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Abstract. In this paper we study both real and complex interpolation in the recently
introduced scales of variable exponent Besov and Triebel–Lizorkin spaces. We also take
advantage of some interpolation results to study a trace property and some pseudodif-
ferential operators acting in the variable index Besov scale.

1. Introduction

Spaces of variable integrability, also known as variable exponent function spaces, can
be traced back to 1931 and W. Orlicz [32], but the modern development started with
the paper [27] of Kováčik and Rákosńık in 1991. Corresponding PDE with non-standard
growth have been studied since the same time. For an overview we refer to the monograph
[11] and the survey [19]. Apart from interesting theoretical considerations, the motivation
to study such function spaces comes from applications to fluid dynamics [34], image
processing [10, 18, 31], PDE and the calculus of variations [1, 2, 14, 15].

In a recent effort to complete the picture of the variable exponent Lebesgue and Sobolev
spaces, Almeida and Samko [5] and Gurka, Harjulehto and Nekvinda [17] introduced
variable exponent Bessel potential spaces Lα,p(·) with constant α ∈ R. As in the classical
case, this space coincides with the Lebesgue/Sobolev space for integer α. A further step
was taken by Xu [42, 43], who considered Besov Bα

p(·), q and Triebel–Lizorkin F α
p(·), q spaces

with variable p, but fixed q and α.
Along a different line of inquiry, Leopold [28, 30] considered a generalization of Besov

spaces where the smoothness index is determined by certain symbols of hypoelliptic
pseudo-differential operators. In particular, for symbols of the form (1 + |ξ|2)m(x)/2 the

related spaces coincide with the spaces B
m(·)
p,p . Function spaces of variable smoothness

have recently been studied by Besov [9]: he generalized Leopold’s work by considering

both Triebel–Lizorkin spaces F
α(·)
p, q and Besov spaces B

α(·)
p, q in Rn. By way of applica-

tion, Schneider, Reichmann and Schwab [35] used B
m(·)
2,2 (R) in the analysis of certain

Black–Scholes equations.
Integrating the above mentioned spaces into a single larger scale promises similar gains

and simplifications as were seen in the constant exponent case in the 60s and 70s with
the advent of the full Besov and Triebel–Lizorkin scales; however, this requires all the
indices to be variable. Thus Diening, Hästö and Roudenko [13] introduced Triebel–

Lizorkin spaces F
α(·)
p(·),q(·), and we introduced in [3] Besov spaces B

α(·)
p(·),q(·) with all three

indices variable. Additional results, including the Sobolev embedding, have subsequently
been proven by Kempka and Vyb́ıral [21, 22, 23, 24, 41].
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The main purpose of this paper is to present interpolation results in these new vari-
able exponent scales. So far, complex interpolation of variable exponent Lebesgue spaces
has been considered in [11, 12, 26]. Real interpolation, however, is more difficult in this
setting. After some preliminaries, where we recall the definiton of the spaces we are
dealing with and some auxiliary statements, in Section 3 we prove various real interpo-
lation formulas for variable exponent Besov and Triebel–Lizorkin spaces. In particular,
our results generalize some previous statements from [9, 29] where only the smoothness
index was allowed to be variable. Real interpolation has subsequently also been studied
by Kempka and Vyb́ıral in the setting of variable exponent Lorentz spaces [25]. In [4]
we and Harjulehto, Lukkari used real interpolation and weak variable exponent spaces to
prove optimal regularity for measure valued p(·)-Laplace PDEs.

Complex interpolation of variable exponent Besov spaces is discussed in Section 4.
Finally, in Section 5 we give some applications of the interpolation results proved in the
previous sections, namely we discuss a trace property for the variable index Besov spaces
and the behavior of some pseudodifferential operators acting in these spaces.

Remark 1.1. Using standard notation, we have, for constant exponents,

(Lp0 , Lp1)θ,q = Lpθ,q,

where 1/pθ := θ/p0 + (1 − θ)/p1 and Lpθ,q is the Lorenz space. To obtain interpolation
of Lebesgue spaces one simply chooses q = pθ. Although details have not been presented
anywhere as best we know, it seems that there are no major difficulties in letting p0 and
p1 be variable here, i.e.

(Lp0(·), Lp1(·))θ,q = Lpθ(·),q,

where pθ is defined point-wise by the same formula as before. In this case the left hand
side is the definition of the Lorentz space. One can show that it depends only on pθ and
q, not otherwise on the quantities on the left hand side.

However, this time we do not obtain an interpolation result in Lebesgue spaces, since
we cannot set the constant q equal to the function pθ. In fact, the role of q in the real
interpolation method is quite similar to the role of q in the Besov space Bα

p,q. Therefore,
we hoped that the approach introduced in [3] for variable index Besov spaces would allow
us to handle variable real exponent interpolation. Unfortunately, this seems not to be
the case. Although we can define the interpolation functional (·, ·)θ,q(·), it does not have
the interpolation property. Therefore we now believe that this is not going to be a useful
tool in the theory of variable exponent Lebesgue spaces. See also [25] for Lorentz spaces
and [4] for an example of the usefulness of real interpolation in the variable setting.

Remark 1.2. We take this opportunity to correct a point in our paper [3]. In Theorem
8.1 we assumed the condition α− > 0. However, the stronger assumption (α−σp)− > 0 is
needed for the claim to make sense directly. Although the stronger condition is not needed
in the proof, the claim only holds with the weaker condition if the claim is appropriately
interpreted. Consequently, the second sentence of Remark 8.3 is a truth with modification.
We thank Hans-Gerd Leopold for this observation.
Moreover, we would like to clarify that in [3] we have used the fact that

∑
ν>0 φ̂ν(ξ) ≡ 1

to show the independence of the space B
α(·)
p(·), q(·) with respect to the system {φν} (cf.

