-domain ferromagnetic particles wh
is valid in the whole damping range may be obtained. This
accomplished by neglecting the azimuthal dependence o
distribution function in the dissipation term.

When one tries to apply the formalism described earlie
a particular problem in magnetism, we remark that the in
gration paths necessary to calculate the actions in each
are obtained by solving Eq.~3.4! with boundary condition
2-9
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DÉJARDIN, CROTHERS, COFFEY, AND McCARTHY PHYSICAL REVIEW E63 021102
~3.5!. We note from Fig. 1 that the phase trajectories
open~unlike those for mechanical particles! as one may ex-
pect for a motion of rotational type@25#. These phase trajec
tories are unique for any anglec except for c5p/2 for
which two open trajectories are possible. These open tra
tories are symmetric with respect to the straight linex50.
One may also remark that in order to calculate action in
grals such as~2.38! transformed into ordinary integrals, on
integrates overw from 0 to p in the first well and fromp to
2p in the second. This is because as is apparent from
open nature of the trajectories and from Fig. 2, both
Hamiltonian and the phase trajectories attain a maximum
w5p.

In Fig. 3 the logarithm of the exact, LD and IHD, and th
Mel’nikov-Meshkov magnetic formula~2.41! are plotted as a
function of the logarithm of the friction parametera. All the

FIG. 2. 3D plot of the Hamiltonian as a function ofq andw for
c5p/6, andh50.2. The values520 has been arbitrarily chosen

FIG. 3. log10 ktN vs log10 a for s510, c5p/6, andh50.25.
The solid line is the exact rate; the dotted line is Eq.~2.41!. The
dashed line is Brown’s nonaxially symmetric IHD formula and t
dot-dashed line is the Klik-Gunther LD formula for the double-w
potential~3.16!.
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rates are normalized with respect to the characteristic di
sion timetN so that the problem of the choice of the starti
stochastic differential equation namely Landau-Lifshitz
Gilbert is irrelevant. We remark that the qualitative behav
of the exact escape rate is well reproduced over the wh
damping range, and especially in the crossover region wh
neither the LD, nor the IHD formulas are valid.

We have plotted on Fig. 4 log10(ktN) as a function ofs
for 3 typical values of the damping parametera. It is appar-
ent from this figure that the agreement between Eq.~2.41!
and the exact solution is good for larges as expected. The
qualitative agreement in frictional behavior may be e
plained as follows. The behavior of the escape rate as a fu
tion of s for larges is approximately Arrheniuslike@8# and
this behavior arises from an equilibrium property of the s
tem ~namely the Maxwell-Bolttzmann distribution at the bo
tom of the well!. On the other hand, the frictional depe
dence of the escape rate is due to nonequilibri
~dynamical! properties of the system and so is contained
the prefactorA only, the detailed nature of which depends
the precise form of the asymptotic expression used to ob
it. In other words, not only does one have to postulate a h
barrier ~hence a Maxwell-Boltzmann distribution at the bo
tom of the well!, one must also postulate the behavior of t
distribution function at the barrier top. We remark that
emphasised by Kramers, it is hardly ever of any practi
importance to improve on the accuracy of the IHD or L
formulas themselves because in experimental situat
where relaxation is studied, one is left with estimates of
prefactor within a certain degree of accuracy which is di
cult to evaluate. For example information ona is scanty. On
the other hand it is important to predict the behavior of t
relaxation times as a function of friction using analytic
methods such as the one described in this paper becau
the detailed information such methods yield concerning
mechanisms underlying the relaxation process.

Referring again to Eq.~2.41! we emphasise that this for
mula can be used when the anglec the field makes with the
easy axis is large enough to ensure significant depart
from axial symmetry@26# ~see explanation below!. Never-
theless, as one can see from Fig. 5 the calculation fails
cause the assumptions made in the derivation of the IHD

FIG. 4. log10 ktN as a function ofs. The solid line is the exact
solution. Diamonds denote formula~2.41! for a50.001 ~LD!;
squares denote formula~2.41! for a50.1 ~crossover!; and triangles
denote formula~2.41! for a510 ~IHD!.
2-10
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VLD asymptotic formulas are invalid for small departur
from axial symmetry@26,27#. Thus our formula Eq.~2.41!
may not be used in the neighborhood of uniaxial crossov
because such action integrals as Eq.~2.38! are zero for any
angle c ~for small fields! or small departures of the latte
angle from zero in any field.

In conclusion, it is apparent that Eq.~2.41! provides a
good qualitative account of the behavior of the exact esc
rate for magnetic particles having uniaxial anisotropy wh
an external magnetic field is applied at an angle to the e
axis. We finally remark that although our formula~2.41! pro-
vides a good approximation to the exact escape rate when
potential is truly non-axially symmetric, it has more limita
tions than its mechanical equivalent as it cannot be used
small anglesc and low fields since the action as rendered
Eq. ~2.38! then vanishes. Thus, if one desires a form
which embraces both uniaxial and frictional crossovers,
must suitably combine the techniques developed in Re
ence@23# with those of the present paper.
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APPENDIX: DETAILS OF DERIVATION OF EQ. „2.33…

In this appendix we give some details concerning the d
vation of the energy-action diffusion Eq.~2.33! for magnetic
dipole moments. In particular, we explain why we may d
rive Eq. ~2.30!. We have inferred in the text thatx and the
derivatives of« with respect tox andw are not explicit func-
tions of«, so that these may be taken out of the outer deri
tive sign with respect to«. This may be justified as follows
We recall that in the LD limit the motion is quasidetermi
istic. Thus the total energy is approximately conserv
Hence we have the equations of the trajectories in ph
space

«5 f ~x,w!'constant. ~A1!

On taking the total differential of this equation we have

d«5d f~x,w!'0, ~A2!

Now, if the energy is constant, we will have, solving E
~A2!

x5g~w!. ~A3!

Furthermore, if the energy isquasiconstantas in the presen
problem we will then have

x'g~w!. ~A4!

Thus

S ]e

]xD
w

5g1@x~w!,w#, ~A5!

say, if the energy constant, and if it is quasiconstant, the

S ]«

]xD
w

'g1@x~w!,w#, ~A6!

which is not an explicit function of« and so may be taken
outside the (]/]«)w operator in Eq.~2.27!. Similar consider-
ations hold for the derivative of the energy with respect
the anglew. With these approximations, the dissipation term
finally becomes Eq.~2.30!.
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