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Abstract. In the paper we present a derivative-free estimate of the remainder of an
arbitrary interpolation rule on the class of entire functions which, moreover, belong to
the space L% o0,400) " The theory is based on the use of the Paley-Wiener theorem. The
essential advantage of this method is the fact that the estimate of the remainder is formed by
a product of two terms. The first term depends on the rule only while the second depends on
the interpolated function only. The obtained estimate of the remainder of Lagrange’s rule
shows the efficiency of the method of estimate. The first term of the estimate is a starting
point for the construction of the optimal rule; only the optimal rule with prescribed nodes
of the interpolatory rule is investigated. An example illustrates the developed theory.

Keywords: entire functions, Paley-Wiener theorem, numerical interpolation, optimal in-
terpolatory rule with prescribed nodes, remainder estimate
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1. PRELIMINARIES

Definition 1. By P, we denote the space of functions f which have the following
properties:

1) f is an entire function of exponential type with a fixed constant a, i.e. f is

holomorphic in the whole complex plane and for every complex z the inequality

(1) If(z)| < Cel¥l, ¢ >0

holds (C depends on f).

*This work was supported by the Grant MSM 113200007.
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2) The restriction of the function f to the interval (—oo, +00) is an element of the
space L%foc#oo) with the norm

+0o0)

+o0o
/ If(®)?dt < +oc.

— 00

(2) 1703

On P, we define the scalar product in the following way:

+oo

(f,g>:/ fgde for f,g € P..

— 00

Remark 1. It is well known that the constant a from (1) can be calculated by
the formula

In|f(2)|

(3) a = limsup ———.
|z]| =400 |Z|

Remark 2. Let F be an entire function of exponential type with a constant A.
Let us assume the restriction of F' to an interval [, 3] to be a real one, where o < 8
are reals. Then the function defined by

(4) f(z) = F(Q),
2A a+ 08—« a+ 0
(5) o ﬁ—a(ci 7o)
A(B—a)

is of exponential type with the constant a where a =

Proof. For some C’ > 0 we easily obtain

1£(2)] = |F(O)] < CelSl = ¢reAV 37 742371 < reAl™37 AV 7 12l = Cel?l)

a+5‘
2 .

where C = C’e”l O

Remark 3. In the sequel—in accordance with Remark 2—we suppose that f is
a given function from the space P, and the goal is to interpolate the restriction of
the function f to the interval [—a, +a.
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2. BASIC THEOREMS

In this part we give a basic theorem from which the considerations concerning a
general interpolation formula will be developed. Let us summarize the definition and
basic properties of the Fourier-Plancherel transform in

Remark 4. By the symbol f we denote the Fourier-Plancherel transform of
an arbitrary function f belonging to the class L%foc too): This transform and the
inverse one are defined by the formulas

(6) )= =4 / T as,
Foo Gits _ 7,
/_ —— f(s)ds.

then the Fourier-Plancherel transform f of the

—_
|

T Von dt

If f e L OO+OO)QL( 00,400)
function f i 1s the usual Fourier transform of the function f. For every f € L( 00,400)

we have Hf||Lz = ||f||L ) Thus the mapping f — f is the Hilbert

isomorphism of the space L( o0, 400) ONtO L( o0, 400)" The set L( 50,400) OL( o0,400)
is dense in L%ﬁooﬂroc)

Definition 2. Let R be a continuous linear functional on the space P,. Then

2

we define a linear functional R on the space L( by the relation

—a,a)

(7) R(f) = R(f)
where f is the Fourier-Plancherel transform of the function f.
Theorem 1. Let f € P,, let R and R be the functionals from Definition 2. Then

(®) 1Rz, = IRl

(—o0,+00)

Further, if we define the remainder R} of the interpolation formula

H=>t" @) f ()
k=0

on the interval [—a, +a] by the expression

) Ri(f) = th )
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where
n

Z’t,&n)(az)’ < 400 Vz € [—a, +d
k=0

then

n

oitr _ Ztén) ($)eitz§€")

k=0

- 1
(10) IR = T

2
L a.a)

Proof. 1) The assumption that the functional R is bounded means that

[R(NI < (IR 2

(—o00,400)