[3, Theorem 5.5]). It happens that this property does not necessarily follow from the
assumptions in [3, Definition 5.1], and hence we should assume this additional condition

on the system {φν}. This is not relevant when the Fourier transforms Φ̂ and φ̂ are positive
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functions, since in that case one can find c, C > 0 such that c 6
∑

ν>0 φ̂ν(ξ) 6 C for
all ξ ∈ Rn. Consequently, we can always use a normalized system in this situation. We
thank António Caetano for a discussion where this question was posed.

2. Preliminaries

As usual, we denote by Rn the n-dimensional real Euclidean space, N the collection of
all natural numbers and N0 = N∪{0}. We write B(x, r) for the open ball in Rn centered
at x ∈ Rn with radius r > 0. We use c as a generic positive constant, i.e. a constant
whose value may change from appearance to appearance. The expression f . g means
that f 6 c g for some independent constant c, and f ≈ g means f . g . f .

The notation X ↪→ Y stands for continuous embeddings from X to Y , where X and Y
are quasi-normed spaces. If E ⊂ Rn is a measurable set, then |E| stands for its (Lebesgue)
measure and χE denotes its characteristic function. By supp f we denote the support of
the function f , i.e. the closure of its non-zero set.

The set S denotes the usual Schwartz class of rapidly decreasing complex-valued func-
tions and S ′ denotes the dual space of tempered distributions. The Fourier transform of
a tempered distribution f is denoted by f̂ .

2.1. Variable exponents. We denote by P0 the set of all measurable functions p : Rn →
(0,∞] (called variable exponents) which are bounded away from zero. The subset of those
variable exponents with range [1,∞] is denoted by P. For A ⊂ Rn and p ∈ P0 we denote
p+A = ess supA p(x) and p

−
A = ess infA p(x); we abbreviate p+ = p+Rn and p− = p−Rn .

Let

φp(t) =


tp if p ∈ (0,∞),

0 if p = ∞ and t 6 1,

∞ if p = ∞ and t > 1.

The convention 1∞ = 0 is adopted in order that φp be left-continuous. In what follows
we often write tp instead of φp(t), with this convention implied. The variable exponent
modular is defined by

ϱp(·)(f) :=

∫
Rn

φp(x)(|f(x)|) dx.

The variable exponent Lebesgue space Lp(·) is the class of all measurable functions f on
Rn such that ϱp(·)(λf) <∞ for some λ > 0. This is a quasi-Banach space equipped with
the quasi-norm

∥f∥p(·) := inf
{
λ > 0 : ϱp(·)

(1
λ
f
)
6 1

}
.

If p(x) ≡ p is constant, then Lp(·) = Lp is the classical Lebesgue space. More details on
variable exponent Lebesgue spaces can be found in [11].

Variable exponent Sobolev spaces can then be defined from the Lp(·)-space in the usual
way.

We say that g : Rn → R is locally log-Hölder continuous, abbreviated g ∈ C log
loc , if there

exists clog > 0 such that

|g(x)− g(y)| 6 clog
log(e+ 1/|x− y|)
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for all x, y ∈ Rn. We say that g is globally log-Hölder continuous, abbreviated g ∈ C log,
if it is locally log-Hölder continuous and there exists g∞ ∈ R such that

|g(x)− g∞| 6 clog
log(e+ |x|)

for all x ∈ Rn. The notation P log is used for those variable exponents p ∈ P with
1
p
∈ C log. The class P log

0 is defined analogously. If p ∈ P log, then convolution with a

radially decreasing L1-function is bounded on Lp(·):

∥φ ∗ f∥p(·) 6 c ∥φ∥1∥f∥p(·).

As in [13], we speak of η-functions meaning function on Rn of the form

ην,m(x) :=
2nν

(1 + 2ν |x|)m

with ν ∈ N and m > 0. Note that ην,m ∈ L1 when m > n and that ∥ην,m∥1 = cm is
independent of ν.

Let us recall some useful lemmas from [13].

Lemma 2.1 (Lemma 6.1, [13]). If α ∈ C log
loc , then there exists d ∈ (n,∞) such that if

m > d, then

2να(x)ην,2m(x− y) 6 c 2να(y)ην,m(x− y)

with c > 0 independent of x, y ∈ Rn and ν ∈ N0.

The previous lemma allows us to treat the variable smoothness in many cases as if it
were not variable at all, namely we can move the term inside the convolution as follows:

2να(x)ην,2m ∗ f(x) 6 c ην,m ∗ (2να(·)f)(x).

The next lemma often allows us to deal with exponents which are smaller than 1.

Lemma 2.2 (“The r-trick”, Lemma A.7, [13]). Let r > 0, ν > 0 and m > n. Then there
exists c = c(r,m, n) > 0 such that

|g(x)| 6 c
(
ην,m ∗ |g|r(x)

)1/r
, x ∈ Rn

for all g ∈ S ′ with supp ĝ ⊂ {ξ : |ξ| 6 2ν+1}

In order to deal with variable exponent Besov and Triebel–Lizorkin spaces we need to
consider appropriate spaces of sequences of Lp(·)-functions. The mixed Lebesgue-sequence
space Lp(·)(ℓq(·)) can be easily defined with the constant exponent sequence space ℓq(x) for
each point x, namely the (quasi)norm in this space is given by

∥(fν)ν∥Lp(·)(ℓq(·)) :=
∥∥∥(fν)ν∥ℓq(x)∥∥Lp(·) .

This space was studied in [13]. The “opposite” case ℓq(·)(Lp(·)) is more complicated. The
following definition is from [3].

