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Abstract. In this paper we present an interpolation inequality in the ho-
mogeneous Besov spaces on Rn, which reduces to a number of well-known
inequalities in special cases.

1. Introduction

There are several types of interpolation inequalities in the Sobolev and Besov
spaces on Rn; see for instance [1]–[15] and references therein. We prove the following
theorem (see below for notation).

Theorem 1. Let λ, µ, p, q, r, θ satisfy λ, µ ∈ R, 1 ≤ p, q ≤ r ≤ ∞, 0 < θ < 1,

λ >
n

p
− n

r
,(1.1)

µ <
n

q
− n

r
,(1.2)

θ

(
λ− n

p
+
n

r

)
+ (1− θ)

(
µ− n

q
+
n

r

)
= 0.(1.3)

Then there exists a constant C > 0 such that

‖f ; Ḃ0
r,1‖ ≤ C‖f ; Ḃλp,∞‖θ‖f ; Ḃµq,∞‖1−θ(1.4)

for all f ∈ Ḃλp,∞ ∩ Ḃµq,∞.

By the embeddings Ḃ0
r,1 ↪→ Lr and Ḣρ

r ↪→ Ḃρr,∞ with 1 ≤ r ≤ ∞, ρ ∈ R, we
have the following corollary.

Corollary 2. Let λ, µ, p, q, r, θ be as above. Then there exists a constant C > 0
such that

‖f ;Lr‖ ≤ C‖f ; Ḣλ
p ‖θ‖f ; Ḣµ

q ‖1−θ(1.5)

for all f ∈ Ḣλ
p ∩ Ḣµ

q .
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The results above generalize various previously known interpolation inequalities.
In [9], Miyakawa proved (1.5) in the special cases: (a) r = ∞, λ = µ; (b) r =
∞, p = q, µ = 0. In [5], Escobedo and Vega proved (1.5) in the special case:
(c) r = ∞, p, q > 1, 0 < λ, µ < n. Corollary 2 ensures that (1.5) holds when
µ ≤ 0. In [11], (1.5) is proved in the special case: (d) r =∞, p = q = 2.

There are some available interpolation inequalities not covered by the results
above. Complex interpolation yields (1.5) with 1 < p, q, r < ∞, 1/r =
(1 − θ)/p + θ/q, (1 − θ)λ + θµ = 0 (see also [7]), and therefore (1.1) and (1.2)
amount to additional restrictions. The known complex interpolation formulas for
Besov spaces do not cover (1.4), however. A possible dependence of the third index
on the interpolation inequalities is a novelty of (1.4) (see also [8, 12]).

We know a few more results which seem to be related to (1.4) and (1.5). In [6],
Gérard, Meyer, and Oru proved

‖f ;Lr‖ ≤ C‖f ; Ḣλ
p ‖p/r‖f ; Ḃ−α∞,∞‖1−p/r,(1.6)

where 1 < p < r <∞, α(r/p− 1) = λ > 0, in particular, p = 2, r = 6, λ = 1, α =
1/2. In [4], Cohen, Dahmen, Daubechies, and De Vore proved

‖f ;L2‖ ≤ C‖f ;BV ‖1/2‖f ;B−1
∞,∞‖1/2,(1.7)

where BV denotes the space of functions vanishing at infinity in the weak sense
and satisfying the estimate

sup
y∈Rn

|y|−1

∫
|f(x+ y)− f(x)|dx ≤ C.

We prove the theorem in the next section. The proof depends on the standard
technique from the Littlewood–Paley theory (see [1, 2, 3, 6, 8, 11, 15] for instance)
and therefore the theorem holds for the homogeneous Besov spaces on the Heisen-
berg group Hn with necessary modifications (see [1]).

We finally introduce the notation. For any r with 1 ≤ r ≤ ∞, Lr = Lr(Rn)
denotes the Lebesgue space on Rn. For any ρ ∈ R and any r with 1 ≤ r ≤
∞, Ḣρ

r denotes the homogeneous Sobolev space defined as the space of classes
of distributions f modulo polynomials such that (−∆)ρ/2f ∈ Lr, where ∆ is the
Laplacian in Rn. For any ρ ∈ Rn and any r,m with 1 ≤ r,m ≤ ∞, Ḃρr,m denotes the
homogeneous Besov space defined as the space of classes of distributions f modulo
polynomials such that {2ρj‖ϕj ∗ f ;Lr‖} ∈ lm(Z), where ∗ denotes the convolution
in Rn and the Fourier transformed functions {ϕ̂j} ⊂ C∞0 satisfy

∑
j∈Z ϕ̂j(ξ) = 1 for

all ξ ∈ Rn\{0}, 0 ≤ ϕ̂j ≤ 1, supp ϕ̂j ⊂ {ξ; 2j−1 ≤ |ξ| ≤ 2j+1}, ϕ̂j(ξ) = ϕ̂0(2−jξ).
We refer to [2, 3, 7, 15] for general information on homogeneous Besov and Triebel–
Lizorkin spaces.

2. Proof of the theorem

We may assume that ‖f ; Ḃλp,∞‖ 6= 0 and ‖f ; Ḃµq,∞‖ 6= 0. From the support
properties of ϕ̂j it follows that

‖f ; Ḃ0
r,1‖ =

∑
j∈Z
‖ϕj ∗ f ;Lr‖ ≤

∑
j∈Z

j+1∑
k=j−1

‖ϕk ∗ ϕj ∗ f ;Lr‖.(2.1)
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By the Young inequality, we have

‖ϕk ∗ ϕj ∗ f ;Lr‖ ≤ ‖ϕk;Lm‖‖ϕj ∗ f ;Ls‖
= 2nk(1−1/m)‖ϕ0;Lm‖‖ϕj ∗ f ;Ls‖,(2.2)

where 1 + 1/r = 1/m+ 1/s. We apply (2.2) with s = p, q to (2.1) to obtain

‖f ; Ḃ0
r,1‖ ≤ C

∑
j≥l

2(n/p−n/r−λ)j · 2λj‖ϕj ∗ f ;Lp‖

+ C
∑
j<l

2(n/q−n/r−µ)j · 2µj‖ϕj ∗ f ;Lq‖

≤ C
∑
j≥l

2(n/p−n/r−λ)j‖f ; Ḃλp,∞‖+ C
∑
j<l

2(n/q−n/r−µ)j‖f ; Ḃµq,∞‖

≤ C(2(n/p−n/r−λ)l‖f ; Ḃλp,∞‖+ 2(n/q−n/r−µ)l‖f ; Ḃµq,∞‖)
= C(2(n/p−n/r−λ)la1−θ + 2(n/q−n/r−µ)la−θ)‖f ; Ḃλp,∞‖θ‖f ; Ḃµq,∞‖1−θ,

where a = ‖f ; Ḃλp,∞‖/‖f ; Ḃµq,∞‖.
Let σ = (λ − n/p+ n/r) − (µ − n/q + n/r) > 0 and let l be the largest integer

that is less than or equal to σ−1 log2 a. Then,

2l ≤ a1/σ ≤ 2 · 2l, θ = −(µ− n/q + n/r)/σ, 1− θ = (λ − n/p+ n/r)/σ,

and therefore

2(n/p−n/r−λ)la1−θ ≤ (2a−1/σ)λ−n/p+n/ra1−θ = 2λ−n/p+n/r,

2(n/q−n/r−µ)la−θ ≤ a(n/q−n/r−µ)/σa−θ = 1.

This proves the theorem.
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