£l 2 fePa

(—o0,+00)’

In accordance with the Paley-Wiener theorem ([3], Theorem 19.3), for every f € P,

2

there exists a function f € L(_a7+a

) which has the following properties:

f(z) = " f(t)e**dt (2 is complex),

ft)=0 for t¢[—a,a]

Let us set

@(t) = V2r f(t), te (—o0,+00).
Then

+a
(11) 1) = o= [ el

and by Plancherel’s theorem ([3], Theorem 9.13) we have

Wlee = Nllee . =lglos .
Thus,
(RO = RDI <RIz, Wfllee = IBIzz _ _N&lez
and then
s < .
(12) 1Bz, < IRlez_,

2) The converse inequality follows immediately from the relation

R()| = [R@)] < |1l = 1Rl ISle

(—o0,+00)’

e

—a,a) —a,a) —a,a)

which by virtue of (12) proves (8).
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3) Let RZ be given by the formula (9). First we have to prove that R* is bounded.
Let f € P,. Then we have (see (11))

1 e ~ itz
flz) = \/—2_Tt/a ot)e™rdt, =€ (—a,a),

which gives by using the Cauchy inequality

o _ 1 [T T e
[f(@)]” < [p(8)]" dt | ]" dt

2n —a —a

+a
a . 9 a, . 9 a 5
= - H*dt = — J— ,
- / ClpPdr =211 = SR
a
R L.

|RE(f)] = ]f(x) - Zti”’(@f(wi”’)\
k=0

and thus

Further,

<f @)+ Y187 @) | £
k=0

n
a a (n)
< \/;|f|Lf_mv+w) + \/;|f|Lf_wv+w) ;’tk (x)]
a | ()
= \/;|f|L§m,+w) [1 + ;!tk (x)]}

This yields
n
a (n)
IRl < \ﬁ [1 -3 (x)@ < +oo

for every positive integer n and x € [—a, +a]. We see that RZ is bounded.
4) Let us define a functional RZ by the formula

R (0) = Ry (f),

where, as in part 3) of this proof,
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Then

n
Ri(0) = Bi(f) = f(@) = 367 () (")
k=0
1 /—i-a A i (n) 1 + o (n)
=— O(t)e™dt — » " (x) O(t)e'x  dt
21 J_q kz=0 k V2rn J—q
1 [t ‘ - n
— _/ 0(t) {e‘m -S>t (@) it} )] dt
2t J—a —o
1 [t ;
- L / B(t) R () t,
2n J_q
where N
Rz(eim) — oitw _ Ztgl) (.,L.)eitxgc")_
k=0
According to the Riesz theorem there exists a function 7% € L%_ a,a) Such that
Rz (0) = fj: 6(t)7z (¢) dt for every € L%—a,a) and
VRS = 1l
Thus
Fo (t) _ 1 |:eit$ _ zn: t(”) (x)eit;z,(c"’)]
" V2 =0 b
and
P (t) _ 1 |:e—itac _ zn:t(”) (x)e—itxfc"’)]
" V2 =0 b
is the representative of the functional Rﬁ This implies that
1R e = Mllee =l
=L |leit - zn:t;“(x)eimi"’ = ||RZ | e
Vor P L2 (—o0,400)
by virtue of the relation R%(f) = R%(f) for the corresponding 6, f. O
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3. THE ESTIMATE OF THE REMAINDER OF AN INTERPOLATION FORMULA

It is clear that for every function f € P, the following inequality holds:

(13) (R (D] < [1Rpllze 1F1l 22

(—o0,+00) (—o0,400) "

This estimate has an important property that no derivatives of the function f appear
in it and it consists of two terms; the first term depends on the rule only and the
second on the function f € P, only. The norm || f|| 2 may be estimated more

O )
or less exactly.

Now we get back to a general interpolation rule of the form

n

F@) = 3"t (@) f(e”) + RE(f)

k=0

where

(14) Z]t(”) )| < +oo Va € [~a,+d]
k=0

in order to approximate an arbitrary function f € P, over an interval (—a,a), with
n € N, where xin), k=0,1,...,n, are the nodes of the rule. The following theorem
gives an explicit form for the expression (10).