Definition 2.3. Let p, q ∈ P0. The mixed sequence-Lebesgue space ℓq(·)(Lp(·)) is defined
on sequences of Lp(·)-functions by the modular

ϱℓq(·)(Lp(·))

(
(fν)ν

)
:=

∑
ν

inf
{
λν > 0

∣∣∣ ϱp(·)(fν/λ 1
q(·)
ν

)
6 1

}
.
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Here we use the convention λ1/∞ = 1. The (quasi)norm is defined from this as usual:

∥(fν)ν∥ℓq(·)(Lp(·)) := inf
{
µ > 0

∣∣∣ ϱℓq(·)(Lp(·))

(
1
µ
(fν)ν

)
6 1

}
.

Note that if q+ <∞, then

inf
{
λ > 0

∣∣∣ ϱp(·)(f/λ 1
q(·)

)
6 1

}
=

∥∥|f |q(·)∥∥ p(·)
q(·)
.

In [3] we showed that ∥ · ∥ℓq(·)(Lp(·)) is a norm when q > 1 is constant and p(x) > 1 or
1

p(x)
+ 1

q(x)
6 1. More recently it was shown in [23] that ∥ · ∥ℓq(·)(Lp(·)) is also a norm in the

case 1 6 q(x) 6 p(x) 6 ∞; moreover, it is also shown that min{p(x), q(x)} > 1 is not
sufficient for it to be a norm.

It is worth noting that the Hardy-Littlewood maximal operator is not bounded in the
spaces Lp(·)(ℓq(·)) and ℓq(·)(Lp(·)) for variable q. A way of overcoming this difficulty is to
use convolution inequalities involving radially decreasing kernels, namely the η-functions
defined above. The next statements often play the role of the boundedness of classical
Fourier multipliers.

Theorem 2.4. Let p, q ∈ P log.

(i) For m > n, ∥(ην,2m ∗ fν)ν∥Lp(·)(ℓq(·)) . ∥(fν)ν∥Lp(·)(ℓq(·)) (with p+, q+ <∞). [13]
(ii) For sufficiently large m, ∥(ην,2m ∗ fν)ν∥ℓq(·)(Lp(·)) . ∥(fν)ν∥ℓq(·)(Lp(·)). [3]

Remark 2.5. In the case (ii) above the integer m depends not only on n but also on
the constant involved in the log-Hölder continuity of 1/q. Moreover, the convolution
inequality holds without the assumption q > 1. These facts were observed in [24] (cf.
Lemma 10).

2.2. Besov and Triebel–Lizorkin spaces with variable indices. Besov and Triebel–
Lizorkin spaces (B and F spaces for short) with variable smoothness and integrability
were recently introduced in [3] and [13], respectively. We recall here their definitions
following the Fourier analytical approach. Let (φ,Φ) be a pair of functions in S satisfying

• supp φ̂ ⊆ {ξ ∈ Rn : 1
2
6 |ξ| 6 2} and |φ̂(ξ)| > c > 0 when 3

5
6 |ξ| 6 5

3
,

• supp Φ̂ ⊆ {ξ ∈ Rn : |ξ| 6 2} and |Φ̂(ξ)| > c > 0 when |ξ| 6 5
3
,

•
∑

ν>0 φ̂ν(ξ) = 1, ξ ∈ Rn,

where φν(x) := 2νnφ(2νx) for ν ∈ N and φ0(x) := Φ(x). The system {φν} is then said
admissible. Fixing such a system, for measurable α : Rn → R and p, q ∈ P0, the Besov

space B
α(·)
p(·), q(·) is defined as the class of all distributions f ∈ S ′ such that

∥f∥
B

α(·)
p(·), q(·)

:=
∥∥(2να(·)φν ∗ f)ν

∥∥
ℓq(·)(Lp(·))

<∞.

The Triebel–Lizorkin space F
α(·)
p(·), q(·) consists of all f ∈ S ′ such that

∥f∥
F

α(·)
p(·), q(·)

:=
∥∥(2να(·)φν ∗ f)ν

∥∥
Lp(·)(ℓq(·))

<∞.

Notice that there is no difficulty in the F space with q depending on the space variable
x here, since the ℓq(·)-norm is inside the Lp(·)-norm. As in the constant exponent case,

they are quasi-Banach spaces and they agree when p = q, i.e., B
α(·)
p(·), p(·) = F

α(·)
p(·), p(·) (with

α bounded).
These spaces are well-defined in the sense that different admissible systems produce

the same spaces (up to equivalence of quasinorms). This is the case when p, q ∈ P log
0
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and α ∈ C log
loc , see [3, Theorem 5.5], [13, Theorem 3.10] (see also [21, Theorem 4.4,

Lemma 2.5]). For simplicity, we thus omit the reference to the system {φν} in the
notation of the quasinorms.

The scale Fα
p(·), q(·) is rich enough to include Bessel potential spaces and Sobolev spaces

with variable integrability as special cases. For α ∈ [0,∞) and p ∈ P log with 1 < p− 6
p+ <∞, it was proven in [12, Theorem 4.5] that F α

p(·), 2 = Lα,p(·) are the variable exponent

Bessel potential spaces introduced in [5, 17]. In particular, Lk,p(·) = W k,p(·) are Sobolev
spaces for k ∈ N0, under the same assumptions on p [5, Corollary 6.2].

The Besov scale above includes variable order Hölder-Zygmund spaces as special cases
(cf. [3, Theorem 7.2]). For α locally log-Hölder continuous with α− > 0, we have

Bα(·)
∞,∞ = Cα(·) (α 6 1) and Bα(·)

∞,∞ = Cα(·) (α+ < 1).

We refer to [3, 6, 7] for precise definitions of the spaces Cα(·) and Cα(·).
The following embeddings will be useful below (see [3, Theorem 5.5]).