Theorem 2. Let f € P,, let RY be the functional defined by (9) and by (14).
Then

(n)
sin(a(z — ;"))
15 R —25 ¢ —k
() R = n{a EZ .o
(n) (n)
(n (n sm(a(a:k —x ))
+ Z Z ¢ t (n) _ (n) )
k=0 1=0 Ly Ty
where

sin (a(a:,(cn) - (n)))

=q for k=1.
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Proof. According to the proof of Theorem 1 we may write

IBSIZ, = ool ZM |2,

-+ ( a,a)

21 < Zt(n 1tm(">) < —itx Zt(n) 711511(" > dt
28
1 +a . n (n) n (n)
— % 3 <1 _ elt:}c Ztl( )(.'I} —itz;" _ 71t:r: Zt( 1tz
n Z Z ) ()t ()it _a:§">)> &t
k=0 1=0

(2(1 - Z t(”) / 1t(af af Z t(”) / it(xfﬂ"')—x) dt
PSP @) [ e gy
. € .

k=0 1=0
Because of e '
/ elt=2) q¢ = QM for z vy,
—a 2y
we get
(n)
9 B (n) sm a(z — ))
HRﬁHLg_w‘M) = {a—2Zt D
(n) (n)
(n) (n sm(a(a:k —x ))
33 o =)
k=0 1=0 k l
Wherew—a for a=0. O

Remark 5. The term in brackets in (15) can be calculated for every interpolation
rule given on the interval [—a, a] in the form of a table, or it is also possible to create
a procedure with parameters a,n, tgcn)(a:), .T](Cn), k=0,1,...,n

Now we formulate a theorem on convergence properties of the Lagrange interpo-
lation rule.
Theorem 3. Let RL® be the error functional of the Lagrange interpolation
formula on [—a,a]. Then
5

e\2 a nt1
16 |2 < 4<_) T eI
(16) 1R (—oc.+00) /) (2n+3)(n+1)3 ¢ ’
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and thus
||Rﬁ’$||2L%7w,+m) — 0 for n— oo.

Proof. We can write

L,x2 _laz)2
L TP A P

1 [te :
%/ ‘Rﬁ,x(eltaz”Z dt
—a

1 [te

> |RL (cos(ta)) + iRL® (sin(tz))[? dt
T —a

1 [t 2 2
[(RE*(cos(tx)))” + (RL " (sin(tz))) ] dt.

m /),

Let us denote CZ = w("nﬁl(;j,), wpt1(z) = (z — xé”))(x - wgn)) (- x%n)) It is well
known that )
RL,:L’ _ z

() (n+1)!

for every function f having (n + 1) continuous derivatives on (—a, +a). Using this

wn+1(x)a gz € (7aa +a)a

fact, we can write

+a

sl REeE, =€ [ {leostta) O] + (st )]

—a

From the relations

n (—1)%t" cos(tx) for n even,
—(cos(tx)) = (nt1)
0 (=1)"= t"sin(tz) for n odd,
n (—1)zt"sin(tx) for n even,
—(sin(tx)) = (n—1)
0 (=1)"z t"cos(tx) for n odd,
we obtain
+a
(C’ﬁ)Q/ 2+ 2[sin? (¢, ) + cos?(tn,)] dt for n even,
9 RL,QE 2 — —a
TCH n IL?—oo,+oo)

+a
(02)2/ 2+ 2[cos? (t€,) + sin?(tn,)] dt for n odd,
—a

which can be rewritten with the aid of one formula only:

+a
o B2, _ (Cmy? / 2r+2in? (tar,) + cos?(,)] dt.
—a

—o00,400)
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(The numbers &;, 7y, s, B, are different in general and lie in the interval (—a, +a).)
Hence, for every real y, z we obtain

(Cﬁ)2a2"+3.