Proposition 2.6. Let α, α0, α1 ∈ L∞ and p, q0, q1 ∈ P0.

(i) If q0 6 q1, then

B
α(·)
p(·), q0(·) ↪→ B

α(·)
p(·), q1(·).

(ii) If (α0 − α1)
− > 0, then

B
α0(·)
p(·), q0(·) ↪→ B

α1(·)
p(·), q1(·).

(iii) If p+, q+ <∞, then

B
α(·)
p(·),min{p(·),q(·)} ↪→ F

α(·)
p(·), q(·) ↪→ B

α(·)
p(·),max{p(·),q(·)}.

Although one would obviously like to work in the variable index spaces independent of
the choice of basis functions φν , the log-Hölder assumptions are quite strong in the sense
that some results work under much weaker assumptions. By this reason, the conditions in
Proposition 2.6 are those actually needed in the proof. Hence, these embeddings should
be understood to hold when the same fixed set of basis functions is used for the definition
of all spaces involved.

3. Real interpolation

We recall that, for 0 < θ < 1 and 0 < r 6 ∞, the interpolation space (A0, A1)θ,r, formed
from compatible quasi-normed spaces A0, A1, is the space of all elements a ∈ A0 + A1

such that the quasi-norm

∥a∥(A0,A1)θ,r
:=

(∫ ∞

0

[
t−θK(t, a)

]r dt
t

)1/r

(usual modification if r = ∞) is finite, where

K(t, a) = K(t, a;A0, A1) = inf
a0+a1=a

a0∈A0,a1∈A1

(∥a0∥A0 + t ∥a1∥A1) , t > 0,

is the well-known Peetre K-functional.

For p, q ∈ P0 and α ∈ L∞ we have B
α(·)
p(·), q(·) ↪→ S ′ [3, Theorem 6.10]. Moreover, by

Proposition 2.6 we also have F
α(·)
p(·), q(·) ↪→ S ′ (with p+ < ∞). Hence variable exponent

B and F spaces form compatible couples of quasi-Banach spaces. We give some real
interpolation results for these spaces.
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We refer to the monographs [8] and [40] for an exposition on interpolation theory.

Theorem 3.1. Let 0 < θ < 1 and q ∈ (0,∞]. Moreover, let p, q0, q1 ∈ P log
0 and α0, α1 ∈

C log
loc . If 0 ̸= α0 − α1 is constant, then(

B
α0(·)
p(·), q0(·), B

α1(·)
p(·), q1(·)

)
θ,q

= B
α(·)
p(·), q

with α(x) = (1− θ)α0(x) + θα1(x).

Proof. The general arguments below are similar to those used in [38, pp. 63–65], except
the usage of Fourier multiplier statements, where we use convolution inequalities with
η-functions instead. Nevertheless, we give some details for the reader’s convenience. We
only give the proof in the case q ∈ (0,∞), the case q = ∞ being treated by the same
type of arguments up to usual modifications.

By symmetry we may assume α0 − α1 > 0. Let f = f0 + f1 with f0 ∈ B
α0(·)
p(·),∞ and

f1 ∈ B
α1(·)
p(·),∞. Then

∥2να0(·)φν∗f∥p(·) . ∥2να0(·)φν∗f0∥p(·)+∥2να0(·)φν∗f1∥p(·) . ∥f0∥Bα0(·)
p(·),∞

+2ν(α0−α1)∥f1∥Bα1(·)
p(·),∞

.

Here we used that α0 − α1 is constant. This implies that

∥2να0(·)φν ∗ f∥p(·) . K
(
2ν(α0−α1), f

)
:= K

(
2ν(α0−α1), f ;B

α0(·)
p(·),∞, B

α1(·)
p(·),∞

)
.

Hence

∥f∥q
B

α(·)
p(·), q

=
∑
ν>0

2−νθ(α0−α1)q∥2να0(·)φν ∗ f∥qp(·) .
∑
ν>0

2−νθ(α0−α1)qK
(
2ν(α0−α1), f

)q
.

Using now the discretization

(0,∞) =
∪
k∈Z

[
2(k−1)(α0−α1), 2k(α0−α1)

)
and the fact that the functional K(t, f) decreases with respect to t, we get

∥f∥q(
B

α0(·)
p(·),∞,B

α1(·)
p(·),∞

)
θ,q

=

∫ ∞

0

[
t−θK(t, f)

]q dt
t
&

∑
ν>0

K
(
2ν(α0−α1), f

)q
.

Combining the two previous inequalities we obtain the embedding

(3.2)
(
B

α0(·)
p(·),∞, B

α1(·)
p(·),∞

)
θ,q
↪→ B

α(·)
p(·), q.

Let us show now that

(3.3) B
α(·)
p(·), q ↪→

(
B

α0(·)
p(·), s, B

α1(·)
p(·), s

)
θ,q

for 0 < s < q.

By Proposition 2.6 (ii) (note that α − α1 = (α0 − α1)(1 − θ) is a positive constant), we
have

K(t, f) = K
(
t, f ;B

α0(·)
p(·), s, B

α1(·)
p(·), s

)
. t ∥f∥

B
α(·)
p(·), q

.

Let ∫ ∞

0

[t−θK(t, f)]q
dt

t
=

∫ 1

0

(. . .) +

∫ ∞

1

(. . .) =: I0 + I1.

Then (3.3) follows if we prove that both integrals I0 and I1 are bounded by ∥f∥q
B

α(·)
p(·), q

.

This is clear for I0 by the previous estimate. To estimate I1, we use again that α0−α1 is a
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positive constant, and derive I1 .
∑

k>0 2
−θk(α0−α1)qK(2k(α0−α1), f)q. From an admissible

system {φν} we take the representation f = f0 + f1 with

f0 =
k∑

j=0

φj ∗ f and f1 =
∑

j>k+1

φj ∗ f.

We can then prove that

(3.4) ∥f0∥s
B

α0(·)
p(·), s

.
k+1∑
ν=0

∥∥2να0(·)φν ∗ f
∥∥s

p(·) and ∥f1∥s
B

α1(·)
p(·), s

.
∑
ν>k

∥∥2να1(·)φν ∗ f
∥∥s

p(·).

We postpone the proof of these inequalities for convenience. After straightforward calcu-
lations we then get

I1 .
∑
k>0

2kq(α−α0)
[ k+1∑

ν=0

∥∥2να0(·)φν ∗ f
∥∥s

p(·)

]q/s
+
∑
k>0

2kq(α−α1)
[∑

ν>k

∥∥2να1(·)φν ∗ f
∥∥s

p(·)

]q/s
=: I1,1 + I1,2.

We next show that both quantities are dominated by ∥f∥q
B

α(·)
p(·), q

. Choose a measurable

function β0 : Rn → R such that α(x) < β0(x) < α0(x) and α0 − β0 is constant. An
application of Hölder’s inequality yields

I1,1 .
∑
k>0

2kq(α−α0)
( k+1∑

ν=0

2νσ(α0−β0)
)q/σ( k+1∑

ν=0

∥∥2νβ0(·)φν ∗ f
∥∥q

p(·)

)
with σ = s(q/s)′. After calculating the middle sum and changing the summation order
(noting that α− β0 < 0 is also constant), we obtain

I1,1 .
∑
ν>0

∑
k>ν−1

2(k−ν)(α−β0)q
∥∥2να(·)φν ∗ f

∥∥q

p(·) .
∑
ν>0

∥∥2να(·)φν ∗ f
∥∥q

p(·).

The estimation of I1,2 is similar (in this case take a function β1 such that α1(x) < β1(x) <
α(x) with α1 − β1 constant).

Using the monotonicity of interpolation, Proposition 2.6, and the embeddings (3.2) and
(3.3) (with 0 < s < min{q−0 , q−1 }), we obtain the announced interpolation formula.

Now we return to the estimates in (3.4). Both inequalities there can be proved in the
same way, so that we treat only the second one. Fix r ∈ (0,min{1, p−}) and let {ψν} an

admissible system. Since ψ̂νφ̂j = 0 when |ν − j| > 1, we have

∥f1∥s
B

α1(·)
p(·), s

=
∑
ν>k

∥∥∥2να1(·)
∑

|j−ν|61
j>k+1

ψν ∗ φj ∗ f
∥∥∥s

p(·)
.

∑
ν>k

1∑
j=−1

∥∥2να1(·)r|ψν ∗ φν+j ∗ f |r
∥∥ s

r
p(·)
r

.

Since |ψν | 6 c ην,2m/r, with c > 0 not depending on ν, as in the proof of [3, Theorem 5.5]
we use the r-trick (with m > n large) and the Minkowski’s integral inequality and obtain

|ψν ∗ φν+j ∗ f |r . ην+j,2m ∗ |φν+j ∗ f |r.
This together with Lemma 2.1 and the boundedness of the convolution with η-functions

in L
p(·)
r , yields the estimate∥∥2να1(·)r|ψν ∗ φν+j ∗ f |r

∥∥ s
r
p(·)
r

.
∥∥2να1(·)r|φν+j ∗ f |r

∥∥ s
r
p(·)
r

=
∥∥2να1(·)φν+j ∗ f

∥∥s

p(·)
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and hence the estimate in (3.4) follows. �
Remark 3.5. An interesting special case of Theorem 3.1 is the interpolation of variable
order Hölder-Zygmund spaces. If α0, α1 are locally log-Hölder continuous with 0 < α−

0 6
α0(x) < α1(x) 6 α+

1 6 1 and α0 − α1 constant, then(
Cα0(·), Cα1(·)

)
θ,∞ = Cα(·)

with α = (1− θ)α0 + θα1. If, additionally, α
+
1 < 1 then(

Cα0(·), Cα1(·)
)
θ,∞ = Cα(·).

Corollary 3.6. Let 0 < θ < 1, q0, q1 ∈ (0,∞], p ∈ P log
0 and α ∈ C log

loc . Then(
B

α(·)
p(·), q0 , B

α(·)
p(·), q1

)
θ,q

= B
α(·)
p(·), q with

1

q
=

1− θ

q0
+
θ

q1
.

Proof. By Theorem 3.1 we can write B
α(·)
p(·), qi =

(
B

α0(·)
p(·), 1, B

α1(·)
p(·), 1

)
θ,qi

, i = 0, 1, where α0, α1 ∈
C log

loc are chosen in such a way that α0 − α1 is constant and (1 − θ)α0(x) + θα1(x) =
α(x), x ∈ Rn. Hence the interpolation result follows from Theorem 3.1 and reiteration
(see [8, Theorem 5.2.4]). �

As for constant exponents, the next result shows that real interpolation between vari-
able F spaces with p fixed always gives a variable B space.

Corollary 3.7. Let 0 < θ < 1 and q ∈ (0,∞]. Moreover, let α0, α1 ∈ C log
loc , q0, q1 ∈ P0

and p ∈ P log
0 with p+ <∞. If α0 − α1 ̸= 0 is a constant, then

(3.8)
(
B

α0(·)
p(·), q0(·), F

α1(·)
p(·), q1(·)

)
θ,q

=
(
F

α0(·)
p(·), q0(·), F

α1(·)
p(·), q1(·)

)
θ,q

= B
α(·)
p(·), q

with α(x) = (1− θ)α0(x) + θα1(x).