L 2 2 ta 22 4
sRRECE, | <2ACn? [ e

—a 2n+3

co,+00)

Now we can estimate

o= () - (=)

<(6m)

This estimate can be rewritten using the Stirling formula

n!= (QK)%n"Jr%e*"(l + wy),

where 0 < wy, Sefn —1:

2 a2n+3 2a)2n+2

<2 (
sotoe) (20 +3) ((n + 1)1)2
8(15 (2a2)2n
" 220 13) (0t 1P
e\? 4(15 1 72n(1n¢71)
< | = 2a2
(n) 2n+3) (n+ 1)

HR£L’1||%%7

and, finally,

2 5
(§] a n+1
4(—) (— 672n(1n 2¢a? )’

RL,QK 2
L ) (2n+3)(n+1)3

—00,400)

which is (16). O

Remark 6. The estimate (16) does not depend on x € [—a, +a] and, therefore,

it is uniform on [—a, +a].

Remark 7. Let a € R be arbitrary. Then there exists ng € N such that for every
n > ng the inequality 251 > 1 holds and then In(Z5t) > 0. The number ng € N

2a2e 2a2e

can be chosen as the whole part of 2a%e — 1, i.e., ng = [2a%e — 1].

410



4. THE OPTIMAL INTERPOLATORY RULE WITH PRESCRIBED NODES

In this section we shall construct the optimal interpolatory rule under the as-
sumption that the nodes xgn) € [~a,al,i=0,1,...,n, are prescribed and such that
e # a2 fori#£ 4, i,j=0,1,...,n

Definition 3. The interpolatory rule (9) with the property (14) is said to be
optimal for given nodes xgn) € [~a,a],i=0,1,...,n, xgn) # xg-”), ,j=0,1,...,n

and given z € [—a, +a], if the norm ||Rﬁ||L?_ . is minimal as a function of the

coefficients tfgn) (z), k =0,1,...,n. The optimal coefficients tfgn) (), k=0,1,...,n
will be denoted by (Opt)tgn) (z),i=0,1,...,n

Now we prove two lemmas which will be applied in the subsequent considerations.

)
Lemma 1. The functions W, 1 =0,1,....n (deﬁned to be equal

to a at x = :E ) are linearly independent if and only if :E 7é :E ) for i #+ 4,
i, =0,1,...,n.

Proof. 1) Necessity is trivial.
2) To prove sufficiency, we show that the equation

sin(a(x — x§”))) "
(17) Za]# =0, where Z laej| >0
T\ -
J 7=0
has in (—o0,400) isolated roots only. The equation (17) may be rewritten in the

form

1 (n)
)W—cos ax Za]sm azx; )ﬁ
J Jj=0 J

n
sin(ax) Z o cos(ax( )
=0

Let us suppose that = # xgn), i =0,1,...,n, and cos(az) # 0. Multiplying this

n
equation by the polynomial [] (z— atgn)) and making some intermediate steps we get
i=0

o sin(axg-”)) 1T (- w,i”))

o

j=0 k=0, k#j
tan(az) = — - )
>y cos(axg-”)) 1 (- w,i”))
i=0 k=0, k£j
where the right-hand side is a rational function of x. If cos(az) = 0, then
|sin(ax)| = 1. Thus for z # xﬁcn), k = 0,1,...,n, we have obtained an equation
which can have isolated roots only. O
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Lemma 2. Suppose that xgn) # $§n), 1#7,4,7,=0,1,...,n, a > 0. Then the
determinant A,, of the matrix

{sin(a(xgn) — atgn))) }n
(n) (n)
Tim T i,j=0

is the Gram determinant of the linearly independent system of functions

sin(a(z — xgn)))

V(e —2{")

and, consequently, A, > 0.

, t=0,1,...,n,

(n) (n)

If there exist indices i, j, i # j such that x; * = x; ", then obviously A, = 0.

Proof. We know that the functions

sin(a(z — 2™ )

7

Vi@ —a”)

1=0,1,...,n

2

where argn) =+ xg-n), 1#j,1,7=0,1,...,n, are linearly independent in L(_OO Hoo)”

We have

1t sin(a(z — atgn))) sin(a(z — atgn)))
I=3 () ) dz
TJ-co (z—2;") (@ — ;")
1 teo g +°0 cos(2ay)
:%{—(305(2&()[)\/_0O wd?;*F[oo Wdy},
o) (™ (n) o (n) .
where @ = =———. Let us suppose that z;* > z; ', i.e., @ > 0 and put y = az.

We can write the last expression in the form

1 T cos(2 e
I=— / cos(2aaz) dz — cos(2aa)/ dz ;.
2am w 1—2a2 1— 22

- —o0

In the sense of the principal value we have

“+oo
1
/ 1_x2d$:ncotg:0

— 00
and

+oo oo
9 2
/ cos(2aax) dz = 2/ cos(2aaz) dr = 7sin(2aq).
1—_ 22 0 1— 22

—00
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In the sense of the principal value we finally find that

I sin(2ac) _ sin(a(xg-”) — xE")))
20 $§n) _ $§n)

(n)

The case ;" < x( ) can be proved analogously. The case x§-”) = argn) (i=j=k)is

easy to verlfy because of the relations

1 [ sin?(a(z — 2\ 2 [T sin?
1:_/ (a( it ))dx:_/ S@y) g, g
TJ- (x—z")? T Jo Yy
O
Theorem 4. Let R} be the functional of the remainder of the interpolatory
rule (9) with property (14), where xgn) € [~a,a], © = 0,1,...,n are given mutu-
ally different nodes. Then for every x € [—a,+a] there exists exactly one system
of weights (Opt)tgl) (), k = 0,1,...,n, as a solution of the Gram system of linear
equations
" () sin(a(x,(c”) - x(”))) sin(a(z — x(”)))
18) > ey (a) CRZ A L2 i=0,1,...,n
k (n) __(n) _ ()
k=0 Ty, 2 T =T

For the corresponding [|(°PY R |2, the formulas
)

(—o0,+00)

(n)
(op) 2 _ (op1) 1) () (02— 2.7))
o) Jemp, = (o Z o) A,

i

: (n) (n)
(opt) pa (|2 _ ZZ(O t) (n 2)(©Pt) (n) sin(a(zy” — 2;"))
(20) H P ]%n”[,%ioo - < P t P t ( ) (n) 7$(n)
7

+00)
k=0 1=0 L
hold.

Proof. Let z € [—a,+a] be given. Because |[R%[3, is a nonnegative
(o0, +00)

quadratic function of the variables t;en)(x), k= 0,1,...,n, necessary and sufficient
conditions for an extreme point of || RZ |2, as a function of t;en)(x) read
(— o0, +o0)

O Rz||2,
=D 0, k=0,1,..,n.
ot (x)

According to (15) we have

x [|2
3||RnHL§7m+w) _ g{_sin(a(x—xg ))) n A0 sin( (), (n) —argn)))}
) )

= + ()
oM@ 7 i = EOEPD
which gives (18). The formulas (19), (20) follow from (15) by using (18). O
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Remark 8 From Theorem 4 the following results are obtained:
1) The functions
(n) sin(a(z — x(n)))
;' (x) = —()z, i=0,1,...,n
r—ux;"

are interpolated by the optimal rule exactly.
2) It is clear that (Opt)tin)(wy)) =0k, J,k=0,1,...,n. Thus, the optimal rule is
an interpolatory one.
n
)

3) The corresponding (Opt)tgl) (x) can be calculated for given a, n, z; ', i =
0,1,...,n and = € [—a, +a] once for ever.

In the next part we get the corresponding quadrature rule constructed by the

optimal weights (Opt)tfgn) (z), k=0,1,...,n.

Corollary 1. Let f € P, and let xgn), 1=20,1,...,n, be given mutually different
nodes of the interpolatory rule. Then there exists a quadrature rule of the form

+a n
flz)dz = Z (Opt)Qin)f(xin)) + Ra(f)
k=0

—a

with coefficients (Opt)Qin), k=0,1,...,n, given by

“+a
<MWL/<WW@M

(n)

This formula is exact for the functions ¢; *, i =0,1,...,n.