Proof. Let r ∈ (0,min{p−, q−0 , q−1 }). Then the monotonicity of interpolation couples and
Proposition 2.6 yield(

B
α0(·)
p(·), r, B

α1(·)
p(·), r

)
θ,q
↪→

(
F

α0(·)
p(·), q0(·), F

α1(·)
p(·), q1(·)

)
θ,q
↪→

(
B

α0(·)
p(·),∞, B

α1(·)
p(·),∞

)
θ,q
.

Since the interpolation spaces on the left and right equal B
α(·)
p(·), q by Theorem 3.1, the

second equality of (3.8) follows. The other part is similar. �
Recalling that Lα,p(·) = F α

p(·), 2 are Bessel potential spaces with variable integrability

[13, Theorem 4.5] (α > 0 and p ∈ P log with 1 < p− 6 p+ < ∞), which in turn are
Sobolev spaces for integer α, then formulas (3.8) include interesting special cases. In
fact, we have

(3.9)
(
Bα0

p(·), q0(·),L
α1,p(·)

)
θ,q

=
(
Lα0,p(·),Lα1,p(·)

)
θ,q

= Bα
p(·), q,

with α = (1−θ)α0+θα1, α0 ̸= α1, and 1 < p− 6 p+ <∞. In particular, for αi = ki ∈ N0,
i = 0, 1, (

Bk0
p(·), q0(·),W

k1,p(·)
)
θ,q

=
(
W k0,p(·),W k1,p(·)

)
θ,q

= Bα
p(·), q.

Specializing further, we obtain that(
Bα

p(·), q0(·), L
p(·))

θ,q
= B

(1−θ)α
p(·), q or, equivalently,

(
Lp(·), Bα

p(·), q0(·)
)
θ,q

= Bθα
p(·), q

for α ̸= 0.
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4. Complex interpolation

In the sequel the notation
[
·, ·
]
θ
stands for the usual complex method of interpolation

of Banach spaces (see [8, 40]). Moreover, ∥ · ∥θ denotes the corresponding norm in the
interpolation space.

4.1. Interpolation of variable exponent Lebesgue spaces. Let ω be a positive and

measurable function on Rn. The weighted variable exponent Lebesgue space L
p(·)
ω is defined

as the collection of all measurable functions f on Rn such that

∥f∥
L
p(·)
ω

:= ∥fω∥Lp(·) <∞.

It is a Banach space equipped with this norm.
Complex interpolation of unweighted variable Lebesgue spaces was first studied in [12]

(cf. [11, Chapter 7]). Recently some limiting cases of the exponent where treated in [26],
generalizing to the variable exponent setting classical results on complex interpolation
between Lebesgue spaces and the Hardy space H1 or the space BMO. The following is
the basic result for variable Lebesgue spaces.

Theorem 4.1 (Theorem 7.1.2, [11]). Let 0 < θ < 1 and p0, p1 ∈ P. Then

(4.2)
[
Lp0(·)
ω0

, Lp1(·)
ω1

]
θ
= Lpθ(·)

ω ,

where
1

pθ(x)
=

1− θ

p0(x)
+

θ

p1(x)
and ω(x) = ω0(x)

1−θ ω1(x)
θ, x ∈ Rn.

Moreover,
∥ · ∥θ 6 ∥ · ∥

L
pθ(·)
ω

6 4 ∥ · ∥θ.

Formula (4.2) can be proved by adapting to the weighted case the steps given in [11,
pp. 214-217] for the unweighted situation, which in turn follows the classical lines of [8].
For constant exponents formula (4.2) holds with equal norms. For general exponents we
can not guarantee such equality.

From Theorem 4.1 we can deduce the following statement which extends to variable
exponents a classical interpolation result of Stein and Weiss (cf. [8, Theorem 5.4.1]).

Corollary 4.3. Let 0 < θ < 1 and pj, qj ∈ P with p+j , q
+
j < ∞, j = 0, 1. Let T be a

linear operator which is bounded from L
pj(·)
ωj into L

qj(·)
νj . Then T is also a bounded operator

from L
pθ(·)
ω into L

qθ(·)
ν , where pθ, qθ, ω, ν are defined pointwise by

1

pθ
=

1− θ

p0
+

θ

p1
;

1

qθ
=

1− θ

q0
+
θ

q1
; ω = ω1−θ

0 ωθ
1; ν = ν1−θ

0 νθ1 .

Moreover,
∥T∥

L
pθ(·)
ω →L

qθ(·)
ν

6 4 ∥T∥
L
p0(·)
ω0

→L
q0(·)
ν0

∥T∥
L
p1(·)
ω1

→L
q1(·)
ν1

.

4.2. Interpolation of variable exponent Besov spaces. In this section we discuss
complex interpolation in variable index Besov spaces. We base ourselves on the so-
called retraction method which allows us to reduce the problem to the interpolation of
appropriate sequence spaces. This well-known technique is described, for instance, in the
monographs [8, 40]. For the readers’ convenience we recall that a Banach space X is
called a retract of a Banach space Y if there are linear continuous operators R : Y → X
(retraction) and J : X → Y (co-retraction) such that the composition RJ is the identity
operator in X.
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Theorem 4.4. Let α ∈ C log
loc , p ∈ P log and q ∈ (0,∞]. Then B

α(·)
p(·), q is a retract of

ℓq
(
L
p(·)
2να(·)

)
.

In the proof of Theorem 4.4 we will use the following auxiliary result.

Lemma 4.5. Let α ∈ L∞ and p ∈ P. Suppose that (gj)j is a sequence of tempered
distributions such that

supp ĝ0 ⊆ {ξ : |ξ| 6 2} and supp ĝj ⊆ {ξ : 2j−1 6 |ξ| 6 2j+1}, j ∈ N.

If (gj) ∈ ℓ∞
(
L
p(·)
2jα(·)

)
, then

∑
j>0

gj converges in S ′.

Proof. We consider the case α− < 0, the other case being simpler. Since B−n−1+α−
∞,∞ ↪→ S ′,

it suffices to show that the sequence of partial sums
(∑N

j=0 gj
)
N∈N is a Cauchy sequence

in B−n−1+α−
∞,∞ . We first note that

∥∥∥ N∑
j=0

gj −
M∑
j=0

gj

∥∥∥
B−n−1+α−

∞,∞
6

2∑
j=−2

N+2∑
ν=M−1

2−ν(n+1−α−)
∥∥φν ∗ gν+j

∥∥
∞, N > M,

which can be obtained from the assumptions on the supports of φ̂ν and ĝj. We show that∑
ν>0

2−ν(n+1−α−)
∥∥φν ∗ gν+j

∥∥
∞ <∞,

which clearly implies that the sequence of partial sums is Cauchy. Using that |φν | 6
ηm,ν 6 2nνηm,0, we obtain

2−ν(n−α−)
∥∥φν ∗ gν+j

∥∥
∞ 6 sup

x
2να

−
∫
Rn

ηm,0(x− y) |gν+j(y)| dy

6
∫
Rn

ηm,0(x− y)p
′(y) +

(
2να(y)|gν+j(y)|

)p(y)
dy.

Since 2να(·)|gν+j| ∈ Lp(·) uniformly (recall that |j| 6 2), we see that the right-hand side is
bounded provided m > n, which completes the proof. �

Proof of Theorem 4.4. Let (φν)ν be an admissible system and let χj := φj−1 +φj +φj+1

(with φj ≡ 0 if j < 0). As in the constant exponent case, we define

R(fj) :=
∑
j>0

χj ∗ fj and Jf := (φν ∗ f).

Note that R is well-defined by Lemma 4.5 since ℓq
(
L

p(·)
2να(·)

)
↪→ ℓ∞

(
L

p(·)
2να(·)

)
. Clearly J is a

bounded linear operator from B
α(·)
p(·), q into ℓq

(
L
p(·)
2να(·)

)
. Moreover, RJ is the identity map

in B
α(·)
p(·), q. So, it remains to show that R is bounded from ℓq

(
L
p(·)
2να(·)

)
into B

α(·)
p(·), q. Taking

into account the supports of φ̂ν and χ̂j, we have

φν ∗R(fj) =
ν+2∑

j=ν−2

φν ∗ χj ∗ fj, ν = 0, 1, . . .
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Estimating φν ∗φν+j+k ∗ fν+j by a convolution with η-functions as in the last part of the
proof of Theorem 3.1, we obtain∥∥R(fj)

∥∥
B

α(·)
p(·), q

.
2∑

j=−2

1∑
k=−1

∥∥∥∥∥2να(·) φν ∗ φν+j+k ∗ fν+j

∥∥
Lp(·)

∥∥∥
ℓq
.

∥∥∥∥∥2να(·)fν∥∥Lp(·)

∥∥∥
ℓq
. �

We also need an interpolation result for general sequence spaces as follows. Let (Aν)ν
and (Bν)ν be two sequences of Banach spaces such that (Aν , Bν) form interpolation
couples for any ν ∈ N0. Then

(4.6)
[
ℓq0(Aν), ℓ

q1(Bν)
]
θ
= ℓq

([
Aν , Bν

]
θ

)
,

where 0 < θ < 1, 1 6 q0, q1 < ∞ and 1/q = (1 − θ)/q0 + θ/q1 [40, Section 1.18].
Here ℓq(Aν) denotes the (Banach) space of all sequences a = (aν)ν , aν ∈ Aν , such that

∥a∥ℓq(Aν) =
(∑

ν ∥aν∥
q
Aν

)1/q

<∞.

Now we are ready to formulate the main statement on complex interpolation of variable
Besov spaces.

Theorem 4.7. Let 0 < θ < 1, α0, α1 ∈ C log
loc , q0, q1 ∈ [1,∞) and p0, p1 ∈ P log with

1 < p−j 6 p+j <∞, j = 0, 1. Then[
B

α0(·)
p0(·), q0 , B

α1(·)
p1(·), q1

]
θ
= B

α(·)
p(·), q,

where

α(x) = (1− θ)α0(x) + θα1(x),
1

p(x)
=

1− θ

p0(x)
+

θ

p1(x)
and

1

q
=

1− θ

q0
+
θ

q1
.

Proof. The embedding into S ′, [3, Theorem 6.10], shows that
{
B

α0(·)
p0(·), q0 , B

α1(·)
p1(·), q1

}
is an

interpolation couple. Moreover, by Lemma 4.4∥∥f∥∥[
B

α0(·)
p0(·), q0

,B
α1(·)
p1(·), q1

]
θ

≈
∥∥Jf∥∥[

ℓq0
(
L
p0(·)
2να0(·)

)
,ℓq1

(
L
p1(·)
2να1(·)

)]
θ

.

We then interpolate the sequence spaces on the right-hand side: by (4.6) and (4.2) we
obtain [

ℓq0
(
L
p0(·)
2να0(·)

)
, ℓq1

(
L
p1(·)
2να1(·)

)]
θ
= ℓq

([
L
p0(·)
2να0(·) , L

p1(·)
2να1(·)

]
θ

)
= ℓq

(
L
p(·)
2να(·)

)
. �

5. Applications

In this section we give some applications of the interpolation results proved above.