Proof. We construct the interpolating operator of the Lagrange type
Li(f) = > @) f (@), i=0,1,....m,
k=0

such that the identities Lﬁ(apin)) = cpgn) (x),i=0,1,...,n hold. That is

zn:(opwt(k”)(x) sinfa(w,” — 2i") _ sinfel@ ") i=0,1,...,n.
= " — z =)

Using the Cramer rule we obtain
(21) (opt)tfj) () = =
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where D¥(x) and D,, > 0 are the corresponding determinants. We have
)y My — 50 ki =0,1,...,n.

%

From (21) it follows that

+a
(opt)le) — / (Opt)tgcn)(x) do — — Dk(x)dx, k=0,1,....n.
—-a

5. THE MINIMIZATION OF THE ESTIMATE OF THE REMAINDER (°PY) R ( f)

In this part we will use the method used in the paper [2] in order to minimize the
estimate of |(°PY) RZ(f)|.

Theorem 5. Assume that xgn) # xg-”), 1#7,4,7=0,1,...,n. Let us set

sin(a(z — xE”)))

VA=)

and let E, be a projection operator from the space P, to the subspace S, C P,,

$ (z) = % o () =

, +1=0,1,...,n,

where
Sn = span(uy” i o).
Then
COOREP < CPIREIZ, (12— IE(DIZe )
for every function f € P,. Moreover,
n
Eu(f) =Y e (™.

i=0

The coefficients egn), 1=20,1,...,n, can be calculated as the solution of the following

system of normal equations with a positive determinant:

(22> Zeén)(f)(wl(n)’ I(Cn)): <f7,(/}§n))’ i=0,1,...,n.
k=0
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The entries of the matrix and the elements of the right-hand side, respectively, of

the system (22) are given by the formulas

sin (a(x(-n) - xﬁcn) )

(23) (WM iy = 2500 Tk VG k= 0,1,...,n,
)
; .
and
1 [t sin(a(z — x(n)))
ey =2 [ et e im0
‘ VT ™

respectively.

Proof. Theoptimal interpolatory formula with prescribed nodes is exact for the
functions wl(n), 1 =20,1,...,n. Then the equality (Opt)RfL(wgn)) =0,7=0,1,...,n,
follows. Tf g = 3 a{" 4", then PURI(f +g) = CPURL(f) + CPIRI(g) =

i=0
©Pt) Rz (f) for every f € P,. From Lemma 1 we find that wz(n), i=0,1,...,n,
are linearly independent and there exist numbers e( )( f),i=0,1,...,n, such that

Z e ()™

is an orthogonal projector. Now we have

(PR = [PV RE(S = Eul))P
<ICPIRIZ: f - Ba()IE

(—c0,+00)
— (opt)Rx 2 2 _E 2 )
ICPREIZ, (A~ I, )
Now we can compute the coefficients effn)(f), k=0,1,...,n. We have

where

( w(n Ze(n) (n) w(n )
and "

1 [t sin(a(z — z;"))

(fﬂ/f(”)):—/ fla) —————*dz, i=0,1,...,n.
' VA T — xgn)

These integrals are convergent because f and 1/12(”), i =20,1,...,n, are elements of
the space L( 00,400)"

The matrix of (22) as the Gram matrix of the linear independent system of func-
tions wgn), i =20,1,...,n, gives the unique solution of our problem. O
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6. NUMERICAL EXAMPLE

<sin ¢ )2
¢
by the classical Lagrange rule on the interval [—1,+1].

It is known that (cf. [1])
oo rgin¢\! _ 2z
/. ( ¢ ) “=3

The function F({) = (Siz1 ¢)2 is an entire function of exponential type with constant 2.
The function f(z) = F(¢), 2 = V2, z € [-V/2,v2], is of exponential type with
constant v/2. Thus, according to Theorem 3 and (13), we get the inequality

We shall interpolate the function

2\/5 1 —nln 2L
e

L de
1B (f)] < dey | - (n+1)y/(n +1)(2n + 3) '

Tab. 1 gives the numerically computed estimates of the remainder of the Lagrange
rule.

Number of nodes | Estimate of [RE*(f)]
8 0.230
16 1.12710— 5
32 1.143 10— 18
64 1.983 19 — 53
Table 1.
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