5.1. Traces. We investigate the trace problem for the Besov spaces B
α(·)
p(·), q(·) on the hy-

perplane Rn−1 (n > 2). For constant exponents it is known that

TrBα
p, q(Rn) = B

α− 1
p

p, q (Rn−1) and TrFα
p, q(Rn) = F

α− 1
p

p, p (Rn−1) = B
α− 1

p
p, p (Rn−1)

if α > 1
p
+(n−1)max

{
0, 1

p
−1

}
(with p <∞ in the F space). We refer to [38, Sect. 2.7.2]

for further details and historical remarks.
The corresponding problem for the variable exponent Triebel–Lizorkin scale was studied

in [13]. If p, q ∈ P log
0 , with p+, q+ <∞, and α ∈ C log

loc has a limit at infinity, then

(5.1) TrF
α(·)
p(·), q(·)(R

n) = F
α(·)− 1

p(·)
p(·), p(·) (Rn−1) if

(
α− 1

p
− (n− 1)max

{
0,

1

p
− 1

})−

> 0.
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Remark 5.2. The proof given in [13, Theorem 3.13] is incomplete: in fact, only the

inclusion TrF
α(·)
p(·), q(·)(R

n) ↪→ F
α(·)− 1

p(·)
p(·), p(·) (Rn−1) is shown. However, the opposite (easier)

inclusion is proved as in the classical case, see [16].

For the variable Besov spaces we have the following result (for constant q).

Theorem 5.3. Let p ∈ P log
0 with p+ <∞, q ∈ (0,∞] and α ∈ C log

loc with limit at infinity.

If
(
α− 1

p
− (n− 1)max

{
0, 1

p
− 1

})−
> 0, then

TrB
α(·)
p(·), q(R

n) = B
α(·)− 1

p(·)
p(·), q (Rn−1).

Proof. Suppose first that all exponents are defined on Rn. Take a function α0 ∈ C log
loc , with

limit at infinity, such that α−α0 is a positive constant and
(
α0− 1

p
− (n− 1)max

{
0, 1

p
−

1
})−

> 0. Choose now α1 := 2α− α0. Since
(
α1 − 1

p
− (n− 1)max

{
0, 1

p
− 1

})−
> 0, by

(5.1) we have

TrF
αj(·)
p(·), q(R

n) = F
αj(·)− 1

p(·)
p(·), p(·) (Rn−1)

for j = 0, 1. Since α1 − α0 is also a positive constant and 1
2
(α0 + α1) = α, the result

follows by interpolation: indeed, by Corollary 3.7 we have

B
α(·)
p(·), q(R

n) =
(
F

α0(·)
p(·), 1(R

n), F
α1(·)
p(·), 1(R

n)
)

1
2
,q

and

B
α(·)− 1

p(·)
p(·), q (Rn−1) =

(
F

α0(·)− 1
p(·)

p(·), p(·) (Rn−1),
(
F

α1(·)− 1
p(·)

p(·), p(·) (Rn−1)
)

1
2
,q
.

Hence by the interpolation property, we conclude that the trace operator maps B
α(·)
p(·), q(R

n)

into B
α(·)− 1

p(·)
p(·), q (Rn−1) boundedly.

If we are proving the inclusion “⊃”, then the exponents are, a priori, only defined on
Rn−1. However, in this case they can be extended to whole Rn with the same log-Hölder
constants by [11, Proposition 4.1.7]. �
5.2. Pseudodifferential operators. The aim of this section is to study mapping prop-
erties of pseudodifferential operators in variable exponent Besov spaces. Some standard
references for such operators are [20, 36, 37, 39].

For µ ∈ R, 0 6 δ 6 1, let Sµ
1,δ be the Hörmander class of complex-valued C∞-functions

a = a(x, ξ) in Rn ×Rn such that for all multi-indices γ, β there exists a positive constant
cγ,β with ∣∣Dγ

xD
β
ξ a(x, ξ)

∣∣ 6 cγ,β ⟨ξ⟩µ−|β|+δ|γ|

for all x, ξ ∈ Rn, where we use the abbreviations

⟨ξ⟩ = (1 + |ξ|2)1/2 , Dγ
x =

∂|γ|

∂xγ11 · · · ∂xγnn
and Dβ

ξ =
∂|β|

∂ξβ1

1 · · · ∂ξβn
n

.

With a symbol a ∈ Sµ
1,δ we associate the pseudodifferential operator a(x,D) defined on

the Schwartz class S by

a(x,D)f(x) =

∫
Rn

eix·ξa(x, ξ)f̂(ξ) dξ.

It is known that pseudodifferential operators with symbols belonging to Sµ
1,δ, µ ∈ R,

0 6 δ < 1, are bounded from Bα
p,q into Bα−µ

p,q for any (constant) exponents α ∈ R,
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0 < p, q 6 ∞, and a similar assertion holds for Triebel–Lizorkin spaces (under the
additional assumption p <∞) (see e.g. [39, Chapter 6] for further details).

Recently, Rabinovich and Samko [33] proved the boundedness of some pseudodifferen-
tial operators in weighted variable exponent Lebesgue and Bessel potential spaces. The
following is contained in [33, Theorem 5.1].

Theorem 5.4. Let α ∈ R and p ∈ P log with 1 < p− 6 p+ < ∞. If a ∈ Sµ
1,0 (µ ∈ R),

then the operator a(x,D) is bounded from Lα,p(·) into Lα−µ,p(·).

Taking into account Theorem 5.4 and observing that Besov spaces can be written as
a (real) interpolation space between appropriate Bessel potential spaces, cf. (3.9), we
deduce the following result.

Theorem 5.5. Let α ∈ R, p ∈ P log with 1 < p− 6 p+ < ∞, and 0 < q 6 ∞. Then any
pseudodifferential operator a(x,D) with a symbol a ∈ Sµ

1,0 (µ ∈ R) is bounded from Bα
p(·),q

into Bα−µ
p(·),q.
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Exponents, Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Berlin, 2011.
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